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Abstract
The worldwide production and usage of novel flame retardants increase their exposure to non-human fauna. 
Animals can accumulate and metabolize these novel flame retardants including novel halogenated flame 
retardants (NHFRs) and organophosphate flame retardants (OPFRs), which is of considerable significance to their 
internal exposure and final toxicities. In this review, recent studies on the metabolic pathways and kinetics of the 
two classes of novel flame retardants and the internal exposure and toxicity of their major metabolites are 
summarized. The results showed that the metabolic pathways of OPFRs were similar among various animals, while 
the metabolism kinetics (or toxicokinetics) were variable among species. O-dealkylation, hydroxylation and phase 
II conjunction were the most likely pathways for OPFRs. NHFRs might be metabolized through the pathways of 
debromination, hydroxylation, dealkylation, and phase II conjunction. We also suggested that di-alkyl phosphates 
(DAPs) and hydroxylated OPFRs (OH-OPFRs) were the predominant metabolites in the animal body. DAPs, 
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2,3,4,5-tetrabromobenzoic acid (TBBA) and 2-ethylhexyl tetrabromophthalate (TBMEHP) have relatively higher 
internal exposure levels in fauna, which might attribute to their high conversion rate and stability in the body. The 
metabolism of OPFRs and NHFRs in non-human animals may eliminate their acute toxicity but not their chronic 
toxicities (especially for endocrine-disrupting effects), which suggests attention should also be paid to the major 
metabolites. Based on the issues mentioned above, we proposed that the metabolic processes in multitrophic 
organisms, the transfer of major metabolites across the food web, and the co-exposure of the novel flame 
retardants and their metabolites in fauna are worth studying in the future.

Keywords: Novel halogenated flame retardants (NHFRs), organophosphate flame retardants (OPFRs), metabolism, 
metabolites, internal exposure

INTRODUCTION
In recent years, the use of traditional brominated flame retardants such as polybrominated diphenyl ethers 
(PBDEs), tetrabromobisphenol A (TBBPA), and hexabromocyclododecanes (HBCDs) has been restricted or 
prohibited[1]. As a result, novel halogenated flame retardants (NHFRs) and organophosphate flame 
retardants (OPFRs) have been increasingly used as substitutes in plastics, lubricants, rubber products, 
electronic equipment, furniture, food packaging, and other products[2-4]. Scholars have recently defined 
newly produced or newly detected brominated flame retardants as NHFRs[2,5-7]. The most representative 
NHFRs are 2-ethylhexyl tetrabromobenzoic acid (TBB), decabromodiphenyl ethane (DBDPE), and 1,2-bis 
(2,4,6-tribromophenoxy) ethane (BTBPE). Organophosphate flame retardants (OPFRs) have also been 
widely used as another kind of substitute in recent years[4]. The annual global production and usage of these 
novel flame retardants have also been growing rapidly in recent decades[8,9]. According to a research report 
from Ceresana, the global demand for flame retardants in 2018 was approximately 2.26 million tons, with 
brominated flame retardants (BFRs) and OPFRs accounting for 29% and 18% of the flame retardants used in 
the Asia Pacific region, respectively[10].

Similar to PBDEs, NHFRs have a stable brominated benzene ring structure, low solubility in water, and 
durability to physical, chemical, or biological degradation[9,11]. OPFRs can be divided into chlorinated (Cl-
OPFRs), alkyl substituted (alkyl-OPFRs), and aryl substituted (aryl-OPFRs), according to the different ester 
bonds of substituents. Among them, Cl-OPFRs are more resistant to photolysis, chemical decomposition, 
and microbial degradation[4,12]. As a series of non-reactive additives[8,9], NHFRs and OPFRs can easily escape 
from the products, and distribute in various environmental matrices, such as indoor dust[13,14], 
atmosphere[15,16], soil[17,18], surface water[19-23], groundwater[24], and sediments[7,25], and enter into wastewater 
treatment plants[26-30]. With the extensive usage of new flame retardants, an increasing number of studies 
have gradually focused on the bioaccumulation, toxicity mechanism, and ecological risks of these pollutants.

Due to their lipophilicity, NHFRs and OPFRs can accumulate in various aquatic organisms[31-38]. Relatively 
higher concentrations of NHFRs and OPFRs have been detected in marine invertebrates, fish, marine 
mammals, and other biological samples (up to mg/g level by lipid weight), which were close to or even 
higher than those for traditional flame retardants (such as PBDEs and HBCDs)[11,20,39,40]. In addition, these 
novel flame retardants can be effectively transferred across the food chain/web and have shown potential 
biomagnification effects, for example, the NHFRs in food webs from the Bohai Sea, South China Sea, and 
Taihu Lake[41-44] and the OPFRs in food webs from the Laizhou Bay, South China Sea, and Taihu Lake[39,45,46]. 
Ecotoxicological studies have verified acute and chronic toxicity[47,48], reproductive toxicity[49,50], 
developmental toxicity[51-53], neurotoxicity[54-56], and endocrine-disrupting effects for several OPFRs[52,57,58]. 
The toxicological profile of NHFRs has been characterized for animals and humans[59], e.g., direct 
neurotoxicity, endocrine-related effects including dioxin-like effects, agonistic activity, steroidogenesis, 
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estrogenic activity, disruption of the neuroendocrine system, reproductive developmental toxicity, 
hepatotoxicity, and cytogenotoxicity[9,59,60].

Toxicokinetics is of particular relevance for understanding pollutant accumulation and toxicity within an 
organism, which determines the relationship between external exposure and internal exposure[61]. The 
metabolism of pollutants in organisms leads to the formation of products with different toxicities to their 
parent, which results in variations in their biological toxicity. In addition, novel FRs and metabolites share 
similar structures and might exhibit combined toxicity to organisms[62]. Therefore, the metabolism of novel 
FRs and the body burden of their metabolites were both important to reflect their actual risks to fauna. 
Several recent reviews have summarized the production, physicochemical properties, usage, environmental 
occurrence, analytical methods, bioaccumulation, human exposure, and toxicities of novel 
FRs[2,3,6,8,9,13,18,59,63-67]. However, very few studies have reviewed the mechanisms and kinetics of the metabolism 
of novel FRs in various organisms. Our previous two reviews of novel FRs only partly focused on metabolic 
processes[11,68]. Smythe et al. reviewed the biotransformation processes of FRs, but only BFRs were 
considered[69]. Another transformation review only provided information specific to the plant accumulation 
and transformation of the novel FRs[70]. A review by Yang et al. only provided information specific to the 
human internal exposure and health risks of OPFRs and their metabolites[71]. Accordingly, this review aims 
to summarize all of the published studies on the animal-mediated metabolism of NBFR and OPFRs, to 
compare the compound-specific metabolism pathways of these novel FRs, and to systematically collect the 
internal exposure results of the major metabolites in fauna. In addition, this study proposed the current and 
key knowledge gaps and research needs for future research on novel FR biomonitoring.

METHODOLOGY
Systematic searches covering the period from 1966 to 2023 were conducted on Web of Science and Google 
Scholar using the keywords of BFRs, OPFRs, organophosphorus esters (OPEs), or dechlorane plus (DPs) 
and keywords of metabolism, biotransformation, metabolites, toxicity, or internal exposure. The retrieved 
literature was carefully checked, and peer-reviewed studies related to non-human animals were selected. A 
total of 69 publications were finally selected and included in the review [Table 1].

In this review, three kinds of typical OPFRs were included, such as Cl-OPFRs [tris(2-chloroethyl) phosphate 
(TCEP), tris(2-chloroiso-propyl) phosphate (TCPP), and tris(2-chlorol-chloromethy) phosphate (TDCPP)], 
four alkyl-OPFRs [tributyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), tri(2-ethylhexyl) 
phosphate (TEHP), and tripropyl phosphate (TPRP)], and five aryl-OPFRs [tripheny phosphate (TPHP), 
tricresyl phosphate (or so-called tris(methylphenyl) phosphate) (TCP or so-called TMPP), cresyl diphenyl 
phosphate (CDP), 2-ethylhexyl diphenyl phosphate (EHDPHP), and bisphenol A bis (diphenylphosphate) 
(BPA-BDP)]. NHFRs in this review are divided into the monoaromatic NHFRs [TBB, tis(2-ethylhexyl)-
2,3,4,5-tetrabromophtalate (TBPH), pentabromotoluene (PBT), pentabromophenol (PBP), 
hexabromobenzene (HBB), pentabromoethylbenzene (PBEB), 2,3,4,5-tetrabromo-6-chlorotoluene (TBCT), 
tribromophenol (TBP), 2,4,6-tribromophenyl allyl ether (ATE), and pentabromobenzyl acrylate (PBBA)], 
polyaromatic NHFRs [DBDPE, BTBPE, tetrabromobisphenol A-bis(2,3-dibromopropylether) (TBBPA-
DBPE)], naphthenic NHFRs [tetrabromoethylcyclohexane (TBECH)], and DPs.

In addition, in silico analysis was used for preliminary bioaccumulation and toxicity assessments of the 
major metabolites of novel FRs. The Log KOW and BAF values were predicted for all the major metabolites 
using USEPA EPI suit v4.1. The EPA T.E.S.T., distributed by the EPA, was applied to estimate acute and 
chronic toxicities. For acute toxicity data, fathead minnow (96 h), Daphnia magna (48 h), and T. pyriformis 
(48 h) were considered based on the LC50. Developmental toxicity and mutagenicity were selected as the 
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Table 1. Summary of studies on metabolism of novel FRs in non-human fauna

No. Locations Species studied Compounds Studied area Reference

Field study

1 Great Lakes, USA Herring gull egg TNBP, TBOEP, TPHP, TDCPP, and TCPP In vitro transformation pathway, kinetics, 
and metabolites formation

[31]

2 Great Lakes, USA Bald eagle eggs TBBA and TBMEHP Internal exposure [96]

3 Lake Huron, Canada Herring gull plasma BCPP, BDCPP, BBOEP, DNBP, DEHP, and DPHP Internal exposure [124]

4 Taihu Lake, China Freshwater fish liver microsome TCEP, TCPP, TDCPP, TIBP, TPHP, TCP, and EHDPHP In vitro transformation kinetics [39]

5 Taihu Lake, China Freshwater fish liver microsome ATE, BTBPE, TBPH, PBBA, TBCT, DBDPE, and TBECH In vitro transformation kinetics [41]

6 Troutman Lake, Austria Stickleback BCEP, DNBP, and DPHP Internal exposure [143]

7 Rivers in Beijing, China Topmouth gudgeon (Pseudorasbora parva), crucian carp (
Carassius auratus), and loach (Misgurnus anguillicaudatus)

BBOEP, DNBP, DEHP, and DPHP Internal exposure [38]

8 E-waste dismantling site in 
Guangdong, China

Chinese water snake (Enhydris chinensis), snake egg, and 
commo carp

BCPP, DNBP, DPHP, BBOEP, BCIPHIPP, and EHPHP, 
BBOEHEP, OH-TBOEP, OH-TPHP, 5-OH-EHDPHP

Internal exposure [42]

9 South China Sea Marine fish liver microsome TBECH, PBT, PBP, TBB, HBB, TBPH, DBDPE, and TBBPA-
DBPE

In vitro transformation kinetics [44]

10 Costal area of Korea Marine fish liver microsome BTBPE, HBB, PBEB, PBT, TBB, and TBCT In vitro transformation kinetics [111]

11 Arctic sea Marine mammal liver microsomes DBDPE In vitro transformation kinetics, and 
metabolites formation

[101]

12 East Greenland Liver microsomes of polar bears and ringed seals TNBP, TBOEP, TPHP, TDCPP, and TEHP In vitro transformation pathway, kinetics, 
and metabolites formation

[144]

13 Pearl river estuary, China Marine food web BBOEP, DNBP, DPHP, BBOEHEP, OH-TBOEP, and OH-
TNBP

Internal exposure [125]

14 Across the globe Fishmeal BCEP, BDCPP, DMP, DPHP, DNBP, and DEHP Internal exposure [127]

15 Tarragona, Spain Seafood species BCEP, DPHP, DNBP, BDCPP, BBOEP, and DEHP Internal exposure [145]

16 Australia Egg BCEP, BCPP, BDCPP, DNBP, DEHP, BBOEP, and DCP Internal exposure [129]

17 30 countries Cow milk BCPP, DPHP, BDCPP, BBOEP, DCP, DNBP, BBOEHEP, and 
OH-BBOEP

Internal exposure [126]

18 Beijing, China Cow milk BCPP, BDCPP, BBOEP, DNBP, DPHP, and DCP Internal exposure [146]

19 China Meat meal, feather meal, and blood meal BCEP BCPP, BDCPP, BBOEP, DNBP, DCP, DEHP, and 
DPHP

Internal exposure [131]

20 Chengdu, China Chickens, ducks, pigs, cattle, 
sheep, fish, and shrimp

BCEP, BCPP, BDCPP, DPHP, BBOEP, DNBP, and DEHP Internal exposure [130]

21 Southeast Queensland, 
Australia

Meat, fish, seafood, and egg BCEP, BCPP, BDCPP, DNBP, DEHP, BBOEP, and DCP Internal exposure [128]

Laboratory study

1 - Embryonated eggs and chicks of Japanese quail TPHP In ovo transformation kinetics and 
metabolites formation

[73]
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2 - Embryonated eggs of Japanese quail TDCPP and DPs In ovo transformation kinetics and 
metabolites formation

[74]

3 - American kestrel (Falco sparverius) egg TBBPA-DBPE and BTPBE In ovo transformation kinetics [98]

4 - Laying hens and egg TCPP, TPHP, TNBP, TBOEP, and TEHP In vivo transformation kinetics and 
metabolites formation

[76]

5 - Chicken embryos TCPP and TDCPP In vivo transformation kinetics [147]

6 - Chicken embryos DPs In vivo transformation kinetics [97]

7 - Chicken embryo TDCPP In vitro transformation kinetics and 
metabolites formation

[75]

8 - Bird and rat liver microsomes BPA-BDP In vitro transformation pathway, kinetics, 
and metabolites formation

[77]

9 - Zebrafish TPHP In vivo transformation pathway, kinetics, 
and metabolites formation

[78]

10 - Zebrafish TPRP, TNBP, TBOEP, TCEP, TDCPP, and TCP In vivo transformation pathway and 
metabolites formation

[148]

11 - Zebrafish EHDPHP In vivo transformation pathway and 
metabolites formation

[84]

12 - Zebrafish TBECH and TBP In vivo transformation pathway and 
kinetics

[113]

13 - Zebrafish PBT, HBB, BTBPE, and DBDPE In vivo transformation kinetics [105]

14 - Zebrafish DBDPE In vivo transformation pathway and 
kinetics

[102]

15 - Zebrafish DBDPE In vivo transformation pathway and 
kinetics

[103]

16 - Chinese rare minnow TNBP, TBOEP In vivo transformation kinetics and 
metabolites formation

[82]

17 - Chinese rare minnow TEHP In vivo transformation pathway, kinetics, 
and metabolites formation

[81]

18 - Rainbow trout (Oncorhynchus mykiss) BTBPE and TBPH In vivo transformation kinetics [149]

19 - Rainbow trout (Oncorhynchus mykiss) DPs In vivo transformation kinetics [109]

20 - Rainbow trout (Oncorhynchus mykiss) BTBPE In vivo transformation kinetics [112]

21 - Rainbow trout (Oncorhynchus mykiss) 
liver microsome

TBBA In vitro transformation pathway [104]

22 - Crucian carp TNBP, TBOEP In vitro transformation kinetics and 
metabolites formation

[80]

23 - Crucian carp CDP In vitro transformation kinetics [85]

24 - Common carp TCEP, TNBP, TBOEP, TCIPP, TDCPP, TPHP, and EHDPHP In vivo transformation pathway, kinetics, 
and metabolites formation

[83]

25 - Common carp DPs In vivo transformation kinetics [108]
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26 - Fathead minnows (Pimephales promelas) BTBPE, TBBPA-DBPE, TBPH, and TBB In vivo transformation kinetics [106]

27 - Killifish (Fundulus heteroclitus) TBPH In vivo transformation kinetics [114]

28 - Redtail catfish and oscar fish DPs In vivo transformation kinetics [110]

29 - White rat TEHP In vivo transformation pathway and 
kinetics

[150]

30 - Rat TPHP In vivo transformation pathway and 
metabolites formation

[134]

31 - Rat TCEP, TCPP, TDCPP, TCP, TPHP, and TNBP In vivo transformation pathway and 
kinetics

[87]

36 - Rat BTBPE In vivo transformation pathway and 
kinetics

[116]

37 - Rat DBDPE In vivo transformation pathway and 
kinetics

[115]

38 - Rat TBB and TBPH In vivo transformation pathway and 
kinetics

[120]

39 - Rat TBB and TBPH In vivo transformation pathway, kinetics, 
and metabolites formation

[117]

40 - Rat TBPH In vivo transformation kinetics and 
metabolites formation

[119]

41 - Rat liver microsome TPHP and TDCPP In vitro transformation kinetics and 
enzyme mechanisms

[88]

42 - Rat liver and intestinal subcellular fractions TBB, TBPH In vitro transformation pathway, kinetics, 
and metabolites formation

[118]

43 - Earthworm (Eisenia fetida) TNBP In vivo transformation pathway and 
kinetics

[93]

44 - Earthworm (Eisenia fetida) TPHP In vivo transformation pathway and 
kinetics

[94]

45 - Earthworm (Eisenia fetida) TBOEP In vivo transformation pathway and 
kinetics

[95]

46 - Earthworm (Eisenia fetida) PBT, HBB, BTBPE, and DBDPE In vivo transformation kinetics [123]

47 - Mudsnails (Bellamya aeruginosa) PBT, HBB, and DBDPE In vivo transformation pathway and 
kinetics

[121]

48 - Marine mussel TCP, TNBP, TBOEP, TPHP, TCPP, and EHDPHP In vivo transformation kinetics [92]

49 - Clam (Corbicula fluminea) PBT, HBB, BTBPE, and DBDPE In vivo transformation kinetics [122]

50 - Daphnia magna TPHP In vivo transformation pathway and 
kinetics

[89]

51 - Daphnia magna TBOEP, TCEP, TDCPP, and TPHP In vivo transformation kinetics [91]

52 - Invertebrates (Daphnia magna) and fish (Oryzias latipes) TPHP In vivo transformation pathway and 
kinetics

[90]
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TNBP: tributyl phosphate; TBOEP: tris(2-butoxyethyl) phosphate; TPHP: tripheny phosphate; tripheny phosphate; TDCPP: tris(2-chlorol-chloromethy) phosphate; TCPP: tris(2-chloroiso-propyl) phosphate; TBBA: 
2,3,4,5-tetrabromobenzoic acid; TBMEHP: 2-ethylhexyl tetrabromophthalate; BCPP: bis(1-chloro-2-propyl) phosphate; BDCPP: bis(1,3-dichloropropyl) phosphate; BBOEP: bis(2-butoxyethyl) phosphate; DNBP: di-n-
butyl phosphate; DEHP: di(2-ethylhexyl) phosphate; DPHP: diphenyl phosphate; TCEP: tris(2-chloroethyl) phosphate; TCPPL: tris(2-chloroiso-propyl) phosphate; PBEB: pentabromoethylbenzene; TDCPP: tris(2-
chlorol-chloromethy) phosphate; TPHP: tripheny phosphate; TCP: tris(2-chloroiso-propyl) phosphate; EHDPHP: 2-ethylhexyl diphenyl phosphate; ATE: 2,4,6-tribromophenyl allyl ether; BTBPE: 1,2-bis (2,4,6-
tribromophenoxy) ethane; TBPH: tis(2-ethylhexyl)-2,3,4,5-tetrabromophtalate; TBB: 2-ethylhexyl tetrabromobenzoic acid; TEHP: tri(2-ethylhexyl) phosphate; PBBA: pentabromobenzyl acrylate; OH: hydroxylated; 
TBCT: 2,3,4,5 tetrabromo-6-chlorotoluene; DBDPE: decabromodiphenyl ethane; OH-EHDPHP: 2-ethyl-hydroxyhexyl diphenyl phosphate; TBECH: tetrabromoethylcyclohexane; BCEP: bis(2-chloroethyl) phosphate; 
DNBP: di-n-butyl phosphate; BCIPHIPP: 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate; EHPHP: 2-ethylhexyl phenyl phosphate; BBOEHEP: bis(2-butoxyethyl) hydroxyethyl phosphate; OH-TBOEP: bis(2-
butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate; OH-TPHP: hydroxyphenyl diphenyl phosphate; TBBPA-DBPE: tetrabromobisphenol A-bis(2,3-dibromopropylether); DCP: dicresyl phosphate; DPs: dechlorane plus; 
BPA-BDP: bisphenol A bis (diphenylphosphate); TBP: tribromophenol; CDP: cresyl diphenyl phosphate; PBT: pentabromotoluene; HBB: hexabromobenzene.

endpoints for chronic toxicity.

METABOLIC TRANSFORMATION PROCESS OF NOVEL FLAME RETARDANTS
OPFRs
Birds
Studies on the metabolic transformation of OPFRs in avian species are mainly conducted by in vitro (i.e., liver microsome experiment) and in ovo methods 
(i.e., egg exposure experiment) [Table 2]. An in vitro study using liver microsomes of herring gulls from the Great Lakes found a general metabolic pathway for 
OPFRs in forming their respective di-alkyl phosphates (DAPs)[31]. The O-dealkylation pathway was confirmed for TPHP in vitro in chicken embryonic 
hepatocytes[72] and in ovo in embryonated eggs and chicks of Japanese quail[73], where this pathway was suggested to depend on cytochrome P450 (CYP) 
enzymes. Briels et al. also showed the formation of bis(1,3-dichloropropyl) phosphate (BDCPP) in the embryo of Japanese quail during in ovo exposure with 
TDCPP[74]. An efficient transformation from TDCPP to BDCPP was found in chicken embryonic hepatocytes with a molar conversion ratio of 1:1, indicating 
the significance of O-dealkylation in the metabolism of Cl-OPFRs[75]. BDCPP could not be metabolized further in chicken embryonic hepatocytes after 36 h of 
exposure[75].

In a 14 d exposure and 28 d depuration experiment of laying hens, the half-lives (t1/2) of five OPFRs were in the range of 11.3-106 d in the egg, with DAPs 
detected as main metabolites[76]. Other kinetic results showed that the non-halogenated OPFRs (i.e., TNBP, TBOEP, and TPHP) were more quickly 
metabolized by the liver microsomes, whereas the halogenated OPFRs were transformed to their metabolites (DAPs) more efficiently to non-halogenated 
OPFRs[31]. In another study, no significant metabolism of BPA-BDP was found in the herring gull liver microsomes[77].

Fish and marine mammals
The metabolism of OPFRs in fish was found to be more complex than that in birds. Wang et al. first elucidated the metabolic pathways of TPHP, TPRP, 
TNBP, TBOEP, TCEP, TDCPP, and TCP in zebrafish[78,79], including O-dealkylation, hydroxylation, di-hydroxylation, dichlorination (for Cl-OPFRs) and 
glucuronic acid (GLU) conjugation after hydroxylation. DAPs were detected as the major metabolite of OPFRs, which were mainly distributed in the fish liver 
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Table 2. Available information on metabolism pathways and toxicokinetics of OPFRs in non-human fauna

Compounds Species/assays Methods Metabolism pathway Major metabolites Available toxicokinetic 
constants References

TCEP Laying hens In vivo O-dealkylation BCEP 22.6 d (t1/2) [76]

Zebrafish In vivo O-dealkylation and hydroxylation BCEP and OH-BCEP - [79]

Common fish In vivo - - 9.2-18.3 h (t1/2) [83]

Liver microsomes of yellow 
catfish, catfish and crucian 
carp

in vitro - - 0.50-1.10 mL/min/mg protein [39]

Daphnia magna In vivo - - 4.13-6.03 h (t1/2 for waterborne 
exposure)

[91]

TCPP Laying hens In vivo O-dealkylation 30.1 d (t1/2) [76]

Herring gull liver microsome In vitro O-dealkylation BCPP 27 ± 1 [31]

Catfish liver microsome In vitro - - 1.33 mL/min/mg protein [39]

Common fish In vivo O-dealkylation and hydroxylation BCIPP and BCIPHIPP 10.5-14.5 h (t1/2) [83]

TDCPP Herring gull liver microsome In vitro O-dealkylation BDCPP 8 ± 1 mL/min/mg protein [31]

Embryonated eggs of Japanese 
Quail

In vitro O-dealkylation BDCPP - [74]

Chicken embryo In vitro O-dealkylation BDCPP - [75]

Zebrafish In vivo O-dealkylation BDCPP - [79]

Common fish In vivo Hydroxylation BDCPP and OH-BDCPP 9.4-19.8 h (t1/2) [83]

Liver microsomes of yellow 
catfish, catfish and crucian 
carp

In vitro - - 0.944-0.778 mL/min/mg 
protein

[39]

Rat In vivo Glutathione conjugation GSH-TDCPP - [151]

Rat In vivo O-dealkylation BDCPP - [152]

Rat liver microsome In vitro O-dealkylation 1,3-dichloro-2-propanol, 3-chloro-1,2-propanediol, 
and BDCPP

- [151]

Rat liver microsome In vitro - - 1.8083 h (t1/2) [88]

Daphnia magna In vivo - - 4.36-6.60 h (t1/2 for waterborne 
exposure)

[91]

TNBP Laying hens In vivo O-dealkylation 82.5 d (t1/2) [76]

Herring gull liver microsome In vitro O-dealkylation DNBP 73 ± 4 mL/min/mg protein [31]

Marine mammal liver 
microsome

In vitro O-dealkylation DNBP - [73]

Zebrafish In vivo O-dealkylation, hydroxylation, and GLU conjugation DNBP, OH-TNBP, and GLU-TNBP - [79]

Rare minnow In vivo O-dealkylation and hydroxylation DNBP and OH-TNBP 0.6-2.0 d (t1/2) [82]
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Crucian carp liver microsomes In vitro O-dealkylation and hydroxylation DNBP and OH-TNBP 3.1 mL/min/mg protein [80]

Common fish In vivo O-dealkylation and hydroxylation DNBP 8.8-15.9 h (t1/2) [83]

Liver microsomes of yellow 
catfish, catfish and crucian 
carp

In vitro - - 0.74-1.17 mL/min/mg protein [39]

Mice In vivo O-dealkylation DNBP - [87]

Marine mussel In vivo - - 1.93 d (t1/2) [92]

Earthworm In vivo O-dealkylation, hydroxylation, ethylene glycol 
conjugation, sulfation, and phosphate conjugation 

DNBP, OH-TNBP, PA-TNBP, DNBHEP, SUL-TPHP, 
and GLU-TPHP

- [93]

TBOEP Laying hens In vivo O-dealkylation BBOEP 11.3 d (t1/2) [76]

Herring gull liver microsome In vitro O-dealkylation BBOEP 53 ± 8 mL/min/mg protein [31]

Marine mammal liver 
microsome

In vitro O-dealkylation BBOEP - [73]

Zebrafish In vivo O-dealkylation, hydroxylation, and GLU conjugation BBOEP, BOEHEP, BBOEHEP, GLU-TBOEP, and 
GLU-BBOEHEP

- [79]

Rare minnow In vivo O-dealkylation and hydroxylation BBOEHEP, BBOEP, and OH-TBOEP 0.7-2.3 d (t1/2) [82]

Crucian carp liver microsomes In vitro O-dealkylation and hydroxylation BBOEHEP, BBOEP, and OH-TBOEP 3.9 mL/min/mg protein [80]

Common fish In vivo O-dealkylation and hydroxylation BBOEHEP, BBOEP, and OH-TBOEP 10.5-17 h (t1/2) [83]

Daphnia magna In vivo - - 4.28-5.33 h (t1/2 for waterborne 
exposure)

[91]

Earthworm In vivo O-dealkylation and hydroxylation BBOEP, BOEHEP, BBOEHEP, OH-TBOEP, etc. - [95]

TEHP Laying hens In vivo O-dealkylation DEHP 43.3 d (t1/2) [76]

Marine mammal liver 
microsome

In vitro O-dealkylation DEHP - [144]

Rare minnow In vivo O-dealkylation, hydroxylation, and GLU conjugation DEHP, OH-TEHP, and GLU-TEHP 1-2.57 d (t1/2) [81]

TPRP Zebrafish In vivo O-dealkylation, hydroxylation, and GLU conjugation DPRP, OH-DPRP, and GLU-TPRP - [79]

TPHP Laying hens In vivo O-dealkylation DPHP - [76]

Herring gull liver microsome In vitro O-dealkylation DPHP 22 ± 2 mL/min/mg protein [31]

Marine mammal liver 
microsome

In vitro O-dealkylation DPHP - [73]

Embryonated eggs and chicks 
of Japanese Quail

In vivo O-dealkylation DPHP, OH-TPHP, 2OH-TPHP, and OH-DPHP, 1.1-1.8 d (t1/2) [74]

Zebrafish In vivo O-dealkylation, hydroxylation, di-hydroxylation, and 
GLU conjugation

MPHP and GLU-TPHP 20.5 h (t1/2) [78]

Common fish In vivo O-dealkylation and hydroxylation DPHP and OH-TPHP 9.7-18.6 h (t1/2) [83]

Black carp (O. latipes) In vivo O-dealkylation, hydroxylation, methylation, GLU 
conjugation, CYS conjugation, and sulfation

DPHP, OH-TPHP, SH-TPHP, SUL-TPHP, GLU-
TPHP, and MET-TPHP

- [90]

Liver microsomes of yellow In vitro - - 1.33-1.50 mL/min/mg protein [39]
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catfish, catfish and crucian 
carp

Rat liver microsome In vitro - - 0.1531 h (t1/2) [88]

Mice In vivo O-dealkylation DPHP - [87]

Marine mussel In vivo - - 1.47 d (t1/2) [92]

Daphnia magna In vivo O-dealkylation, hydroxylation, GSH conjugation, CYS 
conjugation, and sulfation

DPHP, OH-TPHP, GSH-TPHP, CYS-TPHP, and 
SUL-TPHP

- [89]

Daphnia magna In vivo - - 6.66-7.88 h (t1/2 for waterborne 
exposure)

[91]

Earthworm In vivo O-dealkylation, hydroxylation, CYS conjugation, 
mercaptolactic acid conjugation, mercaptoethanol 
conjugation, and GLU conjugation 

DPHP, OH-TPHP, CYS-TPHP, MCL-TPHP, MCH-
TPHP, and GLU-TPHP

- [94]

TCP Zebrafish In vivo O-dealkylation, hydroxylation, and GLU conjugation DCP, OH-DCP, and GLU-TCP - [79]

Mice In vivo O-dealkylation DCP - [87]

Marine mussel In vivo - - 3.15 d (t1/2) [92]

Liver microsomes of yellow 
catfish, catfish and crucian 
carp

In vitro - - 2.11-2.71 mL/min/mg protein [39]

CDP Crucian carp liver microsomes In vitro - - 1,2700 ± 2,120 mL/min/mg 
protein

[85]

EHDPHP Common fish In vivo O-dealkylation and hydroxylation EHPHP and OH-EHDPHP 8.8-17.6 h (t1/2) [83]

Zebrafish In vivo O-dealkylation, hydroxylation, GLU conjugation, and 
sulfation

EHPHP, OH-EHDPHP, DPHP, OH-DPHP, GLU-
DPHP, MPHP, and SUL-EHDPHP

- [84]

Liver microsomes of yellow 
catfish, catfish and crucian 
carp

In vitro - - 2.44-3.86 mL/min/mg protein [39]

Marine mussel In vivo - - 5.78 d (t1/2) [92]

BPA-BDP Rat liver microsomes In vitro O-dealkylation and hydroxylation DPHP, BPA, phenol, BPA-(diphenyl phosphate), 
BPA-(diphenyl phosphate)-(monophenyl 
phosphate), BPA-BDP + O metabolite, etc.

- [77]

Bird liver microsomes In vitro Too slow - - [77]

-: Not available. BCEP: bis(2-chloroethyl) phosphate; BCPP: bis(1-chloro-2-propyl) phosphate; BDCPP: bis(1,3-dichloropropyl) phosphate; BCIPHIPP: 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate; GSH: 
glutathione; PBEB: pentabromoethylbenzene; TDCPP: tris(2-chlorol-chloromethy) phosphate; DNBP: di-n-butyl phosphate; TNBP: tributyl phosphate; OH: hydroxylated; GLU: glucuronic acid; DNBP: di-n-butyl 
phosphate; SUL: sulfation; TPHP: tripheny phosphate; tripheny phosphate; BBOEP: bis(2-butoxyethyl) phosphate; TBB: 2-ethylhexyl tetrabromobenzoic acid; DNBP: di-n-butyl phosphate; BBOEHEP: bis(2-
butoxyethyl) hydroxyethyl phosphate; OH-TBOEP: bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate; DEHP: di(2-ethylhexyl) phosphate; TEHP: tri(2-ethylhexyl) phosphate; OH-DPRP: hydroxylated DPRP; 
MET: methylation; CYS: cysteine; DCP: dicresyl phosphate; TCP: tricresyl phosphate; EHPHP: 2-ethylhexyl phenyl phosphate; OH-EHDPHP: 2-ethyl-hydroxyhexyl diphenyl phosphate; EHDPHP: 2-ethylhexyl diphenyl 
phosphate; BPA: bisphenol A; BDP: bis diphenylphosphate.
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and intestine[78,79]. Our previous in vivo and in vitro studies have also identified that the hydroxylation, other 
oxidation pathways, and GLU conjugation, as well as the O-dealkylation process from TBOEP, TNBP, and 
TEHP to their respective DAPs, are significant for the metabolism of OPFRs in fish (Chinese rare 
minnow)[80-82]. In addition, Tang et al. quantified the formation of DAPs and hydroxylated OPFRs (OH-
OPFRs) metabolites in common fish exposure experiments of TCPP and EHDPHP[83]. The in vitro 
biotransformation pathways [including O-dealkylation, hydroxylation, sulfation (SUL), and GLU 
conjugation] of EHDPHP were also identified in the liver and intestine homogenates of zebrafish[84]. 
Furthermore, the gut microbiota of zebrafish was analyzed to possess CYP450 catalysis-related enzymes, 
which might also be involved in the EHDPHP transformation[84].

Considering the liver to be the most important tissue for the metabolism of flame retardants in fish, liver 
microsomes isolated from various fish species have been used as a promising approach to evaluate the 
metabolism kinetics of OPFRs. According to two previous in vitro studies, the hepatic metabolism rates of 
OPFRs in fish were structure dependent, where aryl-OPFRs or OPFRs with larger Log KOW have faster 
metabolism rates than others under the same conditions[39,85]. In a study of hepatic in vitro metabolism of 
OPFRs in East Greenland polar bears and ringed seals, the mass balance results indicated a very efficient 
conversion from TDCPP and TPHP to their respective DAPs[77], which was similar to the findings in 
fish[78,80,86]. Both NADPH-dependent enzymes (e.g., CYP450 enzymes) and NADPH-independent enzymes 
are involved in the transformation of OPFRs into DAPs in the marine mammal liver[77].

Rodents
Our previous review provided a basic discussion on the metabolic processes of OPFRs in rodents (including 
rats and mice), where dealkylation, hydroxylation, glutathione (GSH) conjugation, and GLU conjunction 
were proposed as the main metabolic pathways[68].

The latest studies can provide novel insights into the metabolism of OPFRs in rodents. A study of BPA-BDP 
metabolism in rat liver microsomes suggested that the metabolism rate of BPA-BDP was much slower than 
TPHP and O-dealkylation and oxidation were the main biotransformation pathways for BPA-BDP[77]. In 
PM2.5-bound OPFR exposure at environmentally realistic concentrations, chlorinated OPFRs (TDCPP, 
TCEP, and TCPP) accumulated more in mice than other OPFRs (TCP, TPHP, and TNBP)[87]. The DAPs 
[dicresyl phosphate (DCP), diphenyl phosphate (DPHP), and di-n-butyl phosphate (DNBP)] were detected 
as urinary metabolites for their corresponding parents in the mice[87]. TPHP was found to be more easily 
metabolized than TDCPP by rat liver microsomes, which can explain the accumulation potential for 
chlorinated OPFRs in rodents[88]. NADPH-independent enzymes play an important role in the metabolism 
of OPFRs in rodents. CYP2E1, CYP2D6, CYP1A2, and CYP2C19 were identified as the specific enzymes for 
the metabolism of TDCPP, whereas CYP2E1 was the primary CYP450 isoform for the in vitro metabolism 
of TPHP[88].

Invertebrates
Although many studies are available concerning the metabolism of OPFRs in vertebrates, studies in 
invertebrates are insufficient. Daphnia magna is a primary consumer in aquatic ecosystems and prey for 
higher-level consumers, which was used to identify the biotransformation mechanism of TPHP in aquatic 
invertebrates[89,90]. Both phase I reactions (hydrolysis, hydroxylation, reduction, and (de)hydration) and 
phase II reactions [GSH conjugation, cysteine (CYS) formation, and sulfate conjugation] were identified for 
the metabolism of TPHP in D. magna[89]. More than 70% of the TPHP in water was accumulated by the 
D. magna during 24 h of exposure, and the major biotransformation pathway was estimated to be CYS 
conjugation and sulfation based on the depuration ratio[89]. In an exposure study of TPHP using an aquatic 
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food chain (R. subcapitata, D. magna, and O. latipes), elevated bioconcentration factor (BCF) of TPHP was 
found along with trophic level[90]. Liu et al. investigated the bioaccumulation characteristics and relative 
importance of different exposure routes in OPFR exposure (TBOEP, TCEP, TDCPP, and TPHP) to 
D. magna, where dietary exposure showed a generally lower uptake rate than waterborne exposure[91]. TPHP 
has a higher uptake rate and lower depuration rate in D. magna than those of other OPFRs[91]. The 
structure-relative bioaccumulation and depuration of OPFRs have also been reported in a recent laboratory 
study of marine mussels (Mytilus galloprovincialis), where a relatively higher uptake rate was found for the 
aryl-OPFRs (TPHP, TCP, and EHDPHP)[92].

As a hotspot terrestrial specie, earthworms have recently been used to assess OPFR metabolism. The 
metabolism of TPHP and TNBP has previously been studied in vivo in earthworms (E. fetida)[93,94]. Major 
phase I metabolites for TPHP are DPHP, para- and meta-hydroxyphenyl diphenyl phosphate (OH-TPHP), 
and (OH)2-TPHP[94], while DNBP and dibutyl hydroxybutyl phosphate (OH-TNBP) were the major phase I 
metabolites for TNBP[93]. Reported phase II metabolites included the thiol conjugates and glucoside 
conjugates of TPHP and TNBP[93,94]. TBOEP can accumulate in E. fetida and activate the CYP and 
glutathione pathways to promote the metabolism of TBOEP[95]. Bis(2-butoxyethyl) phosphate (BBOEP), 2-
butoxyethyl hydroxyethyl phosphate (BOEHEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP), 
and bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate (3-OH-TBOEP) were identified as the main 
metabolites of TBOEP in earthworms[95].

NHFRs
Birds
To the best of our knowledge, very few studies on the metabolism and biotransformation of NBFRs in birds 
have been reported [Table 3]. 2,3,4,5-Tetrabromobenzoic acid (TBBA) and 2-ethylhexyl  
tetrabromophthalate (TBMEHP) were respectively detected as the metabolites of TBB and TBPH in eagle 
eggs from the Great Lakes Region, indicating that O-dealkylation occurred for the metabolism processes of 
the two NHFRs[96]. In an exposure experiment with Japanese quail eggs, neither single- nor mixture-exposed 
DPs showed metabolism during incubation[74]. However, relatively rapid depurations for DP isomers (t1/2 of 
2.46-5.59 d for anti-DP and 2.76-5.87 d for syn-DP) were found in chicken embryos, indicating the species-
specific metabolism of DPs[97]. Although several other studies have been conducted in ovo exposure to 
NHFRs (including BTBPE and TBBPA-DBPE)[98-100], no evidence for their metabolic pathways was reported.

Fish and marine mammals
DBDPE could be rapidly metabolized (39.6-66.6 pmol in 90 min) to phenolic metabolites by marine 
mammal liver microsomes from arctic areas (polar bear, beluga whale, and ringed seal)[101]. DBDPE 
debromination (7 unknown compounds) was also confirmed in zebrafish after water-borne exposure[102]. 
They tentatively assigned them to nona-BDPE, nona-brominated products, octa-BDPE, hepta-BDPE, and 
other-brominated products[103]. BTBPE can be transformed into TBP and tribromophenoxyethanol (TBPE) 
during in vitro incubation using rainbow trout liver microsomes[104]. The formation of TBP was also 
confirmed in metabolism of BTBPE in zebrafish[105], whereas dibromophenol (DBP) was identified as a 
metabolite of BTBPE in fathead minnow[106]. HBB went through multiple debromination to metabolites of 
penta-bromobenzene (PBB), 1,2,4,5-tetra bromobenzene (Tetra-BB), 1,2,4-tribromobenzene (Tri-BB), and 
dibromobenzene (Di-BB) in zebrafish, and PBT could be gradually transformed to tetrabromotoluene 
(Tetra-BT), tribromotoluene (Tri-BT), and dibromotoluene (Di-BT)[105]. Ganci et al. identified TBBA as the 
major metabolite of TBB by trout liver microsomes[104]. Except for TBBA, Di-BB, and 2,3,4,5-
tetrabromomethylbenzoate (TBMB), formed via dealkylation and methylation, were detected as metabolites 
for the mixture of TBB and TBPH in fathead minnow and common carp liver S9 fraction[107]. Fathead 
minnow (P. promelas) exposed to TBBPA-DBPE was found to produce TBBPA via hydrolysis (O-
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Table 3. Available information on metabolism pathways and toxicokinetics of NHFRs in non-human fauna

Compounds Species/assays Methods Metabolism pathway Major metabolites Available toxicokinetic 
constants References

DBDPE Zebrafish larvae In vivo Debromination Dibrominated metabolites without confirmed structures - [102]

Zebrafish larvae In vivo Debromination nona-BDPE, octa-BDPE, hepta-BDPE, hexa-BDPE, and 
penta-BDPE

- [103]

Zebrafish In vivo Debromination nona-BDPE, octa-BDPE, hepta-BDPE, hexa-BDPE, and 
penta-BDPE

1.50-8.33 d (t1/2) [105]

Marine mammal liver microsome In vitro - No metabolites detected - [101]

Marine fish liver microsome In vitro - - 0.044-0.050 mL/h/mg protein [44]

Freshwater fish liver microsome In vitro - - 0.073-0.162 mL/h/mg protein [41]

Marine mammal liver 
microsomes

In vitro Debromination Phenolic metabolites ≈ 0.185 mL/h/mg protein [101]

Rat In vivo Debromination MeSO2-nona-BDPE and EtSO2-nona-BDPE - [115]

Clam In vivo Debromination nona-BDPE, hexa-BDPE, and penta-BDPE 0.9-11.6 d (t1/2) [122]

Mudsnails In vivo Debromination nona-BDPE, octa-BDPE, hepta-BDPE, hexa-BDPE, and 
penta-BDPE

3.0-3.8 d (t1/2) [121]

BTBPE Rainbow trout juvenile In vivo - No metabolites detected 54.1 ± 8.5 d (t1/2) [112]

Zebrafish In vivo Debromination and O-dealkylation TBP and vinyl tribromobenzene ether 1.00-7.25 d (t1/2) [105]

Fathead minnow In vivo O-dealkylation and hydroxylation DBP - [106]

Rainbow trout 
Liver microsome

In vitro O-dealkylation and hydroxylation TBP and TBPE - [104]

Marine fish S9 fraction In vitro - - 0.13-0.20 mL/h/mg protein [111]

Rat In vivo Hydroxylation, debromination, and O-
dealkylation

OH-BTBPE, (OH)2-BTBPE, TBP, and TBPE - [116]

Clam In vivo O-dealkylation, hydroxylation, and 
methylation

OH-BTBPE, MeOH(OH)-BTBPE, TBP, and TBPE 2.07-5.87 d (t1/2) [122]

TBB Bald eagle eggs In ovo O-dealkylation TBBA - [96]

Fathead minnow liver S9 fraction In vitro O-dealkylation and methylation TBBA, Di-BB, and TBMB 2.40 ± 0.15 pmol/h/mg protein [107]

Common carp liver S9 fraction In vitro O-dealkylation and methylation TBBA, Di-BB, and TBMB 2.34 ± 0.12 pmol/h/mg protein [107]

Rainbow trout liver microsome In vitro O-dealkylation TBBA - [104]

Marine fish liver microsome In vitro - - 0.053-0.065 mL/h/mg protein [44]

Marine fish S9 fraction In vitro - - 0.18-0.50 mL/h/mg protein [111]

Rat In vivo O-dealkylation TBBA - [120]

Rat In vivo O-dealkylation TBBA and TBPA - [117]

Rat liver microsome In vitro O-dealkylation TBBA 6.25 ± 0.58 nmol/min/mg 
protein

[118]
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Rat liver cytosol In vitro O-dealkylation TBBA 0.203 ± 0.004 nmol/min/mg 
protein

[118]

Rat intestinal microsome In vitro O-dealkylation TBBA 0.422 ± 0.093 nmol/min/mg 
protein

[118]

TBPH Bald eagle eggs In ovo O-dealkylation TBMEHP - [96]

Killifish (Fundulus heteroclitus) In vivo 22 d (t1/2) [114]

Fathead minnow liver S9 fraction In vitro O-dealkylation and methylation TBBA, Di-BB, and TBMB 0.629 ± 0.066 pmol/h/mg 
protein

[107]

Common carp liver S9 fraction In vitro O-dealkylation and methylation TBBA, Di-BB, and TBMB 0.620 ± 0.103 pmol/h/mg 
protein

[107]

Rat In vivo O-dealkylation TBBA - [120]

Rat In vivo O-dealkylation TBBA and TBPA - [117]

Rat liver microsome In vitro - No metabolites found - [118]

Marine fish liver microsome In vitro - - 0.016-0.017 mL/h/mg protein [44]

TBBPA-DBPE Fathead minnow In vivo O-dealkylation TBBPA - [106]

Marine fish liver microsome In vitro - - 0.047-0.048 mL/h/mg protein [44]

PBT Zebrafish In vivo Debromination Tetra-BT, Tri-BT, and Di-BT 1.14-10.37 d (t1/2) [105]

Marine fish liver microsome In vitro - - 0.043-0.049 mL/h/mg protein [44]

Marine fish S9 fraction In vitro - - 0.05-0.28 mL/h/mg protein [111]

Clam In vivo Debromination Tetra-BT 3.22-6.48 d (t1/2) [122]

Mudsnails In vivo Tetra-BT, Tri-BT, and Di-BT 4.7-5.9 d (t1/2) [121]

PBP Marine fish liver microsome In vitro - - 0.053-0.055 mL/h/mg protein [44]

HBB Zebrafish In vivo Debromination PBB, Tetra-BB, Tri-BB, and Di-BB 0.85-10.34 d (t1/2) [105]

Marine fish liver microsome In vitro - - 0.017-0.025 mL/h/mg protein [44]

Marine fish S9 fraction In vitro - - 0.048-0.13 mL/h/mg protein [111]

Clam In vivo Debromination PBB, Tetra-BB, Tri-BB, and Di-BB 1.82-.6.54 d (t1/2) [122]

Mudsnails In vivo Debromination PBB, Tetra-BB, Tri-BB, and Di-BB 2.5-3.5 d (t1/2) [121]

PBEB Marine fish S9 fraction In vitro - - 0.052-0.40 mL/h/mg protein [111]

TBECH Zebrafish In vivo - - 1.3 d (t1/2) [113]

Marine fish liver microsome In vitro - - 0.061-0.067 mL/h/mg protein [44]

Freshwater fish liver microsome In vitro - - 0.006-0.027 mL/h/mg protein [41]

TBP Zebrafish In vivo - - 0.9-1.3 d (t1/2) [113]

Rat In vivo Glucuronic acid conjugation, sulfation GLU-TBP and SUL-TBP 2-5 h (t1/2) [119]

TBCT Marine fish S9 fraction In vitro - - 0.052-0.40 mL/h/mg protein [111]

Freshwater fish liver microsome In vitro - - 0.015-0.114 mL/h/mg protein) [41]
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PBBA Freshwater fish liver microsome In vitro - - 0.122 mL/h/mg protein [41]

DPs Embryonated eggs of Japanese 
Quail

In vivo Too slow - - [74]

Chicken embryos In vivo - - 2.46-5.59 d (t1/2 for anti-DP) 
2.76-5.87 d (t1/2 for syn-DP)

[97]

Common carp In vivo - - 16.3-50.2 d (t1/2 for anti-DP) 
17.8-45.6 d (t1/2 for syn-DP)

[108]

Rainbow trout (
Oncorhynchus mykiss)

In vivo - - 53.3 ± 13.1 d (t1/2 for anti-DP) 
30.4 ± 5.7 d (t1/2 for syn-DP)

[109]

Redtail catfish In vivo - No metabolites found 19.1-39.7 d (t1/2 for anti-DP) [110]

Oscar fish In vivo - No metabolites found 22.3-34.5 d (t1/2 for syn-DP) [110]

-: Not available. DBDPE: decabromodiphenyl ethane; BTBPE: 1,2-bis (2,4,6-tribromophenoxy) ethane; DBP: dibromophenol; TBP: tribromophenol; TBPE: tribromophenoxyethanol; BTBPE: 1,2-bis (2,4,6-
tribromophenoxy) ethane; TBB: 2-ethylhexyl tetrabromobenzoic acid; TBBA: 2,3,4,5-tetrabromobenzoic acid; TBMB: 2,3,4,5-tetrabromomethylbenzoate; Di-BB: dibromobenzene; TBMEHP: 2-ethylhexyl 
tetrabromophthalate; TBPH: tis(2-ethylhexyl)-2,3,4,5-tetrabromophtalate; TBMEHP: 2-ethylhexyl tetrabromophthalate; TBBPA: tetrabromobisphenol A; Tetra-BT: tetrabromotoluene; Tri-BT: tribromotoluene; Di-BT: 
dibromotoluene; HBB: hexabromobenzene; PBB: penta-bromobenzene; PBEB: pentabromoethylbenzene; TBECH: tetrabromoethylcyclohexane; TBCT: 2,3,4,5 tetrabromo-6-chlorotoluene; PBBA: pentabromobenzyl 
acrylate; OH: hydroxylated; DPs: dechlorane plus.

dealkylation)[106]. DPs have been inferred to be metabolized in the liver of freshwater fish[108-110], but no metabolite could be detected in the fish body.

In vitro incubation using liver microsomes was conducted in several studies to assess the biotransformation clearance rates of NHFRs in fish. Lee et al. first 
found chemical-to-chemical variations in the metabolism rate of 6 NHFRs (BTBPE, HBB, PBEB, PBT, TBB, and TBCT) in marine fish (Epinephelus 
septemfasciatus, Konosirus punctatus, Lateolabrax japonicus, Mugil cephalus, and Sebastes schlegelii) from Koera[111]. Generally, the fully brominated NHFRs 
were metabolized slower than the less brominated NHFRs in fish. TBB exhibited the fastest metabolism rate in fish liver S9 fractions, whereas HBB and TBCT 
were the two slowest depleted NHFRs[111]. Our previous study using marine fish from the South China Sea liver microsome also reported the lowest in vitro 
clearance rate constants for HBB compared with TBB and PBT[44]. The clearance rates of NHFRs in marine fish from our study were 1.16 (TBB) - 7.68 (PBT) 
times lower than the values obtained in the marine fish from Korea, which might be attributed to the difference in enzyme activities between liver S9 and 
microsomes. In a study using freshwater fish liver microsomes (crucian carp, catfish, and yellow-head catfish), ATE, BTBPE, and TBPH showed no significant 
metabolism, and the clearance rate of DBDPE was much higher than that in marine fish from our previous study[41]. These results imply the occurrence of 
species-specific metabolism of NHFRs in aquatic animals.

The t1/2 of BTBPE was estimated to be approximately 54.1 ± 8.5 d in juvenile rainbow trout (Oncorhynchus mykiss)[112], and the estimated t1/2 for TBECH and 
TBP were < 2 d in zebrafish[113]. Qiao et al. also found that the liver, intestine, and gill were the top three tissues for the accumulation of PBT, HBB, BTBPE, and 
DBDPE in zebrafish with t1/2 lower than 7 d[105]. In a dietary exposure of TBPH to Atlantic killifish (Fundulus heteroclitus), only a very small proportion of the 
TBPH in diet (< 0.5%) was bioaccumulated in fish by 28 d and the depuration t1/2 was estimated to be 22 d[114]. DP isomers showed consistent uptake kinetics 
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but selective depuration kinetics in various fish species, where a rapid metabolism of syn-DP than anti-DP 
occurred in these species[108-110].

Rodents
Recent in vitro and in vivo studies in humans and rodents have confirmed the basic metabolic pathways of 
typical NHFRs. DBDPE is slowly metabolized in rats to MeSO2-nona-BDPE and EtSO2-nona-BDPE[115]. A 
study based on in vivo exposure of rats found that BTBPE could be metabolized into monohydroxylated and 
polyhydroxylated BTBPE and the debromination products (i.e., TBP and TBPE)[116]. In addition, 2,3,4,5-
tetrabromo phthalic acid (TBPA) is another urine metabolite in rats that results from the metabolism of the 
TBB and TBPH mixture[117]. In previous studies using rat liver microsomes, TBBA was identified as an in 
vitro metabolite for TBB, whereas no metabolites were found for TBPH[118]. TBP can be phase II metabolized 
to GLU-TBP and SUL-TBP by both pregnant and nursing rats[119].

The metabolism of TBB was significantly slower in rat intestinal microsomes and liver cytosol than in rat 
liver microsomes[118]. In DBDPE-exposed rats, adipose tissue accumulated the majority of DBDPE rather 
than liver and kidney tissues at 90 d of exposure[115]. For BTBPE, a high proportion of 14C (> 94%) was 
excreted in the feces at 72 h rather than accumulated in rat tissue[116]. In addition, the lactational transfer of 
TBB and TBPH was found to be approximately 200- to 300-fold higher than that of placental transfer in 
dosed Wistar rats, and their common metabolite TBBA was detected in the urine of pups[120]. The TBP-
administrated rat could rapidly accumulate in kidney and plasma at 30 min, and the exposed TBP pregnant 
and nursing rats resulted in the distribution of TBP and its metabolites in their offspring[119].

Invertebrates
In the sediment-water-mudsnail system, nona-BDPE, octa-BDPE, hepta-BDPE, hexa-BDPE, and penta-
BDPE were found to be debromination metabolites of DBDPE by snails[121]. The debromination process for 
DBDPE also occurred in clams, where nona-BDPE and penta-BDPE were detected as major metabolites[122]. 
Debromination was also investigated as the main metabolic pathway for PBT and HBB in both snails and 
clams[121,122]. Tetra-BT, Tri-BT, and Di-BT were found to be the major metabolites of PBT, and PBB, Tetra-
BB, Tri-BB, and Di-BB were the major metabolites of HBB in the two invertebrate species[121,122]. The 
hydrolysis and hydroxylation products of BTBPE also had been confirmed in clams[122].

The highest distribution of NHFRs in viscera was found for both snail and clam, and the t1/2 values for PBT, 
HBB, and DBDPE for snail and clam were 2.5-5.9 d and 0.911-11.6 d, respectively[121,122]. In a study of 
NHFRs in oil-earthworm systems, HBB and PBT were mainly distributed in the intestine and epidermis 
(> 60% of the total load) during most of the exposure time, whereas the contents of BTBPE and DBDPE 
were both higher in the casts than in other tissues[123].

Summary of transformation processes of novel flame retardants
In general, based on the above literature, the metabolic pathways of NHFRs and OPFRs in the fauna can be 
clarified. The main metabolic pathways of OPFRs include dealkylation (ester hydrolysis) and hydroxylation, 
and phase II conjunction. DAPs and OH-OPFRs are the most important metabolites in the body. 
Debromination, hydroxylation, dealkylation, and phase II conjunction occupied the major metabolic 
pathways of NHFRs in fauna. The most important metabolic pathway for NHFRs with ether bonds is O-
dealkylation (hydrolysis), such as BTBPE, TBB, TBPH, and TBPPA-DBPE. Other NHFRs share general 
metabolic pathways of mono- and multiple hydroxylation and debromination, and phase II metabolism can 
occur subsequently once hydroxyl is formed for the intermediates. Toxicokinetic results suggest that 
NHFRs are more resistant to metabolism than OPFRs, especially for DBDPE, DPs, and the monoaromatic 
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NHFRs. For OPFRs, the metabolism of non-chlorinated OPFRs is faster than Cl-OPFRs. Species-specific 
metabolism of novel flame retardants can be concluded according to the collected studies, where their 
metabolism rate in birds and rodents is generally faster than in fish and invertebrates.

INTERNAL EXPOSURE OF THE MAJOR NOVEL FR METABOLITES
Several studies are available concerning the internal exposure of novel FR metabolites in fauna. DAPs, 
formed from in vivo dealkylation, can act as biomarkers for assessing the internal exposure of OPFRs. The 
DAPs of bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCPP), 1-hydroxy-2-
propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP), BDCPP, BBOEP, DNBP, di(2-ethylhexyl) phosphate 
(DEHP), DPHP, DCP [or so-called bis(methylphenyl) phosphate (BMPP)], and 2-ethylhexyl phenyl 
phosphate (EHPHP) and OH-OPFRs of BBOEHEP, OH-TBOEP, OH-TNBP, OH-TPHP, and hydroxylated 
EHDPHP (OH-EHDPHP) were recently detected in fauna biomonitoring studies [Table 4]. The metabolite/
parent ratio (MPR) was recently used in internal exposure studies to compare the relative persistence of 
OPFRs and metabolites [Figure 1], where an MPR ratio higher than one indicates that the metabolites, 
rather than the parent contaminants, should receive greater concern regarding their accumulation 
potentials.

In a recent report by Su et al., BBOEP and BDCPP were detected at concentrations higher than 2 ng/g ww 
in herring gull plasma from the Great Lakes[124]. Our previous study investigated the accumulation of four 
DAPs (i.e., BBOEP, DNBP, DEHP, and DPHP) in wild freshwater fish from Beijing, China, and found that 
ΣDAPs concentrations were approximately 0.10-1.12 times (MPR) those of their parent compounds in 
fish[38]. The four DAPs in crucian carp and loach were mainly distributed in the fish liver (135 and 
212 ng/g lw, respectively) than in other tissues[38]. Liu et al. investigated OPFR metabolites, including DAPs 
and OH-OPFRs, in ovoviviparous species (water snake and its egg) and freshwater fish[42]. The mean total 
concentrations of OPFRs metabolites were 1.3, 2.0, and 2.8 ng/g ww in water snake muscle, snake egg, and 
common carp, respectively, and higher MPRs were found in water snakes than in common carp[42]. In an 
estuarine food web of the Pearl River, China, the mean ΣmOPFRs among the marine species increased in 
the following order: fish (88.2 ± 78.7 ng/g lw) < shrimp (137 ± 90.0 ng/g lw) < snails (139 ± 132 ng/g lw) 
< crabs (336 ± 402 ng/g lw) and the DAPs of DNBP, BBOEP, and DPHP, rather than the OH-OPFRs, were 
the most abundant metabolites[125]. The MPRs of BBOEP/TBOEP and DNBP/TNBP in crabs were observed 
to be higher than those in several marine species[125].

In a global survey of OPFR metabolites in cow milk, samples from European countries presented higher 
OPFR metabolite concentrations in all countries (ΣmOPFRs = 0.135 ng/mL), while the metabolite levels in 
Asian countries were much lower (mean level < 0.021 ng/mL)[126]. TDCPP/BDCPP and TCPP/BCPP pairs 
presented significantly positive correlations, which indicated that they shared similar sources in milk[126]. 
BBOEP and BBOEHEP showed much higher concentrations than the hydroxyl metabolites (i.e., OH-
TBOEP) in milk, which might be attributed to the high conversion rate from OPFRs to their corresponding 
DAPs[126]. However, the concentration of ΣmOPFRs in fishmeal showed a geographic order of China 
(56.7 ng/g dw) > South America (47.9 ng/g dw) > Southeast Asia (45.1 ng/g dw) > the United States 
(43.7 ng/g dw) > Europe (29.4 ng/g dw)[127]. High concentrations of OPFR metabolites were also detected in 
fish and seafood (1.8 ng/g ww), meat (1.0 ng/g ww), and eggs (1.0 ng/g ww) from Southeast Queensland, 
Australia, especially for DNBP and DPHP[128]. These DAPs accumulated more in yolk than in albumin[129]. 
The MPR for several pairs (i.e., DNBP/TNBP, DPHP/TPHP, BBOEP/TBOEP, and BCPHPP/TCPP) was 
lower in meat from animals (including chicken) than eggs, which could be explained by the fast excretion of 
these metabolites by the animals via urine[128]. Species-specific accumulation of BCEP was also found in fish 
and shrimp, which are highly edible portions of domestic birds and domestic mammals from Sichuan 



Page 18 of Hou et al. J Environ Expo Assess 2023;2:10 https://dx.doi.org/10.20517/jeea.2023.0830

Table 4. Internal concentration of NBFR metabolites in fauna (ng/mL or ng/g ww)

Sample 
types Study area BCEP BCPP BCIPHIPP BDCPP BBOEP BBOEHEP OH-

TBOEP DNBP OH-
TNBP DEHP DPHP OH-

TPHP DCP EHPHP OH-
EHDPHP ΣmOPFRs Reference

Cow milk Asia - 0.044 
± 
0.079

- 0.037 ± 
0.056

0.02 ± 
0.027

0.017 ± 
0.029

0.002 ± 
0.003

0.024 
± 
0.026

- - 0.005 
± 0.016

- 0.156 ± 
0.139

- - 0.02 ± 0.025 [126]

Europe - 0.036 
± 
0.046

- 0.078 ± 
0.118

0.011 ± 
0.014

0.023 ± 
0.04

0.002 ± 
0.006

0.044 
± 
0.079

- - 0.002 
± 
0.004

- 0.821 ± 
0.181

- - 0.135 ± 0.716 [126]

North America - 0.039 
± 0.031

- 0.084 ± 
0.109

0.005 ± 
0.007

0.018 ± 
0.01

0.002 ± 
0.002

0.036 
± 
0.043

- - 0.001 ± 
0.001

- 0.215 ± 
0.128

- - 0.043 ± 0.044 [126]

South America - 0.036 
± 0.019

- 0.081 ± 
0.146

0.004 ± 
0.004

0.032 ± 
0.058

0.001 ± 
0.001

0.048 
± 
0.057

- - 0.001 ± 
0.002

- 0.261 ± 
0.125

- - 0.049 ± 0.058 [126]

Oceania - 0.024 
± 0.019

- 0.083 ± 
0.071

0.021 ± 
0.017

0.011 ± 
0.013

0.002 ± 
0.002

0.018 ± 
0.018

- - 0.002 
± 
0.002

- 0.099 
± 0.165

- - 0.017 ± 0.018 [126]

Cow milk Beijing, China - 0.998 
± 0.45

- 0.053 ± 
0.12

0.274 ± 
0.29

- - 0.279 
± 0.15

- - 0.917 ± 
0.57

- 0.1 ± 
0.03

- - 2.62 ± 0.98 [146]

United States 5.36 ± 
3.25

11.01 ± 
3.67

- 1.5 ± 
2.87

0.53 ± 
0.63

- - 0.32 ± 
0.16

- 3.49 ± 
5.87

3.6 ± 
3.43

- 29.0 ± 
9.1

- - 41.9 ± 13.0 [127]

China 4.08 ± 
2.33

0.85 ± 
0.75

- 2.21 ± 
4.18

0.11 ± 
0.43

- - 0.65 ± 
1.69

- 7.31 ± 
6.8

2.05 ± 
2.6

- 36.6 ± 
19.6

- - 52.8 ± 23.0 [127]

Europe ND 1.39 ± 
0.62

- 1.99 ± 
2.73

0.2 ± 
0.38

- - 0.08 ± 
0.21

- 1.26 ± 
1.68

1.86 ± 
3.21

- 20.6 ± 
6.57

- - 28.9 ± 5.68 [127]

South America 6.23 ± 
3.45

1.18 ± 
3.68

- 1.09 ± 
2.37

0.09 ± 
0.62

- - 0.26 ± 
0.68

- 2.69 ± 
23.3

1.24 ± 
2.18

- 31.8 ± 
13.2

- - 42.1 ± 33.9 [127]

Fishmeal (in 
dry weight)

Southeast Asia ND 1.7 ± 
4.35

- 0.98 ± 
0.4

0.09 ± 
0.04

- - 0.21 ± 
0.41

- 3.46 ± 
2.56

1.01 ± 
1.17

- 35.7 ± 
11.8

- - 43.6 ± 10.4 [127]

Meat meal 
(in dry 
weight) 

- 16.5 7.25 - 0.27 - - 0.81 - 7.98 14.9 - 2.20 - - 49.9 [131]

Feather meal 
(in dry 
weight)

- 12.5 1.83 - 0.04 - - 0.21 - 2.24 4.15 - 2.36 - - 23.3 [131]

Blood meal 
(in dry 
weight)

China

- 5.57 4.29 - 0.63 - - 0.77 - 8.87 8.01 - 24.0 - - 52.1 [131]

Beef ND ND ND ND ND ND ND - - 0.043 
± 
0.026

0.098 
± 
0.039

- ND - - 0.152 ± 0.033 [128]Southeast 
Queensland, 
Australia
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Lamb ND ND ND ND ND ND 0.11 - - ND 0.207 
± 0.112

- ND - - 0.205 ± 0.205 [128]

Pork ND ND ND ND ND ND ND - - 0.12 0.14 - ND - - 0.114 ± 0.163 [128]

Chicken ND ND ND ND ND ND ND - - 0.038 0.245 
± 
0.078

- ND - - 0.204 ± 0.182 [128]

Prawn ND ND 0.42 ND 0.23 ND 0.124 ± 
0.034

- - 0.297 
± 0.147

1.17 ± 
1.42

- 5.00 ± 
3.14

- - 7.06 ± 4.79 [128]

Oyster ND ND ND ND 0.52 ± 
0.156

ND 0.1 - - 0.335 ± 
0.149

4.53 ± 
1.89

- 0.407 
± 0.161

- - 6.45 ± 1.88 [128]

Salmon ND ND ND ND ND ND 0.083 - - ND 0.44 - ND - - 0.202 ± 0.309 [128]

Egg ND ND ND ND 1.13 ± 
0.603

ND 0.082 - - 1.63 ± 
1.53

3.86 ± 
1.29

- 0.313 ± 
0.118

- - 8.28 ± 4.64 [128]

Egg albumin ND ND 0.33 ND 0.26 ND ND 0.15 - 2.3 5.3 - 0.079 - - 9.7 [129]

Egg yolk

Australia

ND ND ND 0.32 0.063 ND ND 0.05 - 0.72 1.2 - ND - - 3 [129]

Herring gull 
plasma  
(ng/g ww)

Lake Huron, 
Canada

- ND - 2.13 ± 
1.13

5.32 ± 
11.8

- - 0.410 - 0.120 ± 
0.079

ND - - - - 7.98 ± 11.4 [124]

Bald eagle 
eggs

Great Lakes, 
USA

5.4 ± 
1.7

1.8 ± 
0.25

- 2.5 ± 
0.21

1.3 ± 0.3 - - 2.4 ± 
0.49

- - 1 ± 
0.23

- - - - 27 ± 3 [96]

Water snake - 0.17 ± 
0.13

0.029 ± 
0.013

- 0.076 ± 
0.12

ND ND 0.47 ± 
0.30

- 0.39 ± 
0.37

0.061 ± 
0.057

- 0.11 ± 
0.033

ND 1.3 ± 0.49 [42]

Snake egg - 0.073 
± 0.13

0.037 ± 
0.013

- 0.29 ± 
0.37

0.022 ± 
0.038

0.031 ± 
0.033

0.39 ± 
0.29

- 0.50 ± 
0.15

0.28 ± 
0.22

- 0.32 ± 
0.10

0.046 ± 
0.08

2.0 ± 0.41 [42]

Common 
carp

E-waste 
dismantling site 
in Guangdong, 
China

- 0.54 ± 
0.11

0.19 ± 0.16 - 0.41 ± 
0.24

0.019 ± 
0.010

0.019 ± 
0.0090

0.51 ± 
0.32

- 0.61 ± 
0.37

1.3 ± 
1.9

- 0.24 ± 
0.24

0.059 ± 
0.045

2.8 ± 0.41 [42]

Topmouth 
gudgeon (in 
lipid weight)

- - - - 33.4 ± 
32.2

- - 23.3 ± 
15.3

26 ± 
11.1

10.4 ± 
6.3

- - - - 93.1 ± 46.2 [38]

Crucian carp 
(in lipid 
weight)

- - - - 25.1 ± 
17.5

- - 34 ± 
18.7

30.9 ± 
16.6

12.2 ± 
9.1

- - - - 102 ± 43.6 [38]

Loach (in 
lipid weight)

Rivers in 
Beijing, China

- - - - 32.9 ± 
28.7

- - 113 ± 
92.4

58.6 ± 
52.3

16.3 ± 
12.9

- - - - 220 ± 150 [38]

Marine snail 
(in lipid 
weight)

- - - - 55.6 ± 
97.6

0.49 ± 0.55 0.01 ± 
0.01

68.9 ± 
36.7

1.01 ± 
0.93

- 11.5 ± 
8.00

- - - - 137 ± 134 [125]

Marine 
shrimp (in 
lipid weight)

- - - - 18.2 ± 
11.5

0.55 ± 0.31 0.29 ± 
0.47

98.6 ± 
63.7

1.55 ± 
0.82

- 8.47 ± 
7.64

- - - - 140 ± 62.5 [125]

Marine crabs 23.9 ± 0.19 ± 314 ± 1.70 ± 13.3 ± 

Pearl river 
estuary, China

- - - - 1.05 ± 0.43 - - - - - 384 ± 341 [125]
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(in lipid 
weight)

13.4 0.08 360 1.61 9.21

Marine fish 
(in lipid 
weight)

- - - - 9.99 ± 
10.0

0.40 ± 
0.44

0.18 ± 
0.31

66.9 ± 
47.7

2.78 ± 
3.27

- 11.4 ± 
12.1

- - - - 89.1 ± 59.4 [125]

8 marine fish 
species

Tarragona, 
Spain

ND - - ND ND - - 47.6 ± 
18.2

- ND 62.6 ± 
18.4

- - - - 110 ± 34.9 [145]

Stickleback Troutman Lake, 
Alaska, USA

0.081 ± 
0.009

ND - ND - - - 0.436 
± 
0.066

- - 0.410 ± 
0.143

- - - - 0.927 ± 0.218 [143]

-: not available; ND: not detectable. BCEP: bis(2-chloroethyl) phosphate; BCPP: bis(1-chloro-2-propyl) phosphate; BCIPHIPP: 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate; BDCPP: bis(1,3-dichloropropyl) 
phosphate; BBOEP: bis(2-butoxyethyl) phosphate; BBOEHEP: bis(2-butoxyethyl) hydroxyethyl phosphate; OH-TBOEP: bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate; DNBP: di-n-butyl phosphate; OH: 
hydroxylated; TNBP: tributyl phosphate; DEHP: di(2-ethylhexyl) phosphate; DPHP: diphenyl phosphate; TCEP: tris(2-chloroethyl) phosphate; OH-TPHP: hydroxyphenyl diphenyl phosphate; DCP: dicresyl phosphate; 
EHPHP: 2-ethylhexyl phenyl phosphate; OH-EHDPHP: 2-ethyl-hydroxyhexyl diphenyl phosphate.

Province, China[130]. In animal-derived protein supplement feeds from China, the average concentration of ΣDAPs in meat meal was highest (52.1 ng/g dw), 
followed by blood meal (49.9 ng/g) and feather meal (23.3 ng/g dw)[131]. DAPs from Cl-OPFRs were the major congeners in blood meal (47.7%) and feather 
meal (61.4%), while DAPs from alkyl-OPFRs (65.7%) contributed the most in meat meal[131].

Relatively little information exists regarding the internal exposure of NBFR metabolites in fauna. TBBA [from not detectable (ND) to 330 ng/g ww] and 
TBMEHP (ND-330 ng/g ww) were detected in the bald eagle (Haliaeetus leucocephalus) eggs from the Great Lakes region[96]. For the two metabolites, their 
corresponding parent compounds (i.e., TBB and TBPH) were not detected in the eggs, suggesting greater concern should be paid to the two metabolites rather 
than their parents[96].

In general, DAPs have relatively higher internal exposure concentrations in fauna than OH-OPFRs, which is related to their high conversion rate and stability 
in the body [Figure 1]. The higher MPRs than 1 were frequently reported for the DAP/alkyl-OPFR pairs, which may be related to the easy-to-metabolism 
characteristics of the alkyl-OPFRs [Figure 1]. However, the sources of novel FR metabolites in the body are complex. In addition to being formed from 
metabolic processes in the body, some can also be formed from biotic and abiotic degradation processes in the environment before accumulation by the fauna. 
Some of the metabolites can also be applied as industrial products. For example, DEHP, DPHP, DCP, DMPP, and DNBP can be used as FRs or plasticizers[65]. 
Thus, the internal exposure of metabolites in the body is not always relative to the external exposure to FRs.

TOXICITY OF THE MAJOR NOVEL FR METABOLITES
OPFR metabolites
The predicted Log KOW values (using EPI suite v4.1) for the major OPFR metabolites were lower than those of their parent compounds [Table 5], which 
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Table 5. The estimated ecotoxicities and bioaccumulation values for the major novel FR metabolites

FRs Metabolites Fathead minnow LC50 
(mg/L 96 h)a

Daphnia magna LC50 
(mg/L 48 h)a

T. pyriformis IGC50 
(mg/L 48 h)a Developmental 

Toxicitya Mutagenicityaa Estimated Log KOW
b Estimated BCFb

TCEP 14.53 0.040 228.51 - + 1.63 3.465

BCEP 17.91 0.095 NA + + 0.83 1.457

TCPP 5.80 0.018 150.20 + + 2.89 36.66

BCPP 12.77 0.180 NA + + 1.19 2.251

BCIPHIPP 9.22 0.049 511.98 + + 1.17 1.557

TDCPP 0.22 0.016 154.86 + - 3.65 126.3

BDCPP 2.09 NA NA + NA 1.70 5.511

TBOEP 28.57 0.040 93.78 + - 3.65 54.19

BBOEP 14.88 0.27 NA + - 1.74 5.094

BBOEHEP 61.71 0.061 310.34 + - 0.82 1.079

3-OH-TBOEP 36.66 0.15 465.24 + - 1.53 1.737

TEHP 0.56 0.021 NA - - 9.49 1.4

DEHP 0.42 NA NA - NA 5.60 823.7

TNBP 18.60 0.030 124.47 - - 3.82 69.65

DNBP 5.20 0.66 NA + - 2.29 16.37

3-OH-TNBP 11.15 0.20 383.34 + - 2.28 7.905

TPHP 1.12 0.10 12.12 + - 4.70 73.18

OH-TPHP 0.12 0.16 19.69 - - 4.22 46.75

DPHP 6.95 NA NA + - 2.88 40.14

EHDPHP 0.21 0.062 2.73 + - 5.73 273.1

EHPHP 1.08 NA NA + - 4 195.5

OH-EHDPHP 0.34 0.036 3.16 + - 5.82 149

TCP 0.19 0.54 2.48 - - 6.34 2.98 × 104

DCP 4.90 NA NA + NA 3.50 241.5

TBB 0.12 0.096 0.063 NA + 8.75 2072

TBBA 1.02 10.08 18.02 NA - 5.09 835.2

TBPH 0.007 0.089 0.017 NA - 11.95 2.401

TBMEHP 0.032 1.16 0.54 NA - 7.53 169.1

TBBPA-
DBPE

0.004 0.003 3.83 × 104 NA - 11.52 1.215 × 104

TBBPA 0.069 0.033 0.11 NA - 2.856 717.5
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aUSEPA T.E.S.T; bUSEPA EPI suit v4.1.; -: no significant toxicity; +: significant toxicity; NA: not available. TCEP: tris(2-chloroethyl) phosphate; TCPP: tris(2-chloroiso-propyl) phosphate; BCEP: bis(2-chloroethyl) 
phosphate; BCPP: bis(1-chloro-2-propyl) phosphate; BCIPHIPP: 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate; TDCPP: tris(2-chlorol-chloromethy) phosphate; BDCPP: bis(1,3-dichloropropyl) phosphate; 
BBOEP: bis(2-butoxyethyl) phosphate; TBOEP: tris(2-butoxyethyl) phosphate; BBOEP: bis(2-butoxyethyl) phosphate; BBOEHEP: bis(2-butoxyethyl) hydroxyethyl phosphate; TEHP: tri(2-ethylhexyl) phosphate; OH-
TBOEP: bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate; TEHP: tri(2-ethylhexyl) phosphate; DEHP: di(2-ethylhexyl) phosphate; TNBP: tributyl phosphate; DNBP: di-n-butyl phosphate; TPHP: tripheny 
phosphate; OH-TPHP: hydroxyphenyl diphenyl phosphate; DPHP: diphenyl phosphate; EHDPHP: 2-ethylhexyl diphenyl phosphate; EHPHP: 2-ethylhexyl phenyl phosphate; OH-EHDPHP: 2-ethyl-hydroxyhexyl 
diphenyl phosphate; TCP: tris(2-chloroiso-propyl) phosphate; DCP: dicresyl phosphate; TBB: 2-ethylhexyl tetrabromobenzoic acid; TBBA: 2,3,4,5-tetrabromobenzoic acid; TBPH: tis(2-ethylhexyl)-2,3,4,5-
tetrabromophtalate; TBMEHP: 2-ethylhexyl tetrabromophthalate; TBBPA-DBPE: tetrabromobisphenol A-bis(2,3-dibromopropylether); TBBPA: tetrabromobisphenol A.

indicated their comparably limited potential for bioaccumulation. The estimated results from the EPA T.E.S.T. program indicate that DAPs and OH-OPFRs 
exhibit lower acute toxicities to aquatic animals. However, the estimated developmental toxicity for OPFRs is not eliminated after metabolism. BCEP, DNBP, 
OH-TNBP, and DCP show significantly positive developmental toxicity, while their parent compounds do not.

According to the literature, some transformation products might be more toxic than parent compounds, especially for endocrine-disrupting endpoints. TNBP 
shows both androgen receptor and glucocorticoid receptor antagonistic activity, whereas its metabolite DNBP cannot exhibit any nuclear receptor activity[132]. 
5-OH-EHDPHP can elicit approximately 3.1 times the androgen receptor antagonistic activity of EHDPHP in Japanese medaka (Oryzias latipes)[133]. The 
metabolites BBOEHEP and 3-OH-TBOEP can act as pregnancy X receptor agonists at similar levels to their parent TBOEP[132]. DPHP can significantly 
dysregulate the avian genes associated with lipid/cholesterol metabolism, which is more than two times that of TPHP[72]. Low-dose chronic exposure to DPHP 
can interrupt the fatty acid metabolism in the rat liver and exert adverse consequences on overall physiology[134]. Similar adverse results were also observed in 
male zebrafish[135]. OH-TPHP elicited the upregulation of estrogenic genes and thyroid genes to induce growth inhibition in zebrafish embryos[136]. Both BCPP 
and BDCPP upregulated the genes encoding for estrogenic synthesis enzymes in H295R cells, which indicated that these metabolites may produce comparable 
or even higher endocrine-disrupting effects than OPFRs[137].

NBFR metabolites
All the estimated NBFR metabolites had lower Log KOW values and aquatic toxicities (including LC50 to Fathead minnow and Daphnia magna and IGC50 to T. 
pyriformis) than those of their parent compounds using the in silico methods [Table 5]. However, certain metabolites of NHFRs also exhibit other adverse 
effects on organisms, according to previous studies. The metabolites TBBA and TBMEPH were shown to have comparable thyroid hormone, androgen, 
glucocorticoid, and pregnancy X receptor agonist activities[138,139] and induced stronger cytotoxicity than their parent compounds (TBB and TBHP)[140]. TBBA 
and TBMEHP exhibited binding potency to human PPARγ, but TBB and TBPH did not[141]. TBP, one of which was reported as a BTBPE metabolite, is an 
industrial additive with stronger neurotoxicity and can inhibit the expression of human steroidogenic enzymes, leading to a certain degree of endocrine-
disrupting effect[60]. Bromophenol, another BTBPE metabolite, was found to have strong cytotoxic and genotoxic effects on aquatic organisms[142].
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Figure 1. The metabolite/parent ratios (MPRs) of OPFRs in fauna across the internal exposure studies (A) Cl-OPFRs, (B) Alkyl-OPFRs, 
and (C) Aryl-OPFRs). Detailed data are compiled in Table 4.
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CONCLUSION AND PERSPECTIVES
To date, great efforts have been made to study the metabolism of novel FRs in fauna, such as metabolic 
pathways and kinetics, metabolite formation, internal exposure of metabolites, and their toxicities. OPFRs 
share similar metabolic pathways in various animals, where O-dealkylation, hydroxylation, and phase II 
conjunction are the most likely pathways. DAPs and OH-OPFRs are the predominant metabolites in the 
body. O-dealkylation (hydrolysis) is the key pathway controlling the metabolism of NHFRs with ether 
bonds, while other NHFRs might metabolize through debromination, hydroxylation, dealkylation, and 
phase II conjunction. However, compared with OPFRs, there is still a lack of metabolism information on 
most of the NHFRs including their full metabolism pathways, the conversion efficiency of specific 
metabolites, and the stability of the intermediates in the body[6,11,69]. The metabolism kinetics (or 
toxicokinetics) of novel FRs are CYP enzyme-related and variable among species. Research has progressed 
to often evaluating the metabolism of novel FRs in a single species, but comparative studies of 
biotransformation between species remain insufficient. When invertebrates, which are at the lower levels of 
the food chain, are exposed to FRs, the parental compounds and their metabolites can affect the organisms 
at the upper levels[125]. Therefore, future research is necessary on the metabolic processes in multitrophic 
organisms and the transfer of major metabolites across the food web.

DAPs, as important OPFR metabolites, have been investigated as biomarkers for OPFR exposure in fauna. 
The occurring higher internal exposure of DAPs than the respective OPFRs also highlights their potential 
risk for animals and their importance in understanding the metabolism processes of OPFRs. Nevertheless, 
few studies have focused on the internal exposure of NBFR metabolites, and we recommended employing 
these biomarkers for biomonitoring fauna. A few studies have indicated that the residues of the major FR 
metabolites in the body may have adverse effects on fauna. These results underscore the importance of 
studying the occurrence and ecological risks of metabolites in organisms. In addition, internal exposure data 
of metabolites can provide valuable information for human exposure and risk assessments of novel FRs. 
Hence, more attention should concentrate on the co-exposure of FRs and their metabolites, especially for 
those FRs with easy-metabolic characteristics and stable metabolites in the body.
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