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Abstract
A series of alkynylplatinum(II) terpyridine complexes and alkynylplatinum(II) terpyridine-containing conjugated 
polymers with different polymer backbones has been synthesized, and their spectroscopic properties and Förster 
resonance energy transfer (FRET) processes has been investigated. The platinum(II)-containing polymers exhibit 
dual emissive features with emission maxima at ca. 416-465 nm and ca. 671-673 nm, which are assigned to be 
originated from singlet intraligand (1IL) excited states from the polymer backbone and triplet metal-metal-to-ligand 
charge transfer (3MMLCT) excited states from the platinum(II) pendants, respectively. The Förster radii (R0) of the 
platinum(II)-containing conjugated polymers have been determined, and their distinctive thermo-responsive 
luminescence changes have also been observed. The present work has demonstrated the utilization of “click” 
reaction for the preparation of platinum(II)-containing conjugated polymers, which show unique photophysical and 
spectroscopic properties. Through the judicious design, this type of platinum(II)-containing polymer is found to be 
sensitive to temperature, resulting in ratiometric emission changes. This study has provided valuable insights into 
the preparation of metal-containing polymeric systems for different applications.
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INTRODUCTION
Over the past few decades, conjugated polymers, which have been extensively studied with well-known 
examples such as poly(p-phenylene vinylene) (PPV)[1], polypyrrole (PPy)[2-4], polythiophene (PT)[5] and so 
on, represent important classes of organic macromolecules, and have found widespread applications in 
organic photovoltaic devices, light-emitting diodes, sensing materials, and others[6-11]. The prominence of 
conjugated polymers can be attributed to their unique properties of high planarity and extended π-electron 
delocalization, empowering them with rich photophysical and electrochemical functionalities for specific 
applications[6-11]. After the success in designing and synthesizing different kinds of conjugated polymers, 
attempts have been made to integrate conjugated polymers with transition metals, namely metallo-
conjugated polymers, with a view to not only improving the physical properties of the parent organic 
polymers such as mechanical strength, thermal stability and carrier mobility but also enriching their 
photophysical properties such as harvesting energy from the triplet excited state and extending the 
absorption spectrum to the red or near-infrared (NIR) region[12-19]. Earlier examples include ruthenium(II)-
containing conjugated polymers with poly(bpy-co-benzobisoxazole)s or poly(bpy-co-benzobisthiazole)s as 
the polymer backbones[20] and iridium(III)-containing conjugated polymers with polyfluorene as the 
polymer backbone and carbazole unit as the pendant[21]. Unlike most other commonly studied transition 
metal centers, including ruthenium(II), rhodium(III) and iridium(III), d8 platinum(II) center favors 
coordination of a square-planar geometry, and their complexes, especially those bearing conjugated 
aromatic ligands capable of exhibiting π-π interactions, are well-known for their ability to self-assemble[22-26], 
forming aggregates[27-31] and providing remarkable photophysical properties associated with Pt···Pt and π-π 
interactions[32-35]. In light of their supramolecular assembly capability, it is envisaged that the introduction of 
platinum centers into conjugated polymers may provide an opportunity to further modulate the 
photophysical and morphological properties of the resulting metal–organic hybrid materials[36-38]. Although 
there were examples of platinum(II)-containing conjugated polymers such as platinum(II) polyynes[39-46] and 
cyclometalating bidentate ligand-containing platinum(II)-based conjugated polymers[47-49], none of these 
examples demonstrates supramolecular assembly properties or utilizes the system of tridentate N-donor 
ligands. In this work, a series of alkynylplatinum(II) terpyridine complexes (1 and 2) and 
alkynylplatinum(II) terpyridine-containing conjugated polymers with different polymer backbones (3-5) 
[Scheme 1] has been synthesized and their photophysical properties as well as FRET processes have been 
studied. With the aid of various spectroscopic techniques, the photophysical and spectroscopic properties of 
the organic polymers, platinum(II) precursor complexes and the newly synthesized platinum(II)-containing 
conjugated polymers have been investigated systematically. It was found that the choice of the polymer 
backbones would influence the intramolecular FRET efficiencies of the system of platinum(II)-containing 
polymers. Through the understanding of different factors affecting the spectroscopic properties and FRET 
processes of the platinum(II)-containing polymers, it is envisaged that the present study can provide further 
insights into the design and development of metal-containing polymers for the construction of different 
functional materials.

EXPERIMENTAL
Syntheses of conjugated polymers and complexes 1-5
The  synthetic  routes  for  platinum (II) precursor  and  reference  complex  are  depicted  in  Supplementary 
Scheme 1. Alkynylplatinum (II) terpyridine  precursor  1  for “click” reaction  was  prepared  based on a 
modified    procedure    of    copper(I)-catalyzed    dehalogenation    reaction    (pp   9,   Supplementary 
Materials)[50]. The alkynylplatinum (II) terpyridine reference complex 2 was obtained through copper(I)-
catalyzed alkyne-azide cycloaddition (“click” reaction) by reacting 1, 1-azidohexane, CuBr, PMDETA  and
sodium ascorbate in a saturated solution of ammonium triflate in DMF  (pp S10, Supplementary Materials).
1 and 2 were obtained as orange and red solid, respectively. These complexes are found to be highly  soluble
in organic solvents such as dichloromethane, chloroform, acetone, methanol, THF, and others.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
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Scheme 1. Molecular structures of the platinum(II) complexes (1 and 2) and the platinum(II)-containing conjugated polymers (3-5).

The synthetic routes for the conjugated polymers are depicted in Supplementary Scheme 2. Detailed
syntheses of the bromo-containing conjugated polymers, poly[fluorene(C6H12Br)2-co-fluorene(C6H13)2]
(PF-Br), poly[fluorene(C6H12Br)2-co-phenylene](PFP-Br) and poly[fluorene(C6H12Br)2-co-thiophene(C6H13)]
(PFT-Br), and the corresponding azido-containing conjugated polymers (PF-N3, PFP-N3  and  PFT-N3)  are
shown in pp S11-S14, Supplementary Materials. All the organic conjugated polymers were found to have
good solubility in organic solvents such as chlorinated solvents, toluene, THF, and others. The identities of
all of the organic conjugated polymers have been confirmed by 1H NMR spectroscopy and GPC analysis.

The synthetic routes for the platinum(II)-containing conjugated polymers are depicted in Supplementary
Scheme 3. The platinum(II)-containing conjugated polymers 3-5 were also obtained through copper(I)-
catalyzed alkyne-azide cycloaddition of the corresponding azido-containing conjugated polymers and 1 in
THF-DMF mixture in the presence of ammonium triflate (pp S15-S17, Supplementary Materials). The
products were purified by precipitation in deionized water containing ammonium triflate. The
platinum(II)-containing conjugated polymers were found to have fair solubility in acetonitrile, DMF and
DMSO. Their limited solubility in methanol and THF has facilitated the purification by washing the
precipitate with methanol and THF to further remove any unreacted starting materials.

Characterization
All the newly synthesized platinum(II) complexes 1 and 2 and platinum(II)-containing polymers 3-5 have
been characterized by 1H NMR and IR spectroscopy. In addition, 1 and 2 were also confirmed by positive-
ion FAB mass spectrometry and showed satisfactory results in the elemental analyses. 3-5 were also
confirmed by GPC analysis using DMF with 0.1 M KPF6 as eluent. Representative GPC data of 5 is provided
in Supplementary Figure 1.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
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From the IR measurements of 3-5 [Supplementary Figures 2-4], the disappearance of the strong absorption 
of the N=N=N stretch of the azide precursor at ca. 2095 cm-1, the appearance of weak absorption of the C≡C 
stretch at 2110 cm-1 and strong absorption of the triflate counter-ion at ca. 1155 and 1030 cm-1 indicated the 
successful incorporation of the platinum(II) complexes onto the polymer via “click” reaction.

RESULTS AND DISCUSSION
The polymers, PF-Br, PFP-Br and PFT-Br, are soluble in dichloromethane and give high-energy absorption
bands with a peak maxima at ca. 375-398 nm [Supplementary Figure 5 and Supplementary Table 1], which
are assigned as the π→π* transitions along the polymer backbone, while these polymers show strong
vibronic-structured emissions with peak maxima at ca. 410-462 nm upon photoexcitation [Supplementary
Figures 6-9 and Supplementary Table 2], which are assigned as the singlet [π→π*] fluorescence of the
conjugated polymer backbone.

For complexes 1-5, they all give pale yellow solutions in acetonitrile. Their corresponding UV-vis
absorption data and spectra in acetonitrile at 298 K are depicted in Table 1 and Figure 1, respectively. All the
complexes exhibit intense absorption bands at ca. 285-341 nm with molar extinction coefficients in the
order of 104 dm3 mol-1 cm-1 and less intense low-energy absorption bands at ca. 420-466 nm with molar
extinction coefficients in the order of 103 dm3 mol-1 cm-1. The higher-energy bands are ascribed to
intraligand (IL) [π→π*] transitions of alkynyl and terpyridine ligands, while the lower-energy bands are
assigned as an admixture of metal-to-ligand charge transfer (MLCT) [dπ(Pt)→π*(tpy)] and ligand-to-ligand
charge transfer (LLCT) [π(alkynyl)→π*(tpy)] transitions. For the platinum(II)-containing conjugated
polymers 3-5, intense absorption bands at ca. 374-409 nm have been observed. With reference to the
previous studies on the conjugated polymers[51-54] and the UV-vis absorption studies of the corresponding
organic polymers [Supplementary Figure 5], these absorptions are tentatively assigned as the IL [π→π*]
transitions of the polymer backbones. Interestingly, the lower-energy bands of 3-5 are extended to longer
wavelengths when compared to the reference complex 2. Since the molecular structures of the platinum(II)
pendants in 3-5 are the same as that in 2, the further red-shifted absorption tails suggest the existence of
metal-metal-to-ligand charge transfer (MMLCT) character. As such, concentration-dependent UV-vis
absorption studies have been performed. Based on the spectra [Supplementary Figures 10-14], the precursor
platinum(II) complexes 1 and 2 and the platinum(II)-containing conjugated polymers 3-5 show good
agreement with Beer’s Law, suggesting that there are no significant intermolecular self-assembly properties
of 1-5 upon increasing the concentration. However, the intramolecular self-assembly mode of having two
platinum(II) pendants in each repeating unit, which are stabilized by the presence of intramolecular Pt···Pt
and π-π interactions, may explain the presence of low-energy MMLCT bands for the platinum(II)-
containing conjugated polymers 3-5. In this regard, temperature-dependent UV-vis absorption experiments
for 3-5 have been carried out. From the spectra [Figures 2-4], the low-energy band at ca. 450 nm shows a
drop in absorbance accompanied by a blue shift of the high-energy band at ca. 400 nm upon increasing
temperature, suggesting the occurrence of deaggregation process of both the platinum(II) terpyridine
moieties and the polymer backbones, which corroborates with the disruption of intramolecular Pt···Pt and 
π-π interactions at high temperatures.

Complexes 1 and 2 are found to give phosphorescence in degassed solutions, while dual-emissive behaviors
have been observed for the platinum(II)-containing conjugated polymers 3-5 in degassed solutions upon
excitation. The luminescence data of all complexes have been summarized in Table 2. Upon photoexcitation
at λ > 350 nm, 1 and 2 show Gaussian-shape emission bands centered at 596 nm and 630 nm in degassed
acetonitrile [Supplementary Figure 15]. The large Stokes shifts and the long emission lifetimes in the
microsecond regime indicate that these emissions are originated from a triplet parentage. Together with the

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
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https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
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Table 1. UV-Vis absorption data for 1-5 at 298 K

Complex Medium Absorption λ/nm (ε/dm3 mol-1 cm-1)

[Pt(tBu3tpy)(C≡CC6H4C≡CH)]OTf (1) CH3CN 285 (52,030), 322 (18,620), 338 (19,130), 420 (6,660)

[Pt(tBu3tpy)(C≡CC6H4C2HN3C6H13)]OTf (2) CH3CN 287 (49,290), 305 sh (35,150), 324 sh (16,330), 338 (15,980), 401 sh (15,980), 434 
(5,560)

[PF-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n 

(3)a
CH3CN 288 (71,290), 308 sh (55,900), 341 (37,020), 383 (48,560), 445 sh (8,010)

[PFP-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n 

(4)a
CH3CN 287 (69,780), 308 sh (57,730), 341 (38,350), 374 (41,140), 451 sh (8,190)

[PFT-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n 

(5)a
CH3CN 289 (64,250), 308 sh (50,700), 340 sh (25,560), 409 (33,250), 466 sh (8,320)

aThe molar extinction coefficients of the metallopolymers were approximated per repeating unit.

Table 2. Emission data for 1-5

Complex Medium (T/K) λem/nm (τo/μs) Φlum
a

[Pt(tBu3tpy)(C≡CC6H4C≡CH)]OTf (1) CH3CN (298) 596 (1.09) 5.0 × 10-2b

[Pt(tBu3tpy)(C≡CC6H4-C2HN3C6H13)]OTf (2) CH3CN (298) 630 (0.14) 8.5 × 10-3b

[PF-{N3C2H-C6H4C≡C-Pt(tBu3tpy)}2](OTf)2n (3) CH3CN (298) 416c (< 0.1), 671 (0.14) 1.2 × 10-3d

2.6 × 10-3b

[PFP-{N3C2H-C6H4C≡C-Pt(tBu3tpy)}2](OTf)2n (4) CH3CN (298) 417c (< 0.1), 673 (0.70) 9.0 × 10-4d

1.4 × 10-2b

[PFT-{N3C2H-C6H4C≡C-Pt(tBu3tpy)}2](OTf)2n (5) CH3CN (298) 465c (< 0.1), 673 (0.66) 8.4 × 10-4d

1.7 × 10-3b

aData obtained with an uncertainty of 10 %; bthe relative luminescence quantum yields were measured at room temperature using [Ru(bpy)3]Cl2 
in degassed acetonitrile as a standard; cvibronic-structured band with vibrational progressional spacings of ca. 1150-1320 cm-1; dthe relative 
luminescence quantum yields were measured at room temperature using quinine sulfate in 0.5 M H2SO4 as a standard.

Figure 1. UV-Vis absorption spectra of 1-5 in acetonitrile at 298 K.

relatively short photoluminescence lifetimes in the range of 1 ms or lower, these emission bands are 
assigned to be originated from admixtures of 3MLCT [dπ(Pt)→π(tpy)] and 3LLCT [π(alkynyl)→π*(tpy)] 
excited states. On the other hand, platinum(II)-containing conjugated polymers 3-5 exhibit dual-emissive 
behaviors upon excitation [Figure 5]. The high-energy emission bands are vibronic-structured with 
emission maxima at ca. 416-465 nm, while the low-energy emissions are of Gaussian shape and centered at 
ca. 672 nm. Based on the previous studies[51-54] and the corresponding emission measurements of the organic 
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Figure 2. UV-Vis absorption spectral changes of [PF-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n (3) in acetonitrile with increasing 
temperature.

Figure 3. UV-Vis absorption spectral changes of [PFP-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n (4) in acetonitrile with increasing 
temperature.

Figure 4. UV-Vis absorption spectral changes of [PFT-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n (5) in acetonitrile with increasing 
temperature.
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Figure 5. Normalized emission spectra of 3-5 in degassed acetonitrile at 298 K.

conjugated polymers, the high-energy emissions are ascribed to the singlet [π→π*] excited state of the 
polymer backbone, while the low-energy emissions of 3-5 are tentatively assigned to be originated from the 
3MMLCT excited states. To further validate the 3MMLCT origin of these low-energy emissions, 
temperature-dependent emission studies have been performed [Supplementary Figures 16-18].  As  a  result, 
3-5  exhibit  a  decrease  in  intensity  of  the  low-energy  emissions  with  significant  blue   shifts   upon 
increasing temperature.

On the other hand, distinctive thermo-responsive emission changes have also been observed for the 
platinum(II)-containing conjugated polymers 3-5. Upon increasing the temperature of the solution of 3, the 
high-energy emission from the polymer backbone is found to increase in intensity [Figure 6]. The reason 
behind this can be attributed to the decrease in FRET efficiency from the polymer backbone to the 
platinum(II) moieties. From the variable-temperature UV-vis absorption spectral traces of 3 [Figure 2], 
there is a decrease in absorbance of the MMLCT band upon increasing temperature, leading to a decrease in 
the spectral overlap and the enhanced recovery of the polymer fluorescence [Figure 6]. Moreover, 4 is found 
to exhibit the largest recovery of the high-energy emission when compared to others upon increasing 
temperature, as shown in Figure 7. Since 4 bears the least number of alkyl chains in each repeating unit, it is 
believed that the energy would be less effectively dissipated through non-radiative decay pathways. As a 
result, the FRET process dominates in 4, resulting in the greatest recovery of the polymer backbone 
emission. Furthermore, both emission bands of 5 are found to be diminished with increasing temperature 
[Figure 8], which can be attributed to the more dominating non-radiative process when compared to the 
recovery of the fluorescence of the polymer backbone. The corresponding ratiometric emission intensity 
plots of 3-5 have been depicted in Figure 9.

Due to the good spectral overlap between the absorption spectrum of the reference complex 2 and the 
emission spectra of the conjugated polymers (PF-Br, PFP-Br and PFT-Br) [Figure 10], it is believed that the 
intramolecular FRET process from the polymer backbone to the platinum(II) pendant would likely occur 
upon photoexcitation. Although the emissions from the conjugated polymer backbones could still be 
observed for 3-5, they are already effectively quenched when compared to their corresponding organic 
polymers (Φlum of PF-Br, PFP-Br and PFT-Br = 0.45-0.92; Φlum of 3-5 = 8.4 × 10-4-1.2 × 10-3). It is worth 
noting that different extents of quenching efficiencies have been observed for 3-5. For example, the emission 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202303/5460-SupplementaryMaterials.pdf
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Figure 6. Emission spectra of [PF-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n (3) in acetonitrile with increasing temperature.

Figure 7. Emission spectra of [PFP-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n (4) in acetonitrile with increasing temperature.

Figure 8. Emission spectra of [PFT-{N3C2H-C6H4C≡CPt(tBu3tpy)}2](OTf)2n (5) in acetonitrile with increasing temperature.
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Figure 9. Ratiometric emission intensity plots of the high-energy (HE) and low-energy (LE) bands of 3-5 in acetonitrile with increasing 
temperature. IHE/ILE of 3 = I413nm/I673nm; IHE/ILE of 4 = I413nm/I673nm; IHE/ILE of 5 = I465nm/I673nm.

Figure 10. Normalized UV-vis absorption of [Pt(tBu3tpy)(C≡CC6H4-C2HN3C6H13)]OTf (2) and emission spectra of PF-Br, PFP-Br and 
PFT-Br showing the spectral overlap between the emission spectra of the polymer energy donors and the UV-vis absorption spectrum 
of the platinum(II) complex 2 energy acceptor.

from the polymer backbone of 5 is found to be less effectively quenched when compared to that of 3 and 4. 
The related parameters have been obtained and are summarized in Table 3. Since the platinum(II)-
containing conjugated polymers 3-5 share similar molecular structures except for the polymer backbone, it 
is believed that the values of the relative orientation of the transition dipoles of the chromophores (κ) and 
the distance between the donor and the acceptor (r) should be almost the same. Therefore, the FRET 
efficiency is mainly governed by the emission quantum yield of the donor (ΦD) and the spectral overlap 
integral of the absorption spectrum of the acceptor and emission spectrum of the donor (J(λ)), which are 
related to the Förster radius (R0). It is found that the calculated R0 value of 5 is the lowest, indicating that the 
FRET in 5 should be the least efficient, as reflected by the smallest decrease in emission quantum yield of 
the polymer backbone.
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Table 3. Parameters obtained from the equation determining the Förster radius, R0
a of 3-5

Acceptor Donor ΦD
b,c R0/nm Pt(II)-Polymer Φlum

b,c,d Φlum/ΦD

2 PF-Br 0.92 4.9 3 1.2 × 10-3 1.30 × 10-3

2 PFP-Br 0.90 4.9 4 9.0 × 10-4 1.00 × 10-3

2 PFT-Br 0.45 4.5 5 8.4 × 10-4 1.87 × 10-3

aR0 = 0.211[κ2n-4ΦDJ(λ)]1/6; bdata obtained with an uncertainty of 10 %; cthe relative luminescence quantum yields were measured at 

room temperature using quinine sulfate in 0.5 M H2SO4 as a standard; dthe luminescence quantum yields of the polymer backbone.

CONCLUSION
Alkynylplatinum(II) terpyridine complexes (1 and 2) and alkynylplatinum(II) terpyridine-containing 
conjugated polymers with different polymer backbones (3-5) have been prepared, and their spectroscopic 
properties as well as FRET processes have been studied. The platinum(II)-containing polymers 3-5 are 
found to exhibit dual emissive features, in which the two emission bands correspond to 1IL fluorescence 
from the polymer backbones and 3MMLCT emissions from the platinum(II) pendants. Such unique 
luminescence behavior is attributed to the intramolecular Pt···Pt and/or π-π interactions between the 
platinum(II) pendants in the polymer molecules. The FRET processes between the conjugated polymer 
backbones and platinum(II) pendants have been studied systemically. It is found that 5 has the lowest 
Förster radii (R0) among others, probably due to the lowest emission quantum yield of poly(fluorene-co-
thiophene). Distinctive thermo-responsive ratiometric emission changes have been observed for 3 and 4, in 
which an increase in intensity of the high-energy 1IL emission originated from the polymer backbones and a 
decrease in intensity of the low-energy 3MMLCT emission are found upon heating. The present work has 
demonstrated the utilization of “click” reaction for the convenient preparation of platinum(II)-containing 
conjugated polymers, which show unique photophysical and spectroscopic properties. Through the 
judicious design, ratiometric emission changes upon varying temperatures have been realized in this class of 
platinum(II)-containing polymers. This study may provide valuable insights into the preparation of metal-
containing polymeric systems for different applications, such as thermochromic materials. Owing to the 
ease of structural modifications, various kinds of polymeric materials could be potentially fabricated, which 
could serve as thermochromic sensors for monitoring temperature in real time.
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