
 Neuroimmunol Neuroinflammation | Volume 2 | Issue 3 | July 15, 2015PB 131Neuroimmunol Neuroinflammation | Volume 2 | Issue 3 | July 15, 2015 

INTRODUCTION

Lead (Pb2+) is a widely distributed heavy metal and 
environmental toxicant, and overexposure to lead due 
to pollution or accident can impair the function of 
the nervous system, especially learning and memory 
abilities of developing brains during childhood.[1-4] 
Epidemiologic data indicate that learning impairment 
may be caused by moderate lead exposure in young 
individuals.[2,3] This impairment is largely related to 
neuronal injury caused by lead toxicity, but the detailed 
mechanism by which lead exposure induces neuronal 
injury, neuronal death, and brain dysfunction still 
remains elusive.[4,5] Several studies have indicated that 
lead exposure may interfere with calcium signaling, 
suppress neurogenesis and neuronal differentiation, 
inhibit formation of long-term potentiation (LTP), 
influence secretion of neurotransmitters, and even 

enhance production of amyloid protein.[6-13] Lead can 
also bind to key metabolic enzymes such as pyruvate 
kinase, induce reactive oxygen species (ROS), impede 
the supply of energy to neurons, and cause neuronal 
apoptosis.[14-17] Moreover, recent studies have shown a 
crucial involvement of microglial and astroglial cells in 
neuroinflammatory injury induced by lead exposure.[10,11] 
Microglia and astrocytes are two major types of glial 
cells involved in the regulation of the immune response 
to pathological processes in the brain.[18] Functional 
activation of microglia and astrocytes and the resulting 
neuroinflammation are associated with infection, 
autoimmunity, and pathogenesis of neurodegenerative 
diseases. In response to lead exposure, microglia and 
astrocytes can increase the production and release 
of inflammatory cytokines, enhance ROS generation, 
impede antioxidant activity, and result in neuronal 
injury or neuronal loss in the brain or other parts of the 
central nervous system (CNS).[10,11,19-22]

MICROGLIAL ACTIVATION, PRO‑INFLAMMATORY 
CYTOKINES, AND NEUROINFLAMMATION

It is generally regarded that microglial cells are 
derived from blood monocytes that reset in the CNS 
during embryonic development and are functionally 
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involved in neuronal maintenance, injury, and repair 
in a manner similar to peripheral macrophages.[23] 
Microglial cells are a predominant source of various 
inflammatory cytokines, that is, interleukin-1 beta 
(IL-1β), tumor necrosis factor-alpha (TNF-a), and 
interferon-gamma (IFN-γ), which can then induce 
a broad spectrum of inflammatory reactions. The 
activation of microglia and astrocytes in response 
to internal and external stimuli or insults might 
further increase the release of cytotoxic substances, 
pro-inflammatory cytokines, ROS, and excitatory 
amino acids, thus causing further neuronal injury in 
the brain.[22]

Lead‑induced inflammatory cytokines in microglial cells
Obvious morphological change and higher synthesis 
of cytokines have been observed in activated 
microglial cells after lead exposure.[10,11,24] For 
instance, elevated expression of IL-1β and TNF-a 
is found in the cerebral cortex after lead exposure, 
as well as increased expression of IL-1β and IL-6 in 
the hippocampus.[25,26] In vitro experiments have also 
confirmed the elevation of TNF-a expression after 
lead exposure.[27] Gene expression analysis has shown 
that levels of the pro-inflammatory factors IL-6 and 
TNF-a are significantly perturbed by the lead insult 
in multiple brain regions.[19,20] These cytokines are 
co-expressed in glial cells in response to lead crossing 
the blood-brain barrier (BBB) and might also represent 
a mechanism for lead toxicity to the immature brain. 
Conversely, anti-inflammatory factors such as IL-10 and 
transforming growth factor beta (TGF-β) are decreased 
in the cortex in response to lead, as detected by real 
time-polymerase chain reaction.

Lead‑induced reactive oxygen species generation in 
microglial cells
Lead exposure might destroy the glial support of 
neuronal cells by increasing ROS and other toxins 
in microglial cells.[28] The microglial inflammatory 
response is also associated with the production of ROS 
and nitric oxide (NO)-dependent reactive nitrogen 
species (RNS).[19] Nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase (NOX), which is 
ubiquitously expressed in microglia, contributes much 
to the production of superoxide and the induction 
of ROS.[29] Furthermore, NOX could be activated in 
monocytes and microglial cells by IL-1β, TNF-a, IFN-γ, 
and other pro-inflammatory cytokines.[19] The inducible 
NO synthase (iNOS) is also prevalent in microglia, and 
microglial NO generation regulates vascular relaxation 
and initiates rapidly induced, transiently regulated 
signaling events.[30] On the other hand, lead also 
increases NOX, which causes superoxide production 
and inhibits antioxidant production, and increases the 
accumulation of ROS in the brain.[22] It is well-known 

that neurons in the brain are vulnerable to excess 
ROS and RNS. Oxidative stress could result in the 
death of newly-born neurons by disrupting signaling 
processes, dysfunction of ion homeostasis, and protein 
misfolding.[29]

The signaling pathways involved in lead-induced 
microglial activation, however, need more investigation. 
In response to various environmental toxins including 
lead, microglia could enter the activated state and 
release ROS.[31] Pattern recognition receptors expressed 
on microglia might be one common signaling pathway. 
For example, toll-like receptors act as initiators of the 
nuclear factor kappa B (NF-κB) pathway when exposed 
to several toxins, such as lipopolysaccharide (LPS), 
resulting in the release of pro-inflammatory cytokines.[32] 
However, it is still not clear how lead could induce 
microglial activation and trigger inflammatory cytokine 
production, which remains a critical question to be 
answered.

ASTROCYTIC ACTIVATION AND THE 
NEUROINFLAMMATORY RESPONSE

The neurovascular unit in the brain comprises 
of neurons, blood vessels and their adjacent 
astrocytes.[33,34] The concept of a functional unit is a 
new one, and emphasizes the interaction between 
neurons and astrocytes under both normal and 
pathological physiological conditions. Astrocytes play 
a critical role in neuron function, including energy 
support, metabolism, and synapse formation.[35,36] 
Astrocytes maintain the trans-endothelial electric 
resistance (TEER) of the BBB.[37] Under pathological 
conditions, astrocytes might remove toxic substances 
and balance electrolyte and water levels.[33] It has been 
found that lead interferes with astrocyte functions such 
as energy metabolism, immune response, and ROS 
removal. Furthermore, astrocytes could collaborate with 
microglia to switch on neuroinflammatory reactions in 
the brain, and each of these effects can result in BBB 
dysfunction and injury to neurons.

Lead exposure leads to the insufficient supply of 
energy from astrocytes to neurons. Astrocytes contain 
a large number of mitochondria for energy and 
glutamate metabolism. Neurons in the brain show 
a preference for lactose and glutamine provided by 
astrocytes via shuttle routes.[38] Glycogen is exclusively 
localized in astrocytes in the adult brain[39] and can 
be metabolized to pyruvate, which is converted to 
lactate by lactate dehydrogenase mainly in astrocytes 
and then transported to neurons. When energy is 
insufficient, astrocytes can also use glycolysis from 
stored glycogen for the use of neurons.[40,41] Glycogen 
metabolism in astrocytes is also required for long-term 
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memory formation in the brain.[42] Lead exposure causes 
morphological and functional changes in astrocytic 
mitochondria.[9] Creatine kinase and pyruvate kinase 
are two key enzymes in astrocytes that are involved in 
the production of pyruvate and lactate, and lead can 
bind to their sulfhydryl groups and decrease activity, 
resulting in an insufficient supply of pyruvate and 
lactate from astrocytes to neurons.[16] Lead can also act 
on cytochrome C and adenosine triphosphate synthase 
to cause dysfunction of the electron transport chain 
in mitochondria and generation of free radicals.[14,43] 
Mitochondrial dysfunction in astrocytes affects the 
survival of motor neurons.[44] Accumulation of free 
radicals and ROS might enhance the lack of energy and 
glutamine, eventually causing neuronal apoptosis.[15]

Lead triggers inflammation through a collaboration 
of astrocytes with microglia. The functional 
collaboration between astrocytes and microglia might 
play an important role in neuroinflammation and 
BBB dysfunction in the brain.[45] Overexpression of 
inflammatory stimuli in the neurovascular unit may 
start a response to clear antigenic material, leading to 
destruction of the BBB as well as neuronal damage. 
Following lead exposure, astrocytes secrete a number 
of inflammatory cytokines such as TNF-a, IL-6, and 
IL-10 into surrounding tissues.[45] These cytokines 
further mediate the immune response, including 
activation of microglia and macrophages, and induce 
other adverse reactions, which might eventually result 
in the destruction of BBB tight junctions. Matrix 
metalloproteinases (MMPs) are an important family 
of proteins composed of a variety of zinc-dependent 
enzymes that are capable of degrading extracellular 
matrix proteins such as collagen, gelatin, viscous 
protein, fibronectin, and proteoglycans.[46] It has been 
hypothesized that inflammatory cytokines induce 
production of MMP-2 and MMP-9, two proteinases 
that degrade the extracellular matrix and basement 
membrane, in astrocytes, resulting in increased 
permeability of the BBB.[47] Other studies have 
shown that low concentrations of pro-inflammatory 
cytokines (such as TNF-a or IL-1β) or lead did not 
influence MMP-9 expression when administered 
separately, but combined administration of lead and 
cytokines could induce a marked synergistic elevation 
in MMP-9 expression.[48]

FUNCTIONAL CROSSTALK BETWEEN MICROGLIA 
AND ASTROCYTES IN NEUROINFLAMMATION

The start of an inflammatory reaction to lead exposure 
depends on the interaction between the inflammatory 
responses of astrocytes and microglial cells. Following 
lead exposure, activation of astrocytes surrounding 
blood vessels is indicated by increased expression of 

glial fibrillary acidic protein (GFAP).[49,50] Therefore, 
the response to lead in astrocytes may affect the BBB. 
It has been shown that lead in the brain accumulates 
predominantly in astrocytes, as opposed to neurons.[51,52] 
Another culture experiment has shown that younger 
astrocytes accumulate and retain more lead than older 
astrocytes.[53] To protect neurons against lead, astrocytes 
serve as a lead pool in the process of neurogenesis. 
However, because astrocytes are not able to remove lead 
from their own cytoplasm effectively, the accumulated 
lead will finally cause progressive damage of astrocytes, 
the BBB, and nearby neurons.

The response of microglia and astrocytes to 
neuroinflammation
Liu et al.[18] has proposed that activation of microglia in 
response to pathological conditions such as trauma, stroke, 
or neurodegenerative disorders occurs before activation 
of astrocytes. For instance, the activation of astrocytes 
occurs subsequently to microglial activation in respect 
to the cytokine expression sequence in Alzheimer’s 
disease.[54,55] A study with trimethyltin (TMT) treated rats, 
a model of neurodegenerative disease, revealed that GFAP 
significantly increases following microglial activation and 
that microglial activation requires lower concentrations 
of TMT than activation of astrocytes.[56] Considering 
that astrocytes are closer to the peripheral environment 
anatomically and more easily store toxic substances like 
lead, it may also be an imperceptible inflammatory signal 
released from astrocytes such as low amounts of TNF-a, 
free radicals, or ROS/NO that further initiates activation 
of microglial cells, leading to an inflammatory response.

The role of inflammatory cytokines and receptors in 
microglial‑astrocytic interactions
Reciprocal activation of microglia and astrocytes mainly 
depends on inflammatory cytokines or their receptors.[57] 
Previous studies have shown that cytokines secreted 
from activated microglia also promote activation 
of astrocytes. Among those cytokines, IL-1 is a key 
mediator. IL-1β, mainly from microglia, can be rapidly 
expressed and may work to increase the secretion other 
cytokines such as IL-6, mainly from astrocytes, in order 
to promote inflammation.[35] Moreover, IL-1 might 
decrease the ability of astrocytes to reabsorb glutamic 
acid and promote the release of free radicals.[58,59] 
Experiments have shown that IL-1 receptor antagonists 
prevent pathological damage to astrocytes,[60] indicating 
that microglia might indirectly affect the function 
of astrocytes. In addition, microglial activation also 
promotes astrocytes to secrete TGF-β1 and IL-10.[61] 
When the severity of the immune response reaches 
a certain extent, however, TGF-β initiates a feedback 
loop to reduce the level of IL-1, inhibiting microglial 
activation and resulting in suppression of inflammation 
in the CNS.[62]
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BBB DYSFUNCTION RESULTING FROM LEAD 
INSULT AND NEUROINFLAMMATION

Inflammatory cytokines and the inflammatory response 
are critical in the neurovascular unit and may result 
in alteration of BBB function. Brain microvascular 
endothelial cells (BMECs) are considered to be the 
anatomical and functional basis of the BBB.[63] As 
they are in direct contact with the circulating blood, 
BMECs are highly vulnerable to the impact of the 
blood environment. Studies have revealed that lead 
toxicity in the BBB or BMECs might influence tight 
junction proteins.[64] Tight junctions are key functional 
structures that bond BMECs together. Adhesion proteins 
are a component of tight junctions, and the zonula 
occludens (ZO) family plays a key role in connecting 
transmembrane proteins with actins inside the ECs 
to complete the structure of tight junctions.[65] In the 
cultured brain microvessel endothelial cell line RBE4, 
lead reduces the expression of tight junction proteins 
and lowers TEER, causing changes in ion permeability 
at the BBB and brain interstitial fluid ion regulation. As 
ZO-1 and ZO-2 are intracellular proteins, this suggests 
that cytoplasmic mechanisms may be associated with 
this process. Increased permeability of endothelial 
cells along with a decrease in occludin proteins has 
been detected following lead exposure.[65] The ZO 
family also seems to be susceptible to oxidative stress, 
and tight junctions are destroyed by lead-induced 
inflammation and ROS, leading to long-term BBB 
damage. However, other in vitro and in vivo experiments 
have revealed that claudin-1 mRNA and protein levels 
are downregulated without significant changes to ZO-1 
and atresia proteins.[65,66]

The divalent iron ion channel [divalent metal 
transporter (DMT)] is a key element for the transport 
of iron across the BBB.[67] Many experiments have 
indicated that lead could also pass through DMT in a 
competitive way and may occupy this transporter when 
iron is deficient. Lead affects the offset of iron-regulated 
proteins, which allows it to more easily access endothelial 
cells.[68,69] When the concentration of iron is elevated, the 
transport of lead is effectively inhibited.[70] Interestingly, 
expression of fractalkine (CX3CL1), a mediator of 
neuron-glial signaling, is also enhanced after exposure 
to lead, especially in the hippocampus and forebrain.[10] 
In addition, lead also passes through and interferes with 
calcium channels, suggesting that lead might be able 
to cross the BBB in multiple or unknown other ways.

In one model involving exposure to lead, increased 
β-amyloid (Aβ) levels were found in the choroid 
plexus.[2] On the choroid epithelial cell surface, a critical 
transporter known as lipoprotein receptor-related 
protein-1 (LRP-1) is responsible for transporting Aβ out 

of the brain. LRP-1 knockout mice show higher levels of 
amyloid protein following lead exposure.[71] Lead could 
induce a significant reduction in LRP-1 expression 
by interfering with the LRP-1 gene promoter. These 
studies, therefore, suggest that lead neurotoxicity might 
also be related to memory deficits in the pathogenesis 
of Alzheimer’s disease.[72]

NEURONAL DAMAGE INDUCED BY LEAD 
EXPOSURE AND NEUROINFLAMMATION

Lead-induced inflammatory reaction cascades 
within the neurovascular unit may cause neuronal 
damage.[21] It has been hypothesized that TNF-a, IL-1β, 
and IL-6 could cause neuronal apoptosis through glial 
activation.[73] Possible mechanisms of injury might be 
ROS production due to the pro-inflammatory cytokine 
IL-1β or increased glycogen consumption in astrocytes 
due to TNF-a and IL-1, thereby causing increased levels 
of toxic substances and affecting the metabolism of the 
cells.[74] TNF might also be involved in the expression of 
NO, suggesting another way by which could inactivate 
LTP. Furthermore, IL-1β acts on endothelial cell tight 
junction proteins, reducing the amount and location 
of occludin and increasing the permeability of the 
BBB.[75] Inflammatory reactions could also change the 
transport of multiple substances by affecting the role 
of glutamate receptors.[76] Lead-induced chemokines, 
mainly secreted from neurons, have been shown to 
act on microglial receptors and participate in the 
interactions between neurons and glial cells, resulting 
in changes in microglial and astrocyte morphology.[77]

Oxidative damage is fatal to brain neurons. In pathological 
conditions such as hypoxia, traumatic injury, and lead 
insult, these toxic free radicals might be over-generated 
and cause secondary injuries to neurons. Compared with 
neurons, astrocytes have higher levels of antioxidants 
such as glutathione (GSH), heme-oxygenase 1 and GSH 
S-transferase.[78] Neurons may maintain their antioxidant 
capacity by transporting and utilizing these substances, 
among which the GSH shuttle pathway is likely to be 
paramount.[79,80] GSH, the most abundant antioxidant in 
the brain, is mainly generated in astrocytes. Astrocytes 
store a much higher content of GSH-related enzymes in 
order to guarantee a supply to neurons.[78] GSH-depleted 
astrocytes display a reduced ability to protect neurons 
against oxidative injury.[78]

When lead enters astrocytes, it could directly 
deplete NADPH. More importantly, it affects glucose 
6 phosphate dehydrogenase, a key enzyme of the 
pentose phosphate pathway, reducing the production 
of NADPH.[15] Both effects might result in a lack of 
GSH support from astrocytes to neurons. Lead is 
able to bind to GSH sulfhydryl groups and disable its 
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ability as a ROS scavenger. Lead exposure results in an 
accumulation of ROS and a decrease in antioxidants. 
Increased levels of ROS contribute to higher BBB 
permeability, inducing oxidative damage to cellular 
molecules, activation of inflammatory mediators, and 
the destruction of tight junctions.[81] ROS also inhibit 
glutamate transporters and cause a secondary glutamate 
metabolism exception,[82] increasing the role of lead in 
the destruction of neurons. In addition, studies have 
shown that lead reduces many antioxidant molecules 
such as superoxide dismutase and catalase in adult 
mouse and rat brain.[68,83]

Finally, the phosphorylated cyclic-AMP response 
element binding (pCREB) is an important transcription 
factor for long-term memory, and lead could block the 
cAMP-CREB pathway by reducing pCREB, resulting 
in a decline in long-term memory.[6,7,13] The effect 
of lead exposure on (CREB) protein expression 
and phosphorylation in the cerebral cortex and 
hippocampus during postnatal development has been 
studied. Lead exposure did not affect total CREB levels, 
but decreased pCREB levels by about 30-38% in both 
cortex and hippocampus.[13] Disruptions in pCREB 
expression levels and the binding activity of CREB 
proteins may decipher intracellular mechanisms of lead 
neurotoxicity in developing brains.[12,13] In addition, 
the protein kinase C (PKC)/NF-κB pathway might be 
involved in lead-induced neuroinflammatory injury 
to brain neurons, as it represents a key stress response 
signal to inflammation.[84] The PKC-NF-κB pathway 
might also play a critical role in cell defense reactions 
and cell apoptosis. The PKC-NF-κB pathway has been 
shown to be involved in the regulation of NO and 
pro-inflammatory cytokine production in the LPS model 

of inflammation.[85] PKC-NF-κB pathway downstream 
products such as tumor necrosis factor-related apoptosis 
inducing ligand, caspase-1, and NOS2 are enhanced in 
animal models after lead exposure.[86]

CONCLUSION

In summary, microglial and astroglial responses might 
be critically involved in neuroinflammation and lead 
neurotoxicity in the brain. Microglia and astrocytes may 
have crosstalk or mutual activation by inflammatory 
cytokines and receptors. Lead (Pb2+) has been shown 
to contact and interfere with microglia and astrocytes, 
which may trigger microglial and astrocytic activation, 
enhance inflammatory cytokine generation and release, 
increase ROS and oxidative stress, and finally result 
in BBB dysfunction and neuronal injury [Figure 1]. 
Further extensive studies are still needed, however, to 
elucidate the specific signaling pathways for microglia 
and astrocytes partaking in neuroinflammation in the 
brain and to find new targets of manipulation for the 
prevention and treatment of lead neurotoxicity in 
human beings.
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