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Abstract
Near-infrared fluorescence is increasingly finding utility in surgery. The ease of administering contrast agents, the 
ability to image in real-time, and the lack of tissue disruption are features of fluorescence imaging which have 
contributed to its use in the operating room. In this review, we examine fluorescence-guided surgery in the context 
of sinonasal tumors, evaluate currently available contrast agents and their targets, and discuss future applications 
of fluorescence in endoscopic sinus surgery.

Keywords: Near-infrared fluorescence, surgical navigation, molecular imaging, tumor imaging, sinonasal cancer

INTRODUCTION
Sinonasal cancers pose a formidable challenge for resection due to the narrow endonasal corridor, intricate 
adjacent anatomy, proximity to critical structures, and need to reconstruct the skull base following the 
procedure. The endonasal corridor also presents unique opportunities for utilization of fluorescent-guided 
techniques given the enclosed space, relatively uniform lighting conditions, and consistent utilization of 
endoscopic imaging which can enable overlays of different visual inputs. Recent technological 
advancements in surgical visualization have the potential to inform several aspects of surgical treatment for 
sinonasal tumors.
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TUMOR IDENTIFICATION
With regard to non-targeted fluorescence techniques, indocyanine green (ICG) fluorescence imaging has 
been demonstrated to have diverse applications in the surgical resection of sinonasal tumors. ICG is a 
water-soluble tricarbocyanine dye with excellent safety profile that fluoresces when exposed to wavelengths 
of light in the near-infrared (NIR) spectrum (peak excitation at 805 nanometers).

When ICG is infused preoperatively via an intravenous line (IV), it can highlight tumor tissue during 
surgery, leveraging the differential vascular perfusion patterns between cancer tissue and normal tissue. 
Tumor tissue is often characterized by vascular damage and increased permeability, which results in 
increased retention of ICG compared to normal tissue[1]. By visualizing tumor with fluorescence, surgeons 
can ensure a more precise and complete resection, minimizing the risk of leaving residual cancerous tissue. 
This technology has been validated in benign skull base tumors such as pituitary adenomas[2,3]. One series 
demonstrated that an IV infusion of ICG 24 h prior to surgery generated a significantly high signal-to-
background ratio between tumor tissue and normal tissue for chordomas, craniopharyngiomas, and 
pituitary adenomas[4]. This study found that tumors with high signal intensity on magnetic resonance 
imaging (MRI) T1 sequence with gadolinium contrast were the single best predictor of the signal-to-
background ratio. While ICG has been shown to facilitate intraoperative identification of squamous cell 
carcinoma and adenoid cystic carcinoma in the head and neck[5], currently no studies investigate the efficacy 
of ICG to highlight tumor tissue specifically in sinonasal malignancy.

TARGETED FLUORESCENCE
Targeted fluorescence approaches capitalize further on tumor-specific biomarkers to provide signal contrast 
during surgery. These approaches, also referred to as “molecular imaging”, are the subject of numerous 
trials in oncologic surgery, which are now beginning to expand into sinonasal tumors.

Certain tumors overexpress folate receptors, which has led to the development of folate analogs conjugated 
to fluorescent antibodies. For example, pituitary adenomas have demonstrated up to 20-fold overexpression 
of folate receptor alpha[6]. OTL38 is a folate analog conjugated to ICG to allow for fluorescence in NIR. 
Among skull base tumors, OTL38 can be used to distinguish pituitary adenomas from normal tissue 
intraoperatively, when administered intravenously 4-6 hours preoperatively[6]. Pre-operative confirmation of 
target receptor content is not typically feasible due to limited tissue biopsy, and as such, targeted imaging 
typically relies on preclinical validation of target receptor content. While folate receptors have not been 
investigated specifically for sinonasal malignancy, in squamous cell carcinoma of the head and neck, tumors 
do contain a high population of macrophages that express folate receptors, suggesting that folate-conjugated 
fluorescent dyes may be able to specifically target tumor tissue[7].

Another molecular target of interest is vascular endothelial growth factor (VEGF), which is overexpressed in 
sinonasal papilloma. This target can be identified using the antibody-dye conjugate, bevacizumab-
IRDye800CW. Using a fluorescent grid to quantify fluorescence within a tumor sample, ex vivo, Vonk et al. 
calculated the signal-to-background ratio and demonstrated a significantly higher mean fluorescence signal 
in SNP compared to normal tissue [77.54 (IQR 50.47-112.30) vs. 35.99 (IQR 21.48-57.81), P < 0.0001][8]. 
However, despite the higher levels of fluorescence, the authors conclude that clinical utility is limited, 
because this higher fluorescence signal could not be detected during endoscopic surgery. VEGF is also 
uniquely overexpressed in pituitary neuroendocrine tumors, and is the subject of a clinical trial using 
bevacizumab-IRDye800CW (NCT04212793)[9].
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The epidermal growth factor receptor (EGFR) is another target that has been the focus of study in sinonasal 
surgery. EGFR is commonly overexpressed in head and neck cancer, and several trials utilizing 
Panitumumab-IRDye800 have demonstrated utility in intraoperative margin assessment, residual tumor 
identification, and mapping of nodal disease. A preclinical study of Pan800 in a sinonasal tumor model was 
able to demonstrate the feasibility of endoscopic targeted NIR imaging; further translational studies are 
necessary to evaluate the utility of Pan800 in sinonasal cancer[10].

The 5-aminolevulinic acid (5-ALA) has been investigated as another potential agent for fluorescence-guided 
surgery. Administered orally 2-4 h preoperatively, 5-ALA is absorbed by cells and transformed into 
protoporphyrin IX (PpIX), a fluorescent compound. PpIX has been shown to have an affinity for rapidly 
dividing cells, such as those found in cancer[11]. Intraoperatively, PpIX can be visualized using 405 nm 
wavelength blue light. The compound 5-ALA has Food and Drug Administration (FDA) approval for use in 
high-grade gliomas[11] and has recently been shown to have utility in head and neck squamous cell 
carcinoma for identifying positive margins, perineural invasion, and metastatic nodal disease[12]. However, 
in endonasal surgery, the utility of 5-ALA may be limited. A recent multicenter study of sinonasal tumors 
investigating 28 sinonasal benign and malignant tumors found that SCC, esthesioneuroblastoma, and 
plasmacytoma did not demonstrate any 5-ALA fluorescence[13,14]. This fluorescence was only observed in 
two of the tumors (7%): a pituicytoma and a meningioma.

PRESERVATION OF CRITICAL STRUCTURES
Sinonasal cancers often encroach upon critical neurovascular structures of the skull base. Intraoperative use 
of fluorescent agents can allow for real-time enhanced visualization of structures, allowing surgeons to 
navigate and preserve them more effectively.

The internal carotid artery can be reliably identified in endoscopic sinonasal and skull base surgery within a 
few seconds after intraoperative administration of ICG, with a strong fluorescent signal[15]. ICG can also be 
used to assess patency of the cavernous sinus. Furthermore, angiography can also aid in identification of 
critical perforators of the brain, optic apparatus, and pituitary gland[16]. In resection of skull base tumors, 
ICG has been utilized to assess and preserve vascular perfusion of the optic nerve with excellent vision 
outcomes[17,18].

Intravenous administration doses can range from 12.5 to 50 mg. A NIR endoscope can then be used to 
visualize vascular structures within one minute of administration. Examples of ICG administration to 
visualize skull base vascular anatomy can be seen in Figure 1.

PERFUSION ASSESSMENT IN RECONSTRUCTIVE FLAPS
ICG fluorescence angiography provides real-time feedback on blood flow dynamics, enabling surgeons to 
make informed decisions regarding tissue viability and the potential need for vascularized flaps in 
reconstructive procedures.

Necrosis of a reconstructive flap poses the potential complication of meningitis. While MRI with 
gadolinium contrast is considered the standard method to assess for flap perfusion, this can often only be 
performed in the postoperative setting. Flap necrosis can potentially be avoided through utilization of 
intraoperative ICG angiography to assess viability of reconstructive flaps[19-21]. A systematic review assessed 
104 cases of patients undergoing skull base reconstruction with nasoseptal flaps, lateral nasal wall flaps, 
pericranial flaps, and microvascular free flaps, and found that intraoperative ICG perfusion was strongly 
associated with flap perfusion as assessed by postoperative MRI[22]. Intraoperative administration of ICG can 
help confirm the perfusion of nasoseptal flap pedicles in real time, through fluorescence in the region of the 
posterior septal artery [Figure 2].
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Figure 1. Visualization of critical vascular anatomy at the skull base with white light endoscopy (A and B) and enhanced with ICG 
fluorescence angiography (C and D). Source: Author’s operative case (M.C.). Patients images were obtained with informed consent as 
part of IRB-approved study. ACA: Anterior cerebral artery; AComm: anterior communicating artery; ICA: internal carotid artery; OA: 
ophthalmic artery; ICG: indocyanine green.

VISUALIZATION OF CSF
Short wave infrared (SWIR) endoscopy is another type of alternative wavelength visualization of specific 
tissues with potential future application in sinonasal surgery. SWIR visualization technology has offered 
enhanced visualization of cerebrospinal fluid (CSF). In the context of skull base surgery reconstruction, 
where visualization of CSF is crucial, this technology provides clear and real-time images, enabling surgeons 
to confirm the presence or absence of a CSF leak[23]. The shortwave infrared technology may facilitate the 
identification of potential leaks and allow for prompt intervention, ultimately improving patient outcomes 
and minimizing the risk of complications related to reconstruction failures.

INFORMING INTRA-ARTERIAL CHEMOTHERAPY TREATMENT
One study aimed to evaluate the feasibility of ICG fluorescence technique during intra-arterial 
chemotherapy for recurrent sinonasal cancers. Seven patients were included in the study. While computed 
tomography angiography (CTA) alone detected blood supply in three cases, the addition of endoscopic ICG 
fluorescence imaging confirmed perfusion in all cases, informing intraoperative targeting of arteries for 
drug administration[24].
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Figure 2. Skull base reconstruction with nasoseptal flap viability assessed in (A) white light endoscopy and (B) near-infrared 
fluorescence angiography. Source: Author’s operative case (M.C.). Patients images were obtained with informed consent as part of IRB-
approved study.

FUTURE DIRECTIONS AND CHALLENGES
While the use of non-targeted fluorescent techniques in endonasal surgery has shown promising results, 
ongoing research aims to refine their applications further. Much of the existing evidence supporting 
potential applications is derived from cases with benign tumor pathology. These technologies require 
validation for malignant pathologies, particularly when it comes to tumor margins and nodal metastases. 
Additional challenges include optimizing imaging systems, standardizing protocols, and addressing cost-
benefit considerations. Furthermore, fluorescent tracers, despite their potential benefits in surgical 
applications, may not be readily available worldwide due to varying regulatory constraints. Nonetheless, the 
integration of these fluorescence imaging techniques into sinonasal cancer surgery has the potential to 
enhance surgical visualization, precision, and outcomes.

To address limitations in depth of signal detection of NIR probes, the NIR-II or “second window” has been 
explored with promising results. These wavelengths are typically defined between 1,000-1,700 nm, and 
imaging in the NIR-II window has demonstrated increased depth sensitivity and improved image 
contrast[25]. Along with the development of new fluorescence dyes, conjugates and their applications, there 
has been a concomitant increase in fluorescence imaging devices. Since the introduction of the handheld 
SPY Imaging System (Novodaq Industries) in 2005, several hardware developments have increased imaging 
capabilities into microscopic, robotic and endoscopic approaches. Currently, the only clinically-available 
rigid NIR endoscopes are the Karl Storz Hopkins Rubina scopes (0, 30, 45 degrees; 5 and 10 mm outer 
diameter) and the Scholly NIR FI (0, 30 degrees; 10 mm outer diameter). However, there is intense research 
into expanding endoscopic technologies, including narrower, flexible endoscopes and multiplexed 
endoscopic fluorescence imaging[26,27].

The integration of artificial intelligence (AI)-based computer vision has the potential to significantly 
enhance fluorescent-guided surgery by improving the accuracy and efficiency of surgical field analysis. 
Machine learning algorithms can be trained on large datasets of fluorescence images to recognize patterns 
and nuances that may be imperceptible to surgeons. While fluorescence is typically a qualitative assessment 
or based on relative signal-to-background ratios, there is potential for AI to guide surgical decision-making 
based on quantitative numerical cutoffs which is particularly feasible in controlled ambient light 
environments, such as endoscopic surgery. Computer vision algorithms can automate the identification of 
tumor boundaries and the differentiation between cancerous and normal tissues, as well as process and 
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analyze real-time fluorescence signals in other applications pertaining to tissue perfusion or anatomical 
structures. The synergy of these technologies has significant potential to change surgical treatment in the 
coming years.

CONCLUSION
Fluorescence technology has the potential to impact sinonasal surgery by improving identification of 
sinonasal tumors and enhancing the detection of vital anatomic structures. Additional studies on the clinical 
implementation of these technologies, and the continued development of contrast agents and imaging 
devices will be crucial to achieving this impact.
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