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Abstract
The perception system for robotics and autonomous cars relies on the collaboration amongmultiple types of sensors
to understand the surrounding environment. LiDAR has shown great potential to provide accurate environmental
information, and thus deep learning on LiDAR point cloud draws increasing attention. However, LiDAR is unable to
handle severe weather. The sensor fusion between LiDAR and other sensors is an emerging topic due to its sup-
plementary property compared to a single LiDAR. Challenges exist in deep learning methods that take LiDAR point
cloud fusion data as input, which need to seek a balance between accuracy and algorithm complexity due to data
redundancy. This work focuses on a comprehensive survey of deep learning on LiDAR-only and LiDAR-fusion 3D
perception tasks. Starting with the representation of LiDAR point cloud, this paper then introduces its unique char-
acteristics and the evaluation dataset as well as metrics. This paper gives a review according to four key tasks in the
field of LiDAR-based perception: object classification, object detection, object tracking, and segmentation (includ-
ing semantic segmentation and instance segmentation). Finally, we present the overlooked aspects of the current
algorithms and possible solutions, hoping this paper can serve as a reference for the related research.
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1. INTRODUCTION
The perception system is crucial for autonomous driving, which enables the autonomous car to understand
the surrounding environment with the location, velocity, and future state of pedestrians, obstacles, and other
traffic participants. It provides basic and essential information for downstream tasks of autonomous driving
(i.e., decisionmaking, planning, and control system). Thus, a precise perception system is vital, which depends
on breakthroughs in both hardware and software, i.e., 2D and 3D acquisition technology and perception algo-
rithms.

Sensors equipped on the perception system generally include 2D cameras, RGB-D cameras, radar, and LiDAR.
With advantages such as high angular resolution, clear detail recognition, and long-range detection, LiDAR
thus becomes indispensable in autonomous driving above the L3 level. LiDAR utilizes pulses of light to trans-
late the physical world into a 3D point cloud in real time with a high level of confidence. By measuring the
propagation distance between the LiDAR emitter and the target object and analyzing the reflected energy mag-
nitude, amplitude, frequency, and phase of the reflected wave spectrum on the surface of the target object, Li-
DAR can present the precise 3D structural information of the target object within centimeter level. According
to the scanning mechanism, LiDAR can be divided into three categories: the standard spindle-type, solid-state
LiDAR (MEMS), and flash LiDAR. Compared with the standard spindle-type LiDAR, solid-state LiDAR and
flash LiDAR provide a solution to high material cost and high mass production cost; therefore, the standard
spindle-type LiDAR will be replaced gradually in the future. The application of LiDAR in autonomous cars is
gradually gaining market attention. According to Sullivan’s statistics and forecasts, the LiDAR market in the
automotive segment is expected to reach $8 billion by 2025, accounting for 60% of the total.

In recent decades, deep learning has been attracting extensive attention from computer vision researchers due
to its outstanding ability in dealing with massive and unstructured data, which stimulates the growth of envi-
ronment perception algorithms for autonomous driving. Depending on whether the algorithm concerns the
position and pose of the object in real 3D space or just the position of the object in the reflected plane (i.e.,
image plane), deep learning-based perception algorithms can be divided into 3D and 2D perception. While
deep learning-based 2D perception has achieved great progress and thus become a mature branch in the field
of computer vision, 3D perception is an emerging topic and yet under-investigated. Relatively, 3D perception
outputs abundant information, i.e., height, length, width, and semantic label for each 3D object, to restore the
real state of the object in three-dimensional space. In general, the input data of 3D perception tasks contain
RGB-D images from depth cameras, images frommonocular cameras, binocular cameras, and multi-cameras,
and point clouds from LiDAR scanning. Among them, data from LiDAR and multi-camera-based stereo-
vision systems achieve higher accuracy in 3D inference. Unlike images from stereo-vision systems, LiDAR
point clouds as a relatively new data structure are unordered and possess interaction among points as well
as invariance under transformation. These characteristics make deep learning on LiDAR point clouds more
challenging. The publication of the pioneering framework PointNet [1] together with PointNet++ [2] inspires
plenty of works on deep learning for LiDAR point clouds, which will promote the development of autonomous
driving perception systems. Hence, this work gives a review of 3D perception algorithms based on deep learn-
ing for LiDAR point cloud. However, in real-world applications, a single LiDAR sensor always struggles in
heavy weather, color-related detection, and lightly disturbed conditions, which does not fulfill the need of
autonomous cars that must perceive surroundings accurately and robustly in all variable and complex con-
ditions. To overcome the shortcomings of a single LiDAR, LiDAR-based fusion [3,4] emerges with improved
perception accuracy, reliability, and robustness. Among the LiDAR-fusion methods, the fusion of LiDAR sen-
sors and cameras including visual cameras and thermal cameras is most widely used in the area of robotics
and autonomous driving perception. Hence, this paper also reviews deep learning-based fusion methods for
LiDAR.

LiDAR-based 3D perception tasks take a LiDAR point cloud (or a LiDAR point cloud fused with images or
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data from other sensors) as input, and then outputs the category of the target object (3D shape classification);
3D bounding box implying location, height, length, and width with the category of the target object (3D ob-
ject detection); track ID in a continuous sequence (3D object tracking); segmented label for each point (3D
segmentation); etc.1. In addition, 3D point cloud registration, 3D reconstruction, 3D point cloud generation,
and 6-DOF pose estimation are also tasks worth researching.

Previous related surveys review deep learning methods on LiDAR point cloud before 2021 [5–8]. This paper
reviews the latest deep learning methods on not only LiDAR point cloud but also LiDAR point cloud fusion
(with image and radar). Compared with multi modality fusion surveys [9–11], which cover a wide range of
sensors, this paper provides a more detailed and comprehensive review on each related 3D perception task
(3D shape classification, 3D object detection, 3D object tracking, and 3D segmentation). The contribution of
this paper is summarized as follows:

1. This paper is a survey that focuses on deep learning algorithms with only LiDAR point clouds and LiDAR-
based fusion data (especially LiDAR point cloud fused with the camera image) as input in the field of
autonomous driving. This work is structured considering four representative 3D perception tasks, namely
3D shape classification, 3D object detection, 3D object tracking, and 3D segmentation.

2. This paper gives a review of methods organized by whether fusion data are utilized as their input data.
Moreover, studies and algorithms reviewed in this paper were published in the last decade, which ensures
the timeliness and refer-ability of the study.

3. This paper puts some open challenges and possible research directions forward to serve as a reference and
stimulate future works.

The remainder of this paper is structured as follows. Section 2 provides background knowledge about Li-
DAR point clouds, including representations and characteristics of LiDAR point cloud, existing LiDAR-based
benchmark datasets, and corresponding evaluation metrics. The following four sections give a review of rep-
resentative LiDAR-only and LiDAR-fusion methods for four 3D perception tasks: Section 3 for 3D shape
classification, Section 4 for 3D object detection, Section 5 for 3D object tracking, and Section 6 for 3D seman-
tic segmentation and instance segmentation. Some discussions about overlooked challenges and promising
directions are raised in Section 7. At the end, Section 8 draws the conclusions for this paper.

2. BACKGROUND
Point clouds in the field of autonomous driving are generally generated by the on-board LiDAR. The existing
mainstream LiDAR emits laser wavelengths of 905 and 1550 nm, which are focused and do not disperse over
long distances. When a laser beamof LiDARhits the surface of an object, the reflected laser carries information
of the target object such as location and distance. By scanning the laser beam according to a certain trajectory,
the information of the reflected laser points will be recorded. Since the LiDAR scanning is extremely fine, many
laser points can be obtained, and thus a LiDAR point cloud is available. The LiDAR point cloud (point clouds
mentioned in this paper refer to LiDAR point clouds) is an unordered sparse point set representing the spatial
distribution of targets and characteristics of the target surface under the same spatial reference system. There
are three approaches basically implemented in deep learning-based methods to process LiDAR point cloud so
that processed data can be used as input data to the network: (1) multi-view-based methods; (2) volumetric-
based methods; and (3) point-based methods. Multi-view-based methods represent point cloud as 2D views
by projecting it onto 2D grid-based feature maps, which can leverage existing 2D convolution methods and

1Here, we use the term 3D to narrowly describe the tasks with 3D point clouds or 3D point cloud-based fusion data as input and
information of the object in real 3D space as output (i.e., category, 3D bounding box, and semantic labels of objects). Broadly speaking, some
other works explain 3D tasks as tasks inferring information of the object in real 3D space with any kind of input data.
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Figure 1. Three approaches for LiDAR point cloud representation: (a) multi-view-based methods; (b) volumetric-based methods; and (c)
point-based methods. The image in (a) is original originally fromMV3D [12]. The images in (b,c) are original originally from RPVNet [13]

view-pooling layers. Volumetric-based methods discretize the whole 3D space into plenty of 3D voxels, where
each point in the original 3D space is assigned to the corresponding voxel following some specific regulations.
This representation can preserve rich 3D shape information. Nevertheless, the limitation of performance is
inevitable as a result of the spatial resolution and fine-grained 3D geometry loss during the voxelization. On
the contrary, point-based methods conduct deep learning methods directly on the point cloud in continuous
vector space without transforming the point cloud into other intermediate data representations. This approach
avoids the loss caused by transformation and data quantification and preserves the detailed information of the
point cloud. The visualization of the three representations is illustrated in Figure 1.

The point cloud carries point-level information (e.g., the x, y, and z coordinates in 3D space, color, and in-
tensities) and keeps invariant under rigid transformation, scaling, and permutation. An azimuth-like physical
quantity can be easily acquired from the point cloud, and thus diverse features can be generated for deep learn-
ing. Although the point cloud is less affected by the variation of illumination and scale when compared to the
image, the point cloud suffers more from the intensity and often ignores sparse information reflected by the
surface of objects. The laser emitted by LiDAR cannot bypass obstacles and will be greatly disturbed or even
unable to work in the rain, fog, sand, and other severe weather. Thus, challenges exist when extracting fea-
tures from the spatial-sparse and unordered point sets. Algorithms have evolved from hand-crafted features
extraction to deep-learning ones. Among them, point-wise and region-wise methods treat different paths that
lead to the same destination. Meanwhile, the cooperation with other sensors shows huge potential to improve
the performance through supplementing insufficient information, which may unexpectedly lead to extra com-
putational cost or information redundancy if not well designed. Therefore, studies focus on how to reach a
compromise on the cost and the performance when conducting LiDAR-fusion tasks.

With the development of LiDAR, increasing LiDAR point cloud datasets are available, facilitating the training
and evaluation among different algorithms. Table 1 [14–28] lists datasets recorded by LiDAR-based visual system.
Among them, KITTI [14] provides a comprehensive real-world dataset for autonomous driving, providing a
benchmark for 3D object detection, tracking, and scene flow estimation. The evaluation metrics vary for
different tasks. For 3D classification, the overall accuracy (OA) and the mean class accuracy (mAcc) are widely
used. For 3D object detection, the average precision (AP) and mean average precision (mAP) are mostly-used.
For 3D object tracking, precision and success are commonly used as evaluation metrics of single object tracker.
Average multi-object tracking Accuracy (AMOTA) and average multi-object tracking precision (AMOTP) are
used as evaluation metrics for a 3D multi-object tracker. For 3D segmentation, mean intersection over union
(mIoU), OA, and mAcc are widely used for the algorithm evaluation.
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Table 1. Dataset recorded by LiDAR-based visual system

Types Dataset Year Data Source Application

LiDAR-only

Sydney Urban Objects [15] 2013 LiDAR point cloud Classification
ScanObjectNN [16] 2019 LiDAR point cloud Classification
DALES [17] 2020 LiDAR point cloud Segmentation
LASDU [18] 2020 LiDAR point cloud Segmentation
Campus3D [19] 2020 LiDAR point cloud Segmentation
Toronto-3D [20] 2020 LiDAR point cloud Segmentation

LiDAR-fusion

KITTI [14] 2012 RGB image + LiDAR point cloud Majority of tasks
RueMonge2014 [21] 2014 RGB image + RGB-D image + LiDAR point cloud Segmentation
Matterport3D [22] 2017 RGB-D image+ LiDAR point cloud Segmentation
H3D [23] 2019 RGB image + LiDAR point cloud Detection + tracking
Argoverse [24] 2019 RGB image + LiDAR point cloud Detection + tracking
Lyft_L5 [25] 2019 RGB image + LiDAR point cloud Detection + tracking
Waymo Open [26] 2020 RGB image + LiDAR point cloud Detection + tracking
nuScenes [27] 2020 RGB image + LiDAR point cloud Detection + tracking
MVDNet [28] 2021 RaDAR + LiDAR point cloud Detection

3. 3D SHAPE CLASSIFICATION
Object classification on point cloud is generally known as 3D shape classification or 3Dobject recognition/classi
fication. There are both inheritance and innovation when transferring 2D object classification to 3D space. For
multi-view-based methods, methods for 2D images can be adopted since the point cloud is projected into 2D
image planes. However, finding an effective and optimal way to aggregate features of multiple views is still
challenging. For point-based methods [29,30], designing novel networks according to the characteristics of the
point cloud is the key task. 3D object recognition frameworks usually follow a similar pipeline: Point clouds
are first aggregated with an aggregation encoder in order to extract a global embedding. Subsequently, the
global embedding is passed through several fully connected layers, after which the object category can be pre-
dicted. According to different forms of input data, 3D classifiers can be divided into LiDAR-only classifiers
and LiDAR-fusion classifiers. This section reviews existing methods for 3D shape classification. A summary
of the algorithms is shown in Table 2, including modalities and representations of data, algorithm novelty, and
performance on ModelNet40 [31] dataset for 3D object classification.

3.1. LiDARonly classification
In terms of diverse representations of the point cloud as input data, LiDAR-only classifiers can be divided
into volumetric representation, 2D views representation, and point representation. Different from volumet-
ric representation- and 2D views representation-based models, which preprocess point cloud into voxel or
2D multi-views by projection, point representation-based methods apply a deep learning model on the point
cloud directly. Qi et al. [1] proposed a path-breaking architecture called PointNet, which works on raw point
cloud for the first time. A transformation matrix learned by T-Net can align the input data and a canonical
space in order to ensure immutability after certain geometric transformations. Therefore, a global feature can
be learned through several multi-layer perceptrons (MLP), T-Net, and max-pooling. Then, the feature is uti-
lized to predict the final classification score by MLP. Shortly after, PointNet++ [2] extracts local features that
PointNet [1] ignores at diverse scales and attains deep features through a multi-layer network. It also uses two
types of density adaptive layers, multi-scale grouping (MSG) and multi-resolution grouping (MRG), to deal
with the feature extraction of unevenly distributed point cloud data. These two works [1,2] can be implemented
simply but achieves extraordinary performance at the same time; therefore, several networks are developed on
their basis. MomNet [32] is designed on the basis of a simplified version of the PointNet [1] architecture, which
consequently requires relatively low computational resources. Inspired by PointNet++ [2], Zhao et al. [33] pro-
posed adaptive feature adjustment (AFA) to exploit contextual information in a local region. SRN [34] builds a
structural relation network in order to consider local inner interactions. Recently, Yan et al. [35] introduced an
end-to-end network named PointASNL with an adaptive sampling (AS) module and a local-nonlocal (L-NL)
module, achieving excellent performance on the majority of datasets.
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While the above methods learn point-wise features through multi-layer perceptrons, some other works adopt
3D convolutional kernels to design convolutional neural networks for point clouds, which can preserve more
spatial information of point clouds. One of the typical networks is PointConv [36], which uses a permutation-
invariant convolution operation. As an extension of traditional image convolution, the weight functions and
the density functions of a given point in PointConv are learned from MLP and kernel density estimation, re-
spectively. Boulch et al. [37] built a generalization of discrete convolutions for point clouds by replacing the
discrete kernels for grid sampled data with continuous ones. Relation-shape convolutional neural network
(RS-CNN) [38] is a hierarchical architecture which leverages the relation-shape convolution (RS-Conv) to learn
the geometric topology constraint among points from their relations with an inductive local representation.
Inspired by dense connection mode, Liu et al. [39] introduced DensePoint, a framework that aggregates outputs
of all previous layers through a generalized convolutional operator in order to learn a densely contextual rep-
resentation of point clouds from multi-level and multi-scale semantics. Apart from continuous convolutional
kernels, discrete convolutional kernels play a role in deep learning for point clouds as well. ShellNet [29], a con-
volution network that utilizes an effective convolution operator called ShellConv, achieves a balance of high
performance and short run time. ShellConv partitions the domain into concentric spherical shells and con-
ducts convolutional operation based on this discrete definition. Mao et al. [40] proposed InterpConv for object
classification, whose key parts are spatially-discrete kernel weights, a normalization term and an interpolation
function. Rao et al. [41] introduced an architecture named spherical fractal convolutional neural network, in
which point clouds are projected into a discrete fractal spherical structure in an adaptive way. Unlike other
CNN methods, a novel convolution operator [30] is proposed, which convolves annularly on point clouds and
is applied in an annular convolutional neural network (A-CNN), leading to higher performance. Through
specified regular and dilated rings along with constraint-based K-NN search methods, the annular convolu-
tional methods can order neighboring points and attain the relationship between ordered points. DRINet [42]

develops a dual-representation (i.e., voxel-point and point-voxel ) to propagate features between these two
representations, performing SOTA on the ModelNet40 dataset with high runtime efficiency.

3.2. LiDARfusion classification
Sensors-fusion architectures have become an emerging topic due to their balance among the compatibility with
application scenarios, the complementarity of perception information, and the cost. LiDAR is fused with other
sensors to deal with specific tasks for autonomous driving. For instance, point clouds and images are fused in
order to accomplish the 2D object detection [43,44] and the fusion of LiDAR and radar is applied to localize and
track objects more precisely in terms of 3D object detection [4,45]. However, it is desirable to carry out the point
cloud based object classification as a single task with fused methods in the field of real-world self-driving cars.
Generally, 3D classification is implemented as a branch of 3D object detection architecture to classify targets
of a proposal region and help predict the bounding box. Moreover, since the PointNet [1] was proposed in
2017, many studies dealing directly with raw point clouds have been inspired. For 3D classification task, the
overall accuracy can achieve 93.6% [16] on the generic benchmark ModelNet40, which satisfies the demand
for applications of autonomous car so that 3D classification is not regarded as an independent task. On the
other hand, LiDAR-based fusion methods for the object category prediction are not feasible due to the lack
of corresponding image datasets aligned with existing point cloud datasets. Only a few works concentrate on
the fusion method specifically for 3D classification in the field of autonomous driving. Therefore, this section
focuses on the classifier integrated into the LiDAR-fusion 3D detectors or segmentators.

According to the different stages in which sensors data are fused, fusion methods can be divided into early
fusion and late fusion. For early fusion, features from different data sources are fused in the input stage by
concatenating each individual feature into a unified representation. This representation is sent to a network
to get final outputs. For late fusion, the prediction results from the individual uni-modal streams are fused
to output the final prediction. Late fusion merges results by summation or averaging in the simplest cases.
Compared with early fusion, late fusion lacks the ability to exploit cross correlations among multi-modal data.
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Table 2. Experiment results of 3D object classification methods on ModelNet40 benchmark. Here ”I”, ”mvPC”, ”vPC”, ”pPC”, ”rm”
stands for image, multiple view of point cloud, voxelized point cloud, point cloud, range map respectively. ”OA” represents the overall
accuracy that is the mean accuracy for all test instance; ”mAcc” represents the mean accuracy that is the mean accuracy for all shape
categories. Here the ’%’ after the number is omitted for simplicity. ”-” means the result is not available

Category Model Modal.
&Repr.

Novelty OA mAcc

LiDAR-
Only

PointNet [1] pPC point-wise MLP+T-Net+global max pooling 89.2 86.2
PointNet++ [2] pPC set abstraction (sampling, grouping, feature learning)+fully connected layers 90.7 90.7
Momen(e)t [32] pPC MLP+max pooling+pPC coordinates and their polynomial functions as input 89.3 86.1
SRN [34] pPC structural relation network(geometric and locational features+MLP) 91.5 -
PointASNL [35] pPC adaptive sampling module+local-nonlocal module 92.9 -
PointConv [36] pPC MLP to approximate a weight function+a density scale 92.5 -
RS-CNN [38] pPC relation-shape convolution(shared MLP+channel-raising mapping) 92.6 -
DensePoint [39] pPC PConv+PPooling(dense connection like) 93.2 -
ShellNet [29] pPC shellconv(KNN+max pooling+shared MLP+conv order) 93.1 -
InterpConv [40] pPC interpolated convolution operation+max pooling 93.0 -
DRINet [42] vPC+pPC sparse point-voxel feature extraction+sparse voxel-point feature extraction 93.0 -

LiDAR-
Fusion

MV3D [12] I&mvPC 3D proposals network+region-based fusion network - -
SCANet [46] I&mvPC multi-level fusion+spatial-channel attention+extension spatial upsample module - -
MMF [47] I&mvPC point-wise fusion+ROI feature fusion - -
ImVoteNet [48] I&pPC lift 2D image votes, semantic and texture cues to the 3D seed points - -

Classifiers integrated into two-stage LiDAR-fusion 3D detectors can be divided into two categories: (1) clas-
sifiers to distinguish the target and background; and (2) classifiers to predict the final category of the target
object. Chen et al. [12] designed a deep fusion framework named multi-view 3D networks (MV3D) combining
LiDAR point clouds and RGB images. This network designs a deep fusion scheme that alternately performs
feature transformation and feature fusion, which belongs to the early fusion architecture. MV3D comprises a
3D proposal network and a region-based fusion network, both of which have a classifier. The classifier in the
3D proposal network regresses to distinguish whether it belongs to the foreground or background, and then
the results along with 3D box generated by the 3D box regressor are fed to 3D Proposal Module to generate 3D
proposals. The final results are obtained by a multiclass classifier that predicts the category of objects through
a deep fusion approach using the element-wise mean for the join operation and fusing regions generated from
multi-modal data. Motivated by deep fusion [12], ScanNet [46] proposes multi-level fusion layers fusing 3D re-
gion proposals generated by an object classifier and a 3D box regressor to enable interactions among features.
ScanNet also introduces the attention mechanism in spatial and channel-wise dimensions in order to capture
global and multi-scale context information. The multi-sensor fusion architecture [47] can accomplish several
tasks by one framework, including object classification, 3D box estimation, 2D and 3D box refinement, depth
completion, and ground estimation. In the 3D classification part, LiDAR point clouds are first projected into
ground relative bird’s eye view (BEV) representation through the online mapping module, and then features
extracted from LiDAR point clouds, and RGB images are fused by the dense fusion module and fed into Li-
DAR backbone network to predict the probability of the category. This multi-task multi-sensor architecture
performs robustly and qualitatively on the TOR4D benchmark. For one-stage 3D fused detectors, the classifier
is generally applied in a different way because the one-stage detectors aim to conduct classification and regres-
sion simultaneously. Qi et al. [48] proposed a one-stage architecture named ImVoteNet, which lifts 2D vote
to 3D to improve 3D classification and detection performance. The architecture consists of two parts: One
leverages 2D images to pass the geometric, semantic, and texture cues to 3D voting. The other proposes and
classifies targets on the basis of a voting mechanism such as Hough voting. The results show that this method
boosts 3D recognition with improved mAP compared with the previous best model [49].

4. 3D OBJECT DETECTION
All the deep learning detectors follow a similar idea: they extract the feature from the input data with the
backbone and neck of the framework to generate proposals and then classify and locate the objects with a 3D
bounding box with the head part. Depending on whether region proposals are generated or not, the object
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detectors can be categorized into two-stage and single-stage detectors. Two-stage detectors detect the target
from the region of interests proposed from the feature map, while single-stage detectors perform tasks based
on sliding dense anchor boxes or anchor points from the pyramid map directly. This section summarizes
contemporary 3D object detection research, focusing on diverse data modalities from different sensors. Table
3 shows the summary for 3D object detection. Table 4 summarizes experiment results of 3D object detection
methods on the KITTI test 3D object detection benchmark.

4.1. LiDARonly detection
LiDAR-only detection generates a 3D bounding box based on networks that are only fed with a LiDAR point
cloud. In general, two-stage detection processes LiDAR data with point-based representation, while single-
stage detection performs the task onmultiple formats, including point cloud-based, multi-viewed, and volumet
ric-based representations.

4.1.1. Two-stage detection
For the two-stage detection, segmentation is a widely-used method to remove noisy points and generate pro-
posals in the first sub-module of the detection. One of the typical detection models is IPOD [50], which seeds
instance-level proposals with context and local features extracted by projected segmentation. In 2019, STD [51]

created point-level spherical anchors and parallel intersection-over-union (IOU) branches to improve the accu-
racy of the location. Following the proposal scheme of PointRCNN [52] (whose network is illustrated in Figure
2a), PointRGCN [53] introduces a graph convolutional network which aggregates per-proposal/per-frame fea-
tures to improve the detection performance. Shi et al. [54] extended the method of PointRCNN [52] in another
way, by obtaining 3D proposals and intra-object part locations with a part-aware module and regressing the
3D bounding boxes based on the fusion of appearance and location features in the part-aggregation frame-
work. HVNet [55] fuses multi-scale voxel features point-wisely, namely hybrid voxel feature encoding. After
voxelizing the point cloud at multiple scales, HVNet extracts hybrid voxel features with an attentive voxel fea-
ture encoder, and then pseudo-image features are available through scale aggregation in point-wise format.
To remedy the proposal size ambiguity problem, LiDAR R-CNN [56] uses boundary offset and virtual point,
designing a plug-and-play universal 3D object detector.

4.1.2. Single-stage detection
Unlike the two-stage detector that outputs final fine-grained detection results on the proposals, the single-stage
detector classifies and locates 3D objects with a fully convolutional framework and transformed representa-
tion. Obviously, this method makes the foreground more susceptible to adjacent background points, thus de-
creasing the detection accuracy. Multiple methods emerge to solve this problem. For example, VoxelNet [57]

extracts voxel-wise features from point clouds in volumetric-based representation with random sampling and
normalization, after which it utilizes a 3D-CNN-based framework and region proposal network to detect 3D
objects. To bridge the gap between the 3D-CNN-based and 2D-CNN-based detection, the authors of [58] ap-
plied PointNet [1] to point clouds to generate vertical-columned representation, which enables point clouds to
be processed by the following 2D-CNN-based detection framework. Multi-task learning work [59] introduces
a part-sensitive warping module and an auxiliary module to refine the feature extracted from the backbone
network by adapting the ROI pooling fromR-FCN [60] detectionmodule. As illustrated in Figure 2c, TANet [61]

designs a stacked triple attention module and a coarse-to-fine regression module to reduce the disturbance of
noisy points and improve the detection performance on hard-level objects. SE-SSD [62] contains a teacher SSD
and a student SSD. The teacher SSD produces soft targets by predicting relatively accurate results (after global
transformation) from the input point cloud. The student SSD takes augmented input (a novel shape-aware
data argumentation) as input, and then is trained with a consistency loss under the supervision of hard-level
targets. 3D auto-labeling [63], which aims at saving the cost of human labeling, proposes a novel off-board
3D object detector to exploit complementary contextual information from point cloud sequences, achieving a
performance on par with human labels.
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Table 3. Summary of 3D object detection methods. Here ”I”, ”mvPC”, ”vPC”, ”pPC”, ”RaPC” stands for image, multiple view of point
cloud, voxelized point cloud, point cloud, Radar point cloud respectively

Detector Category Model Modality &
Representation

Novelty

Two-stage
Detection

LiDAR
-Only

IPOD [50] pPC a novel point-based proposal generation
STD [51] pPC proposal generation(from point-based spherical anchors)+PointPool
PointRGCN [53] pPC RPN+R-GCN+C-GCN
SRN [34] pPC structural relation network(geometric and locational features+MLP)
Part-A2 [54] pPC intra-object part prediction+RoI-aware point cloud pooling
HVNet [55] vPC multi-scale voxelization+hybrid voxel feature extraction
LiDAR R-CNN [56] pPC R-CNN style second-stage detector(size aware point features)

LiDAR
-Fusion

3D-CVF [64] I & vPC CVF(auto-calibrated projection)+adaptive gated fusion network
Roarnet [65] I & pPC RoarNet 2D(geometric agreement search)+RoarNet 3D(RPN+BRN)
MV3D [12] I & mvPC 3D proposals network+region-based fusion network
ScanNet [46] I & mvPC multi-level fusion+spatial-channel attention +extension spatial upsample
MMF [47] I & mvPC point-wise fusion+ROI feature fusion
Pointpainting [66] I & pPC image based semantics network+appended (painted) point cloud
CM3D [67] I & pPC pointwise feature fusion+proposal genaration+ROI-wise feature fusion
MVDNet [28] RaPC & mvPC two-stage deep fusion(region-wise feature fusion)

One-stage
Detection

LiDAR
-Only

VoxelNet [57] vPC voxel feature encoding+3D convolutional middle layer+RPN
PointPillars [58] pillar points pillar feature net+backbone(2D CNN)+SSD detection head
SASSD [59] pPC backbone(SECOND)+auxiliary network+PSWarp
TANet [61] vPC Triple Attention module(channel-wise, point-wise, and voxel-wise attention)
SE-SSD [62] pPC teacher and student SSDs+shape aware augumentation+consistency loss
3D Auto Label [63] mvPC motion state classification+static object and dynamic object auto labeling
ImVoteNet [48] I & pPC lift 2D image votes, semantic and texture cues to the 3D seed points
EPNet [68] I & pPC two-stream RPN+LI-Fusion Module+refinement network

LiDAR-Fusion CLOCs [69] I & vPC a late fusion architecture with any pair of pre-trained 2D and 3D detectors

Table 4. Experiment results of 3D object detection methods on KITTI test 3D object detection benchmark. Average Precision (AP) for
car with IoU threshold 0.7, pedestrian with IoU threshold 0.5, and cyclist with IoU threshold 0.5 is shown. ”-” means the result is not
available

Model
Car Pedestrian Cyclist

Easy Medium Hard Easy Medium Hard Easy Medium Hard

IPOD [50] 79.75% 72.57% 66.33% 56.92% 44.68% 42.39% 71.40% 53.46% 48.34%
STD [51] 79.71% 87.95% 75.09% 42.47% 53.29% 38.35% 61.59% 78.69% 55.30%
PointRGCN [53] 85.97% 75.73% 70.60% - - - - - -
Part-A2 [54] 85.94% 77.86% 72.00% 89.52% 84.76% 81.47% 54.49% 44.50% 42.36%
LiDAR R-CNN [56] 85.97% 74.21% 69.18% - - - - - -
3D-CVF [64] 89.20% 80.05% 73.11% - - - - - -
Roarnet [65] 83.71% 73.04% 59.16% - - - - - -
MV3D [12] 71.09% 62.35% 55.12% - - - - - -
SCANet [46] 76.09% 66.30% 58.68% - - - - - -
MMF [47] 86.81% 76.75% 68.41% - - - - - -
CM3D [67] 87.22% 77.28% 72.04% - - - - - -
VoxelNet [57] 77.47% 65.11% 57.73% 39.48% 33.69% 31.51% 61.22% 48.36% 44.37%
PointPillars [58] 79.05% 74.99% 68.30% 52.08% 43.53% 41.49% 75.78% 59.07% 52.92%
SASSD [59] 88.75% 79.79% 74.16% - - - - - -
TANet [61] 84.81% 75.38% 67.66% 54.92% 46.67% 42.42% 73.84% 59.86% 53.46%
SE-SSD [62] 91.49% 82.54% 77.15% - - - - - -
EPNet [68] 89.81% 79.28% 74.59% - - - - - -
CLOCs [69] 88.94% 80.67% 77.15% - - - - - -

4.2. LiDARfusion detection
LiDAR-fusion detection enriches the information with the aspect of data sources to improve the performance
at a low cost. Its auxiliary input data include RGB images, angular velocity (acceleration), depth images, and
so on.

4.2.1. Two-stage detection
The input data of the LiDAR-fusion detector vary in diverse fields with aspects of sampling frequency and
data representations. Hence, simple summation or multiplication at the source side contributes little to the
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improvement of the algorithm performance. In general, two-stage detection fuses the feature map before or
after the proposals. To enhance the quality of proposals, 3D-CVF [64] fuses spatial features from images and
point clouds in cross-wise views with the auto-calibrated feature projection. Based on PointNet [1], Roarnet [65]

designs a two-stage object detection network whose input data contain RGB image and LiDAR point cloud
to improve the performance with 3D pose estimation. As for the fusion of ROI-wise feature, Chen et al. [12]
fused the feature extracted from the bird’s eye view and front view of LiDAR as well as the RGB image. As
shown in Figure 2b, Scanet [46] applies a spatial-channel attention module and an extension spatial up-sample
module to generate proposals of RGB images and point clouds, respectively, in the first stage and then classifies
and regresses the 3D bounding box with a novel multi-level fusion method. Meanwhile, some studies adopt
multi-fusion methods in the proposed schemes. For instance, the authors of [47] completed a two-stage detec-
tion framework with front-end fusion and medium fusion. Its front-end fusion is to merge the sparse depth
image (projected from LiDAR point cloud) and RGB image for the image backbone network to extract dense
depth feature. The depth feature would be fed into the dense fusion module with LiDAR point clouds and
pseudo-LiDAR points to prepare for medium fusion. Vora et al. [66] complemented the context information of
point cloud with the semantic segmentation results of the image. Through the point painting operation, point
clouds are painted by semantic scores, and then the painted point cloud is fed into a point-based 3D detector
to produce final results. The pipeline [67] fuses point-wise features and couples 2D–3D anchors (which are
generated from images and point clouds, respectively) to improve the quality of proposals in the first stage,
after which it handles ROI-wise feature fusion in the second stage. To deal with adverse weather, MVDNet [28]

exploits LiDAR and radar’s potential complementary advantages. This novel framework conducts a deep late
fusion, whichmeans that proposals are generated from two sensors first and then region-wise features are fused.
Moreover, MVDNet provides a foggy weather focused LiDAR and radar dataset generated from the Oxford
Radar Robotcar dataset. EPNet [68] is a closed-loop two-stage detection network. Its LI-fusionmodule projects
point cloud to images and then generates point-wise correspondence for the fusion. To form the closed-loop,
EPNet achieves 3D end-to-end detection on the high definitionmap and estimates themap on the fly from raw
point clouds. ImVoteNet [48] (which is an extension of VoteNet [49]) supplements the point-wise 3D informa-
tion with the geometrical and semantic features extracted from 2D-images. In its head module, LiDAR-only,
image-only, and LiDAR-fusion features all participate in the voting to improve the detection accuracy.

4.2.2. Single-stage detection
Single-stage detectors outperform two-stage detectors in terms of runtime due to their compact network struc-
ture. With the goal of high efficiency and accuracy, the fusion of single stage detector is placed in the post-
processing stage (i.e., late fusion) in order to maintain the superior single-shot detection performance and
improve through supplementary multi-sensor data at the same time. This indicates that only the results of
detectors for LiDAR point cloud and other sensor data (e.g., RGB image) are fused in post-processing module
without changing any network structure of detectors. CLOCs [69] builds a late fusion architecture with any pair
of pre-trained image and LiDAR detectors. The output candidates of LiDAR and image are combined before
the non-maximum suppression operation to exploit geometric and semantic consistencies. Individual 2D and
3D candidates are first pre-processed through specific tensor operation so that they are both in a consistent
joint representation using sparse tensor. Then, a set of 2D convolution layers are utilized to fuse, which takes
the sparse tensor as input and output a processed tensor. The max-pooling operation is conducted on this
tensor to map it to the targets (formatted as a score map). Experiment results on the KITTI dataset show
that single-stage 3D detector SECOND [70] fusion with 2D detector Cascade R-CNN [71] achieves better per-
formance by a large margin compared to single-modality SECOND. The architecture of CLOCs is shown in
Figure 2d.
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Figure 2. Typical architectures for two categories of LiDAR-based two-stage 3D detection: (a) LiDAR-only and (b) LiDAR-fusion methods.
Typical networks for two categories of LiDAR-based one-stage detector: (c) LiDAR-only and (d) LiDAR-fusion methods.

5. 3D OBJECT TRACKING
All the trackers obey the same rule: they estimate the states of targets contained in the subsequent frames
under the guidance of the targets in the first frame. Trackers need to overcome more difficulties, including
illumination and scale variation, because trackers perform tasks with richer geometric information and context
information compared to image-based trackers and LiDAR-based detectors. Unlike the isolation of single-
object tracking and multi-object tracking in the field of the image, in the field of 3D tracking, both trackers are
related and the former one can be regarded as a simplified version of the latter one. This section reviews two
methods of achieving online 3D tracking: detection and siamese network. Table5 summarizes these works.
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5.1. LiDARonly tracking
As the temporal extension of detection, tracking achieves higher and more precise performance based on
appearance similarity and motion trajectory. Tracking-by-detection is an intuitive method. For example, Va-
quero et al. [72] fused vehicle information segmented from dual-view detectors (i.e., a front view and a bird’s
eye view) and then utilized extended Kalman filter, Mahalanobis distance, and motion update module to per-
form 3D tracking. Furthermore, Shi et al. [73] performed 3D tracking and domain adaption based on a variant
of the 3D detection framework (i.e., PV-RCNN), which comprises temporal information incorporation and
classification with RoI-wise features, and so on. In addition, detection results can be enhanced by extra target
templates. As a typical example, P2B [74] first matches the proposals with augmented target-specific features
and then regresses target-wise centers to generate high-quality detection results for tracking. Following Cen-
terTrack [75], CenterPoint [76] develops an object-center-tracking network through velocity estimation and the
point-based detection that views objects as points, achieving more accurate and faster performance.

As for the image-based tracking, the siamese network eliminates the data redundancy and speeds up the
task through the conversion from tracking to patch matching, whose idea can be extended in the field of
LiDAR-based tracking. Inspired by SAMF [77], Mueller et al. [78] designed a correlation filter-based tracker (i.e.,
SAMF_CA) which incorporates global context in an explicit way. Experiments show that the improved opti-
mization solution achieves a better performance in the single target tracking domain. The work of Zarzar et
al. [79] shows that the siamese network-based tracking with LiDAR-only data performs well in aerial navigation.
Holding the belief that appearance information is insufficient to track, Giancola et al. [80] encoded the model
shape and candidate shape into latent information with a Siamese tracker. Zarzar et al. [81] generated efficient
proposals with a siamese network from the BEV representation of point clouds, after which it tracks 3D ob-
jects in accordance with the ROI-wise appearance information regularized by the latter siamese framework.
PSN [82] first extracts features through a shared PointNet-like framework and then conducts feature augmenta-
tion and the attention mechanism through two separate branches to generate a similarity map so as to match
the patches. Recently, MLVSNet [83] proposes conducting Hough voting on multi-level features of target and
search area instead of only on final features to overcome insufficient target detection in sparse point clouds.
Moreover, ground truth bounding box in the first frame can be regarded as a strong cue, enabling a better
feature comparison [84], as shown in Figure 3a.

5.2. LiDARfusion tracking
Sensors capture data from various views, which is beneficial to supplement insufficient information for trackers.
A challenge of tracking-by-detection is how to match the detection results with the context information. The
simplest way is to conduct an end-fusion of the tracking results, as done by Manghat et al. [85]. In addition,
Frossard et al. [86] produced precise 3D trajectories for diverse objects in accordance with detection proposals
and linear optimization. Introducing the 2D visual information, Complexer-YOLO [87] first performs joint 3D
object detection based on the voxelized semantic points clouds (which are fused by image-based semantic
information) and then extends the model to multi-target tracking through multi-Bernoulli filter. This work
demonstrates the role of scale–rotation–translation, which enables the framework to track in real time.

However, data sampled by different sensors vary in frequency and dimension, and thus it is challenging and not
cost-effective to match the similarity among diverse data sources. Recent years have witnessed the emergence
of ingenious algorithms while tracking based on a siamese network is still in its infancy. Developed for single
object tracking, F-Siamese Tracker [88] extrudes a 2D region-of-interest from a siamese network for the purpose
of generating several valid 3D proposals, which would be fed into another siamese network together with a
LiDAR template. Although these studies achieve a lot, there is still a long way to go to further integrate point
clouds and other sensor data (i.e., RGB images) into the siamese network for LiDAR-fusion tracking. The
pipeline of F-Siamese Tracker is explained in Figure 3b.
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Figure 3. Typical networks for two categories of LiDAR-based tracker: (a) LiDAR-only and (b) LiDAR-fusion methods.

Table 5. Summary of 3D object tracking. Here ”I”, ”mvPC”, ”vPC”, ”pPC”, ”FrustumPC” stands for image, multiple view of point cloud,
voxelized point cloud, point cloud, Frustum point cloud respectively

Category Model Modality &
Representation

Architecture

LiDAR
-Only

DualBranch [72] mvPC Bbox growing method + multi-hypothesis extended Kalman filter
PV-RCNN [73] pPC & vPC Voxel-to-keypoint 3D scene encoding + keypoint-to-grid RoI feature abstraction
P2B [74] pPC Target-specific feature augmentation + 3D target proposal and verification
CenterPoint [76] pillar/vPC Map-view feature representation + center-based anchor-free head
SC-ST [80] pPC Siamese tracker(resemble the latent space of a shape completion network)
BEV-ST [81] mvPC Efficient RPN+Siamese tracker
PSN [82] pPC Siamese tracker(feature extraction + attention module + feature augumentation)
MLVSNet [83] pPC Multi-level voting+Target-Guided Attention+Vote-cluster Feature Enhancement
BAT [84] pPC Box-aware feature fusion + box-aware tracker

LiDAR
-Fusion

MSRT [85] I&pPC 2D object detector-Faster-RCNN+3D detector-Point RCNN
MS3DT [86] I&mvPC Detection proposals+proposals matching&scoring+linear optimization
Complexer-YOLO [87] I&vPC Frame-wise 3D object detetcion+novel Scale-Rotation-Transalation score
F-Siamese Tracker [88] I&FrustumPC Double Siamese network

6. 3D SEGMENTATION
3D Segmentation methods can be classified into semantic segmentation and instance segmentation, which are
both crucial for scene understanding of autonomous driving. 3D Semantic segmentation focuses on per-point
semantic label prediction so as to partition a scene into several parts with certain meanings (i.e., per-point
class labels), while 3D instance segmentation aims at finding the edge of instances of interest (i.e., per-object
masks and class labels). Since Kirillov et al. [89] first came up with the concept “panoptic segmentation” that
combines semantic segmentation and instance segmentation, several works [90,91] inspired by this concept have
been published recently, which build architectures for panoptic segmentation of point cloud. This section
specifically focuses on research concerning both 3D semantic segmentation and 3D instance segmentation
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tasks whose input data are divided into LiDAR point cloud data or LiDAR point cloud fused data. Summaries
can be seen in Tables 6 and 7.

6.1. 3D Semantic segmentation
6.1.1. LiDAR-only semantic segmentation
PointNet [1] provides a classic prototype of point cloud semantic segmentation architecture utilizing shared
MLPs and symmetrical poolings. On this basis, several dedicated point-wise MLP networks are proposed to
attain more information and local structures for each point. PointNet++ [2] introduces a novel hierarchical
architecture applying PointNet recursively to capture multi-scale local context. Engelmann et al. [92] proposed
a feature network with K-means and KNN to learn a better feature representation. Besides, an attention mech-
anism, namely group shuffle attention (GSA) [93] is introduced to exploit the relationships among subsets of
point cloud and select a representative one.

Apart from MLP methods, convolutional methods on pure points also achieve some state-of-the-art perfor-
mance, especially after a fully convolutional network (FCN) [94] is introduced to semantic segmentation, which
replaces the fully connected layer with a convolution and thus makes any size of input data possible. Based on
the idea of GoogLeNet [95] that takes fisheye cameras and LiDAR sensors data as input, Piewak et al. [96] pro-
posed an FCN framework called LiLaNet aiming to label emi-dense LiDAR data point-wisely and multi-class
semantically with cylindrical projections of point clouds as input data. The dedicated framework LiLaNet is
comprised of a sequence of LiLaBlocks that have various kernels and a 1×1 convolution so that lessons learned
from 2D semantic label methods can be converted to the point cloud domain. Recently, a fully convolutional
network called 3D-MiniNet [97] extends MiniNet [98] to 3D LiDAR point cloud domain to realize 3D seman-
tic segmentation by learning 2D representations from raw points and passing them to 2D fully convolutional
neural network to attain 2D semantic labels. The 3D semantic labels are obtained through re-projection and
enhancement of 2D labels.

Based on the pioneering FCN framework, an encoder–decoder framework, U-Net [99] is proposed to conduct
multi-scale and large size segmentation. Therefore, several point cloud-based semantic segmentation works
extend this framework to 3D space. LU-Net [100] proposes an end-to-end model, consisting of a model that
extracts high-level features for each point and an image segmentation network similar to U-Net that takes the
projections of these high-level features as input. SceneEncoder [101] presents an encode module to enhance the
performance of global information. As shown in Figure 4a, RPVNet [13] exploits fusion advantages of point,
voxel, and range map representations of point clouds. After extracting features from the encoder–decoder of
three branches and projecting these features into point-based representation, a gated fusion module (GFM) is
adopted to fuse features.

Due to the close relationship between the receptive field size and the network performance, a few works con-
centrate on expanding the receptive fields through dilated/A-trous convolution, which can preserve the spatial
resolution at the meanwhile. As an extension of SqueezeSeg [102], the CNN architecture named PointSeg [103]

also utilizes SqueezeNet [104] as a backbone network with spherical images generated from point clouds as in-
put. However, PointSeg [103] takes several image-based semantic segmentation networks into consideration
and transfers them to the LiDAR domain, instead of using CRF post-processing as in SqueezeSeg [104]. The
PointSeg [103] architecture includes three kinds of main layers: fire layer adapted from SqueezeNet [104], squeeze
reweighting layer, and enlargement layer where dilated convolutional layers are applied to extend the receptive
field. Hua et al. [105] introduced a point-wise convolution for 3D point cloud semantic segmentation, which
orders point cloud before feature learning and adopts A-trous convolution. Recently, Engelmann et al. [106]
proposed dilated point convolutions (DPC) to systematically expand the receptive field with an awesome gen-
eralization so that it can be applied in most existing CNN for point clouds.
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Figure 4. Typical frameworks for two categories of LiDAR-based semantic segmentation: (a) LiDAR-only and (b) LiDAR-fusion methods.

6.1.2. LiDAR-fusion semantic segmentation
One of the challenges existing in point cloud-based semantic segmentation is that the sparseness of the point
cloud makes the object seem see-through, thus increasing the difficulty of discernment. Due to the differ-
ent viewpoints of the RGB camera and LiDAR, RGB images can provide supplementary information about
occluding objects. The fusion of RGB images and point clouds for 3D semantic segmentation is intensively
researched in recent years due to the achievement of deep learning on 2D image segmentation. 3DMV [107]

designs a feature-level fused joint 3D-multi-view prediction network, which combines geometric features of
point clouds and color features of RGB images. This work leverages a 2D network to downsample the fea-
tures extracted from full-resolution RGB input data and then leverages back-projection from a 2D feature
into 3D space, rather than just mapping the RGB image on the voxel grid of point cloud. The final results
are attained by the 3D convolution layers that take these back-projected 2D features and 3D geometric fea-
tures as their input. As a result, 3DMV improves 3D semantic segmentation accuracy by 17.2 % in terms of
the best volumetric framework at that time. Varga et al. [95] proposed an association of fisheye cameras and
LiDAR sensors to segment feature-level 3D LiDAR point clouds. In this work, motion correction of point
clouds and the undistortion and unwarping process of images are implemented first to ensure the reliability
of the information. Subsequently, the undistorted fisheye image is segmented by computing the multiresolu-
tion filtered channels and deep CNN channels. Then, to transfer the pixel-wise semantic information to 3D
points, the coordinates of 3D points are learned from projections of LiDAR points onto the camera image.
With these coordinates, point clouds are augmented with color information and 2D semantic segmentation.
Thanks to the well-settled sensor configuration, this super-sensor enables 360-degree environment perception
for autonomous cars. MVPNet [108] presents a novel aggregation for feature fusion of point clouds and RGB
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images. In this work, a proposed multi-view point cloud (MVPC) representation indicates a transformation
from 2D image to the 3D point that expresses a discrete approximation of a ground-truth 3D surface by gen-
erating a sequence of 1-VPCs and forming predicted MVPC with their union, instead of simply combining
projections. FuseSeg [3] proposes a LiDAR point clouds segmentation method that fuses RGB and LiDAR data
at feature level and develops a network, whose encoder can be applied as a feature extractor for various 3D
perception tasks. Figure 4b demonstrates details of its network. As an extension of SqueezeSeg [102], FuseSeg
establishes correspondences between the two input modalities first and warps features extracted from RGB
images. Then, the features from images and point clouds are fused by utilizing the correspondences. PMF [109]

exploits supplementary advantages between appearance information from RGB images and 3D depth informa-
tion from LiDAR point clouds. The two-stream network including camera-stream and LiDAR-stream extracts
features from projected point cloud and RGB image, and then features from two modalities are fused by a
novel residual-based fusion module into LiDAR stream. Additionally, a perception-aware loss contributes to
the fusion network’s ability. Unlike the ideas above, a novel permutohedral lattice representation method for
data fusion is introduced [110]. SParse LATtice Networks (SPLATNet) [110] directly processes a set of points
in the representation of a sparse set of samples in a high-dimensional lattice. To reduce the memory and
computational cost, SPLATNet adopts a sparse bilateral convolutional layer as the backbone instead. This
network incorporates point-based and image-based representations to deal with multi-modal data fusion and
processing.

6.2. 3D Instance segmentation
Instance segmentation is themost challenging task of scene understanding because of the necessity to combine
object detection and semantic segmentation, which focuses on each individual instance within a class.

6.2.1. LiDAR-only instance segmentation
One of the ideas is a top-down concept (also called the proposal-based method) which detects the bounding
box of an instance with object detection methods first and then performs semantic segmentation within the
bounding box. GSPN [111] designs a novel architecture for 3D instance segmentation named region-based
PointNet (R-PointNet). A generative shape proposal network is integrated into R-PointNet to generate 3D
object proposals with instance sensitive features by constructing shapes from the scene, which is converted
into a 3D bounding box. The point ROIAlign module aligns features for proposals to refine the proposals
and generates segmentation. Different from GSPN [111], the single-stage, anchor-free, and end-to-end 3D-
BoNet [112] directly regresses 3D bounding boxes for all instances with a bounding box prediction branch.
The backbone network exploits local point features and global features, which are then fed into a point mask
prediction branch with a predicted object bounding box, as shown in Figure 5a.

However, the top-down idea ignores the relation between masks and features and extracts masks for each fore-
ground feature, which is redundant. Down-top methods, also named proposal-free methods, may provide a
solution for these problems, which performs point-wise semantic segmentation first and then distinguishes
different instances. For example, Zhou et al. [113] presented an instance segmentation and object detection com-
bined architecture to exploit detailed and global information of objects. It is a two-stage network, containing
a spatial embedding (SE)-based clustering and bounding box refinement modules. For instance, segmenta-
tion, semantic information is attained by an encoder–decoder network, and object information is attained by
SE strategy that takes center points of objects as important information. Aside from the above ideas, utiliz-
ing conditional random fields (CRFs) as post-processing methods contributes to the refinement of the label
map generated by CNN and further improves the segmentation performance. Inspired by SqueezeNet [104],
SqueezeSeg [102] proposes a pioneering lightweight end-to-end pipeline CNN to solve 3D semantic segmenta-
tion for road-objects. This network takes transformed LiDAR point cloud as input and then leverages network
based on SqueezeNet [104] to extract features and label points semantically, whose results are fed into CRF to
refine and output final results. As an extension of SqueezeSeg [102], SqueezeSegV2 [114] introduces three novel
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Figure 5. Typical frameworks for two categories of LiDAR-based instance segmentation: (a) LiDAR-only and (b) LiDAR-fusion methods.

modules to dropout noise and improve the accuracy.

6.2.2. LiDAR-fusion instance segmentation
Studies on LiDAR-fusion instance segmentation can also be divided into proposal-based and proposal-free.
As for proposal-based methods, 3D-SIS [115] introduces a two-stage image and RGB-D data fused architecture,
leveraging both geometric and color signals to jointly and semantically learn features, for instance, segmen-
tation and detection. 3D-SIS consists of two branches, i.e., a 3D detection branch and a 3D mask workflow
branch. The backbone of a 3D mask takes projected color, geometry features of each detected object, and 3D
detection results as input and outputs final per-voxel mask prediction of each instance. For mask prediction,
3D convolutions with the same spatial resolutions that preserve spatial correspondence with raw point inputs
are applied. Then, bounding box prediction generated from 3D-RPN is utilized to attain the key associated
mask feature. The final mask of each instance is predicted by a 3D convolution which reduces the dimen-
sionality of features. PanopticFusion [116] presents an online large-scale 3D reconstruction architecture that
fuses RGB images and depth images. The 2D instance segmentation network based on Mask-CNN takes the
incoming RGB frame as input and fuses both semantic and instance segmentation results to attain point-wise
panoptic labels that are integrated into the volumetric map with depth data. As illustrated in Figure 5b, Qi
et al. [117] proposed a pioneering object detection framework named Fustrum PointNets with point cloud and
RGB-D fusion data as input. Frustum PointNets contains three modules: frustum proposal, 3D instance seg-
mentation and amodal 3D box estimation, in order to fuse efficient mature 2D object detector into point cloud
domain. The frustum point cloud is extracted from RGB-D data frustum proposal generation first and then
is fed into set abstraction layers and point feature propagation layers based on PointNet to predict a mask for
each instance by point-wise binary classification. When it comes to proposal-free methods, 3D-BEVIS [118]

introduces a framework for 3D semantic and instance segmentation that transfers 2D bird’s eye view (BEV)
to 3D point space. This framework concentrates on both local point geometry and global context informa-
tion. 3D instance segmentation network takes point cloud as input, which consists of 2D (i.e., RGB and height
above ground) and 3D feature network jointly to exploit point-wise instance features and predicts final instance
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Table 6. Summary of 3D semantic segmentation. ”I”, ”mvPC”, ”vPC”, ”pPC” and ”rm” stands for image, point cloud in multi-view based
representation, point cloud in voxel-based representation, point cloud in point-based representation and range map separately

Category Model Modality &
Representation

Architecture

LiDAR
-Only

PointNet [1] pPC Point-wise MLP+T-Net+global max pooling
PointNet++ [2] pPC Set abstraction (sampling, grouping, feature learning)+interpolation+skip link concatentation
KWYND [92] pPC Feature network + neighbors definition + regional descriptors
MPC [93] pPC PointNet++-like network+ gumbel subset sampling
3D-MiniNet [97] pPC Fast 3D point neighbor search + 3DMiniNet + post-processing
LU-Net [100] pPC & vPC U-Net for point cloud
SceneEncoder [101] pPC Multi-hot scene descriptor + region similarity loss
RPVNet [13] rpc&pPC&vPC Range-point-voxel fusion network(deep fusion + gated fusion module)
SqueezeSeg [102] mvPC SqueezeNet + conditional random field
PointSeg [103] mvPC SqueezeNet + new feature extract layers
Pointwise [105] pPC Pointwise convolution operator
Dilated [106] pPC Dilated point convolutions

LiDAR
-Fusion

3DMV [107] I & vPC A novel end-to-end network(back propagation layer)
SuperSensor [95] I & mvPC Associate architecture+360 degree sensor configuration
MVPNet [108] I & mvPC Multi-view point regression network+geometric loss
FuseSeg [3] I & rPC Point correspondece+feature level fusion
PMF [109] I & mvPC Perspective projection+a two-stream network(fusion part)+perception-aware loss

Table 7. Summary of 3D instance segmentation. ”I”, ”mvPC”, ”vPC”, ”pPC”,”FPC” and ”rm” stands for image, point cloud in multi-
view based representation, point cloud in voxel-based representation, point cloud in point-based representation, point cloud in Frustum
representation and range map separately

Category Model Modality &
Representation

Architecture

LiDAR-Only

GSPN [111] pPC Region-based PointNet(generative shape proposal network+Point RoIAlign)
3D-BoNet [112] pPC Instance-level bounding box prediction + point-level mask prediction
Joint [113] pPC Spatial embedding object proposal + local Bounding Boxes refinement
SqueezeSeg [102] mvPC SqueezeNet + conditional random field
SqueezeSegV2 [114] mvPC SqueezeSeg-like + context aggregation module
3D-BEVIS [118] mvPC 2D-3D deep model(2D instance feature+3D feature propagation)

LiDAR-Fusion
PanopticFusion [116] I & vPC Pixel-wise panoptic labels+a fully connected conditional random field
Fustrum PointNets [117] I & FPC Frunstum proposal+3D instance segmentation(PointNet)

segmentation results through clustering.

7. DISCUSSION
As the upstream and key module of an autonomous vehicle, the perception system outputs its results to down-
stream modules (e.g., decision and planning modules). Therefore, the performance and reliability of the per-
ception system determine the implementation of downstream tasks, thus affecting the performance of the
whole autonomous system. For now, although sensor fusion (Table 8 shows a summary for LiDAR fusion ar-
chitectures in this paper) can make up for the shortcomings of single LiDAR in bad weather and other aspects,
there is still a huge gap between the algorithm design and practical applications in the real world. For this
reason, it is necessary to be properly aware of existing open challenges and figure out possible directions to the
solution. This section discusses the challenges and possible solutions for LiDAR-based 3D perception.

• Dealing with large-scale point clouds and high-resolution images. The need for higher accuracy has
prompted researchers to consider larger scale point clouds and higher resolution images. Most the existing
algorithms [2,29,36,119] are designed for small 3D point clouds (e.g., 4k points or 1 m × 1 m blocks) without
good extending capability to larger point clouds (e.g., millions of points and up to 200m× 200m). However,
larger point clouds come with a higher computational cost that is hard to afford for self-driving cars with
limited computational processing ability. Several recent studies have focused on this problem and proposed
some solutions. A deep learning framework for large-scale point clouds named SPG [120] partitions point
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clouds adaptively to generate a compact yet rich representation by superpoint graph. RandLA-Net [121]

leverages random sampling to downsample large-scale point clouds and local feature aggregationmodule to
increase the receptive field size. SCF-Net [122] utilizes the spatial contextual features (SCF) module for large-
scale point clouds segmentation. As for sensor fusion, deep learning approaches tackling the fusion of large-
scale and high-resolution data should place more emphasis on point-based and multi-view based fusion
approaches, which are more scalable than voxel-based ones. Overall, the trade-off between performance
and computational cost is inevitable for real application of autonomous driving.

• A robust representation of fused data. For deep learning methods, how to pre-process the multi-modal
input data is fundamental and important. Although there are several effective representations for point
clouds, each of them has both disadvantages and advantages: voxel-based representation has tackled the
ordering problem, but, when enlarging the scales of point cloud or increasing the resolution of voxel, the
computational cost grows cubically. The quantity of point cloud that can be processed by point based repre-
sentation methods is limited due to the permutation invariance and computational capacity. A consensus
of a unified robust and effective representation for point clouds is necessary. For the data fused with images
and point clouds, the representation approaches depend on fusion methods. Image representation-based
methods mainly utilizes point clouds projected onto multi-view planes as additional branches of the image.
(1) Image representation is not applicable for 3D tasks because the network output results on image plane.
(2) Point representation-based methods leverages features or ROI extracted from RGB image as additional
channels of point clouds. The performance of this representation is limited by the resolution differences
between image (relatively high-resolution) and point clouds (relatively low-resolution). (3) Intermediate
data representation methods introduce an intermediate data representation to (e.g., Frustum point cloud
and voxelized point cloud). Voxel-based methods are limited in large scale, while frustum based methods
have much potential to generate a unified representation based on contextual and structural information
of RGB images and LiDAR point clouds.

• Scene understanding tasks based on data sequences. The spatiotemporal information implied in the tem-
porally continuous sequence of point clouds and images has been overlooked for a period. Especially for
sensor fusion methods, the mismatch of refresh rate between LiDAR and camera causes incorrect time-
synchronization between inner perception system and surrounding environment. In addition, predictions
based on spatiotemporal information can improve the performance of tasks, such as 3D object recognition,
segmentation, and point cloud completion. Research has started to take temporal context into consider-
ation. RNN, LSTM, and derived deep learning models are able to deal with temporal context. Huang et
al. [123] proposed a multi-frame 3D object detection framework based on sparse LSTM. This work predict
3D objects in the current frame by sending features of each frame and the hidden andmemory features from
last frame into LSTM module. Yuan et al. [124] designed a temporal-channel transformer, whose encoder
encodes multi-frame temporal-channel information and decoder decodes spatial-channel information for
the current frame. TempNet [125] presents a lightweight semantic segmentation framework for large-scale
point cloud sequences, which contains two key modules, temporal feature aggregation (TFA) and partial
feature update (PFU). TFA aggregates features only on small portion of key frames with an attentional
pooling mechanism, and PFU updates features with the information from non-key frame.

8. CONCLUSIONS
LiDAR captures point-wise information which is less sensitive to illumination than that of cameras. More-
over, it possesses invariance of scale and rigid transformation, showing a promising future in 3D scene un-
derstanding. Focusing on the LiDAR-only and LiDAR-fusion 3D perception, this paper first summarizes the
LiDAR-based dataset as well as the evaluation metric and then presents a contemporary review of four key
tasks: 3D classification, 3D object detection, 3D object tracking, and 3D segmentation. This work also points
out the existing challenges and possible development direction. We always hold the belief that LiDAR-only
and LiDAR-fusion 3D perception systems would feedback a precise and real-time description of the real-world
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Table 8. Fusion stage and fusion methods of LiDAR-fusion tasks. Here, ”I” represents image; ”L” represents LiDAR point cloud; ”R”
represents Radar point cloud. Duplicate articles between classification and detection are merged to detection part

Task Model Input FusionStage Details of the Fusion Method

Classification ImVoteNet [48] I&L Late fusion Lift 2D image votes, semantic and texture cues to the 3D seed points

Detection

3D-CVF [64] I&L Early fusion Adaptive Gated Fusion: spatial attention maps to mix features according to the region
Roarnet [65] I&L Late fusion 3D detection conducts in-depth inferences recursively with candidate regions from 2D
MV3D [12] I&L Early fusion Region-based fusion via ROI pooling
SCANet [46] I&L Early fusion The multi-level fusion module fuses the region-based features
MMF [47] I&L Multi fusion Region-wise features from multiple views are fused by a deep fusion scheme

Pointpainting [66] I&L Early fusion Sequential fusion: project point cloud into the output of image semantic seg. network
CM3D [67] I&L Early fusion Two stage: point-wise feature and ROI-wise feature fusion

MVDNet [28] R&L Early fusion Region-wise features from two sensors are fused to improve final detection results
CLOCs [69] I&L Late fusion Output candidates of image and LiDAR point cloud before NMS are fused

Tracking

MSRT [85] I&L Late fusion 2D bbox is converted to 3D bbox that are fused to associate between sensor data
MS3DT [86] I&L Early fusion Object proposals generated by MV3D as input of the match network to link detections

Compl.-YOLO [87] I&L Late fusion Semantic Voxel Grid: project all relevant voxelized points into the semantic image
F-Siamese [88] I&L Late fusion 2D region proposals are extruded into 3D viewing frustums

Semantic
Seg.

3DMV [107] I&L Early fusion 3D geometry and per-voxel max-pooled images features are fed into two 3D conv.
SuperSensor [95] I&L Late fusion Segmentation results from the image space are transferred onto 3D points

FuseSeg [3] I&L Early fusion Fuse RGB and range image features with point correspondences and feed to net
PMF [109] I&L Early fusion Residual-based fusion modules fuse image features into LiDAR stream network

Instance
Seg.

Pano.Fusion [116] I&L Late fusion 2D panoptic segmentation outputs are fused with depth to output volumetric map
F-PointNets [117] I&L Late fusion Frunstum proposal: extrud each 2D region proposal to a 3D viewing frustum

environment. We hope that this introductory survey serves as a step in the pursuit of a robust, precise, and
efficient 3D perception system and guides the direction of its future development.
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