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Abstract
Over the past decades, the significant development in endoscopic imaging has revolutionized digestive endoscopy. 
Real-time optical diagnosis has become possible using different tools and techniques (dye-based and virtual 
chromoendoscopy) such as narrow band imaging, flexible spectral imaging color enhancement, i-Scan, blue-laser 
imaging and linked-color imaging. Polyp detection and characterization, and prediction of depth of invasion of 
colorectal cancers have improved remarkably. Confocal laser endomicroscopy and endocytoscopy have allowed 
the evaluation of lesions on a cellular level. Not far from the horizon are newer technological innovations such as 
artificial intelligence and texture and color enhancement imaging that are now being studied for their potential to 
further improve mucosal visualization, optical diagnosis and virtual histology. This review gives an overview of 
image-enhanced endoscopy (IEE) and discusses its clinical applications and future directions in the lower 
gastrointestinal (GI) tract.

Keywords: Image-enhanced endoscopy (IEE), high-definition (HD), white light endoscopy (WLE), narrow-band 
imaging (NBI), FICE, i-Scan, blue-laser imaging (BLI), linked-color imaging (LCI), confocal laser endomicroscopy, 
endocytoscopy

INTRODUCTION
Image-enhanced endoscopy (IEE) continues to evolve and has assisted endoscopists in diagnosing 
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gastrointestinal (GI) diseases. IEE has significantly helped improve the quality of screening colonoscopies, 
aiding in polyp detection and characterization and predicting the depth of invasion of colorectal cancers. 
Additionally, it has allowed endoscopists to provide real-time optical diagnosis. Consequently, IEE has 
reduced unnecessary resections of benign lesions and has played a significant role in deciding whether to 
perform an endoscopic or surgical resection for the malignant lesions. This review summarizes the different 
existing IEE techniques and discusses their clinical applications and future directions in the lower GI tract.

GENERAL PRINCIPLES OF IEE
IEE is an endoscopic imaging method used to improve the visualization of mucosal surface patterns and 
microvasculature features of GI lesions that are even in an early stage[1]. It provides high-contrast 
endoscopic images of lesions through different dyes and optical and electronic technologies[2]. It has assisted 
in the endoscopic assessment of neoplastic lesions with greater depth and has enabled subsequent 
therapeutic decisions to be made with greater precision[3].

IEE can be classified into conventional dye-based chromoendoscopy (CE) and equipment-based methods 
or virtual CE [Table 1]. In dye-based CE, a dye such as indigo carmine, methylene blue, or crystal violet is 
applied onto the mucosa as the endoscope is slowly withdrawn while directed to suspicious lesions or the 
whole colon, such as in surveillance for patients with inflammatory bowel disease (IBD)[6]. The application 
of dye enhances features of mucosal surface architecture and aids in facilitating the resection of lesions or 
targeted biopsies of suspicious areas. However, a disadvantage of this technique is that it is often operator-
dependent and requires technical expertise in the use of dyes and additional time[7].

Equipment-based methods or virtual CE refers to advanced endoscopic imaging technologies that provide 
detailed contrast image enhancement of the mucosal epithelium and vasculature through optical filtering of 
white light or software-driven post-image processing[8]. Narrow Band Imaging (NBI) (Olympus Medical 
Systems Tokyo, Japan), flexible spectral imaging color enhancement (FICE) (Fujinon, Fujifilm Medical Co, 
Saitama, Japan), linked color imaging (LCI) (Fujinon, Fujifilm Medical Co, Saitama, Japan), blue light 
imaging (BLI) (Fujinon, Fujifilm Medical Co, Saitama, Japan), and i-Scan (Pentax Endoscopy, Tokyo, 
Japan) are examples of this technology. High-definition white light endoscopy (WLE) and magnification 
endoscopy (ME) also aid in providing high-resolution images and can be considered as part of virtual CE. 
Compared to using dyes, equipment-based methods have the advantage of ease of use, shorter procedure 
time, short learning curve, and no need for special assembly or dye[9].

CURRENT RECOMMENDATIONS IN THE USE OF IEE ON COLONOSCOPY
The use of IEE by endoscopists worldwide has rapidly grown, given its numerous advantages over 
conventional endoscopy. In fact, different societies and groups have advocated its use and its role in 
assessing GI lesions due to its ability to provide precise visual tissue characterization and accurate prediction 
of histology. To adapt IEE efficiently in practice, it is suggested that training is necessary to improve 
performance in the use of the advanced imaging technique[10].

The European Society of Gastrointestinal Endoscopy (ESGE) suggests that advanced endoscopic imaging 
technologies be used as they can improve mucosal visualization and enhance fine structural and 
microvascular details[10]. The Asian Novel Bio-Imaging and Intervention Group (ANBI2G), an Asian 
professional group, also recommends using IEE to enhance the quality of endoscopic diagnosis and improve 
the detection of early-stage colorectal neoplasia and polyp detection in average-risk patients[1]. Additionally, 
validated classification systems should be utilized in the advanced endoscopic imaging and optical diagnosis 
of lesions in the lower GI tract[10].
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Table 1. Overview of different IEE techniques and their clinical applicability[3-5]

Technique Mechanism of IEE Clinical applications

High-definition white light 
endoscopy

Signal images with high pixel density (up to millions), allowing visualization of a 
surface at a 30- to 35-fold magnification

Detection of colorectal 
neoplasm

MagnifIcation endoscopy 150-fold optical magnification while maintaining image display resolution Detection or characterization of 
colorectal neoplasm

Dye-based CE

- Absorptive dye: crystal 
violet, methylene blue

Provide sharp detail of cellular surface as the dye is absorbed by specific cells Characterization and diagnosis 
of suspicious cancerous lesions

- Contrast dye: indigo 
carmine

Provide overall detail of the mucosal surface topography when the dye seeps 
into the crevices and grooves between cells. They do not stain cellular surfaces.

Detection and diagnosis of 
colorectal neoplasm

Equipment-based CE 
Optical digital IEE

- Narrow-band imaging (NBI) Use of two narrow-banded wavelengths of 415 nm (blue light) and 540 nm 
(green light), which are selectively absorbed by mucosal hemoglobin in the 
blood to enhance both surface and capillary patterns

Detection, characterization, and 
diagnosis of colorectal neoplasm

- Flexible spectral imaging 
color enhancement (FICE)

Computed spectral estimation technology that reconstructs dedicated 
wavelengths resulting in enhanced visualization of mucosal structures and 
microvasculature

Detection, characterization, and 
diagnosis of colorectal neoplasm

- Blue-laser imaging (BLI) Use of semiconductor laser beams to generate brighter images which enhances 
the visibility of the superficial mucosal and capillary patterns

Detection, characterization, and 
diagnosis of colorectal neoplasm

- Linked-color imaging (LCI) Addition of red-wavelength information in signal processing to produce 
brighter images comparable to white light imaging

Detection, characterization, and 
diagnosis of colorectal neoplasm

Equipment-based CE 
Digital IEE

- I-Scan Digital post-processing filter technology, which generates high-definition 
images using three functions: contrast enhancement, surface enhancement, 
and tone enhancement

Detection, characterization, and 
diagnosis of colorectal neoplasm

Autofluorescence endoscopy Highlights endogenous fluorescence generated from tissue by excitation light 
(370-470 nm) and green light (540-560 nm) radiated sequentially

Detection of colorectal 
neoplasm

Confocal laser 
endomicroscopy (CLE)

Image confined to reflected laser light that is refocused via a pinhole Detection of colorectal 
neoplasm in IBD

Endocytoscopy Ultra-high magnified white light images (520×) through a high-power fixed-
focus objective lens

Detection and characterization 
of colorectal neoplasm

In patients with IBD, IEE is recommended as it improves the detection of dysplasia[1]. To characterize 
colorectal lesions in this subset of patients, ANBI2G recommends macroscopic classification using indigo 
carmine spray. The application of dye unmasks flat lesions and the borders and surface contours become 
better visible[11]. The ESGE and the British Society of Gastroenterology (BSG) recommend CE with targeted 
biopsies as the surveillance method in patients with IBD[12]. On the other hand, the American 
Gastroenterological Association (AGA) and the American Society for Gastrointestinal Endoscopy (ASGE) 
endorse the use of IEE with HD colonoscopy as surveillance for persons with long-term colonic IBD[13,14]. 
This was part of the SCENIC (Surveillance for Colorectal Endoscopic Neoplasia Detection and 
Management in Inflammatory Bowel Disease Patients: International Consensus Recommendations) 
international consensus statements published in 2015[15].

IMAGE-ENHANCED ENDOSCOPY TECHNIQUES IN THE LOWER GI TRACT
Dye-based chromoendoscopy
Dye-based CE aids the endoscopist in the detection and characterization of lesions in the GI tract with the 
application of dyes or stains. It can enhance lesion discrimination by highlighting the mucosal surface and 
light-absorptive patterns[16]. The topical staining agents used are considered generally safe except for those 
with known prior allergic reactions[17]. It is often applied with spraying catheters producing a fine mist onto 
the GI tract surface. While the endoscope is slowly withdrawn, dye is sprayed through the endoscope tip as 
the scope is directed onto the mucosa in a spiral motion[6]. As the effect of dye is only transient, short 
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segments of approximately 20 cm should be stained each time, followed by a careful inspection. The 
staining solution can be applied through nontargeted pancolonic CE or targeted CE directed toward 
suspicious visible abnormalities[17]. It is important to note that good bowel preparation is critical when using 
dye-based CE in the lower GI tract. Anti-spasmodic agents can also be used to minimize bowel peristalsis 
that could lead to uneven dye distribution.

Dyes used in the evaluation of colonic lesions can be classified into two major categories: absorptive dyes 
and contrast dyes. Absorptive dyes allow sharp detail of cellular surface as it is absorbed by specific cells[6]. 
An example is crystal violet which stains epithelial cells in the colonic mucosal glands, making the pit look 
white after dyeing. Staining usually takes 2 to 3 minutes after the dye is sprayed onto the colonic mucosa. 
Methylene blue is another example of an absorptive dye. It stains the epithelial cells of the small or large 
intestine blue, as opposed to dysplastic lesions, which remain unstained[17]. A more practical and less time-
consuming approach has been studied using Methylene blue in tablet form. If given orally (MB-MMX 
200 mg) with bowel preparation agents, it has shown the potential to increase the adenoma detection rate[18].

Contrast or non-absorptive dyes provide detail of the mucosal surface contour when the dye seeps into the 
crevices and grooves between cells. Contrast dyes do not stain cellular surfaces. An example of this is indigo 
carmine, a dark blue stain, which can enhance the contrast of raised and deepened areas and highlight the 
topography of the mucosal surface, leading to improved detection of neoplastic lesions. It is useful to 
differentiate between benign and malignant lesions, delineate borders of early-stage neoplastic lesions, and 
estimate the depth of invasion of cancers[2]. It is generally used at a concentration of 0.1%-0.5%[5].

When applying dyes, staining pit patterns can be categorized according to different classification systems, 
such as the Kudo pit pattern classification. Endoscopic polyp appearance can be characterized by the 
colonic mucosal pit pattern following the application of a dye[19]. Neoplastic tissue demonstrates irregular, 
tubular, or villous pits, whereas non-neoplastic tissue with rounded or stellar pits.

Equipment-based chromoendoscopy
High-definition white light endoscopy and magnification endoscopy
High-definition white light endoscopy (HD WLE) and magnification endoscopy (ME) are categorized as 
IEE as they can produce high-resolution images that aid in the evaluation of the mucosal surfaces and subtle 
changes in lesions. In HD WLE, the endoscope produces signal images with higher pixel densities up to 
millions, allowing visualization of a surface at a 30- to 35-fold magnification[3]. It also has faster line 
scanning on the monitor, resulting in sharper images with fewer artifacts. In HD WLE, optical zooming can 
be done by positioning the optical lens at the tip of the endoscope very close to the mucosal surface to 
control focal distance. With a closer distance, subtle changes in lesions can be examined.

In contrast to HD WLE, ME can examine changes in the mucosal microstructure and microvasculature by 
providing 150-fold magnification while maintaining image display resolution. As a result, more surface 
details, including pit patterns and vascular details, can be assessed. At times, ME also allows histological 
diagnosis of a lesion by endoscopic visualization. The use of a distal transparent cap attachment can 
facilitate magnification as it helps control and stabilize the short distance from the optical lens to the 
mucosa[20].

Narrow band imaging
Narrow band imaging (NBI) is an endoscopic optical image enhancement technology developed by 
Olympus Medical Systems, which works through optical filters and the principle of light penetration. With a 
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Figure 1. White light, narrow band imaging, and magnification endoscopy of colorectal polyps. Hyperplastic polyp NICE 1, JNET Type 1, 
MS I on (A) WLE, (B) NBI, and (C) Magnification NBI. Adenomatous polyp NICE 2, JNET Type 2A, MS II on (D) WLE, (E) NBI, and (F) 
Magnification NBI. Malignant polyp (invasive adenocarcinoma) NICE 3, JNET Type 3, MS IIIb on (G) WLE, (H) NBI, and (I) Magnification 
NBI. NICE: Narrow-band imaging international colorectal endoscopic classification; JNET: Japan NBI expert team; MS: modified Sano; 
WLE: white light endoscopy; NBI: narrow-band imaging.

special optical filter, it uses two narrow-banded wavelengths of 415 ± 15 nm (blue light) and 540 ± 15 nm 
(green light), which are selectively absorbed by mucosal hemoglobin in the blood[21]. This results in the 
marked enhancement of capillaries and micropatterns in the mucosal surface layer[22]. Capillaries in the 
superficial mucosa appear brown when highlighted by the 415 nm wavelength, while deeper veins appear 
blue-green (cyan) when the 540 nm wavelength penetrates. This contrasts with the nonvascular structures 
in the mucosa[10].

NBI markedly improves the visualization of cancerous tissues characterized by abnormal surface and 
vascular patterns [Figure 1]. This is important in GI screening for early colorectal cancers[23]. If combined 
with ME, visualization of lesions is further improved, making the assessment of mucosal microstructure and 
microvasculature clearer and more accurate[2].

Several magnifying NBI observation classification systems for colorectal tumors have been developed. These 
classification systems aid lesion characterization and therapeutic decision-making if endoscopic resection is 
possible. The most used ones are the NBI International Colorectal Endoscopic (NICE) classification 
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proposed in 2009 [Table 2] and the Japan NBI Expert Team (JNET) classification developed in 2014 
[Table 3]. The NICE classification is based on the visualized color, vessels, and surface pattern of the 
colorectal tumor. Given these characteristics, the lesion is classified into three types, which also predict the 
most likely histology of the lesion - hyperplastic, adenoma, or deep submucosal invasive cancer. Different 
international studies have validated its usefulness in diagnosing colorectal polyp histology and predicting 
the depth of carcinoma invasion[24-26].

The JNET classification is based on the visualized vessel and surface pattern of colorectal lesions on NBI. It 
was proposed based on the consensus of selected NBI specialists, establishing a universal NBI magnifying 
endoscopic classification[25]. Like NICE, it is also predictive of the most likely histology of the lesion; 
however, it has further classified adenomatous lesions as possible low-grade intramucosal neoplasia (Type 
2A) and lesions that may be of high grade or with shallow submucosal invasive cancer (Type 2B).

Another NBI-based classification system is the modified Sano’s (MS) classification [Table 4], which defines 
colorectal tumors in accordance with the color, capillary network surrounding the pit pattern and surface 
pattern evaluated under magnification. In the MS classification, a separate sub-classification for sessile 
serrated adenoma/polyp (SSA/P) is included[27-29].

i-Scan
i-Scan is a software-based digital post-processing filter technology developed by Pentax Endoscopy (Tokyo, 
Japan). It produces high-definition images using image enhancement functions, namely contrast 
enhancement (C/E), surface enhancement (S/E), and tone enhancement (T/E)[30]. The C/E mode sharpens 
the views of surface vessels and increases the visibility of depressed lesions with the enhancement of blue 
light and suppression of the red and green light components. The S/E mode increases the light and dark 
color contrast, enhancing the visualization of mucosal surface texture and inspection of subtle mucosal 
changes. The T/E mode increases the contrast between the mucosa and blood vessels by dividing images 
obtained using normal white light into red, green and blue (RGB) components. This is then converted and 
resynthesized into a new image in which vascular patterns or subtle mucosal irregularities are highlighted, 
thereby improving visibility[2,30].

Flexible spectral imaging color enhancement
Flexible spectral imaging color enhancement (FICE), also known as Fujinon intelligent chromoendoscopy, 
is a computed spectral estimation technology developed by Fujifilm (Tokyo, Japan). It is a software-driven 
digital imaging post-processing system that reconstructs dedicated wavelengths resulting in enhanced 
visualization of mucosal structures and microvasculature[31]. Using an image processing algorithm, it can 
produce a composite computerized virtual chromoendoscopy enhanced color image using 60 types of 
spectral images between 400 and 695 nm wavelengths at 5 nm intervals[32].

Blue laser/light imaging
Blue laser imaging (BLI) system is an endoscopy system developed by Fujifilm (Kanagawa, Japan) to address 
FICE’s limitation in producing bright and high-contrast images[9]. BLI is made of the LASEREO endoscope 
system, which utilizes semiconductor laser beams (4-light-emitting diode multi-light system) as the light 
source compared to the conventional xenon light. This technology produces brighter images, improving the 
visibility of both the superficial mucosal and microvascular patterns. The 410 nm narrow-band laser light 
source (410 ± 10 nm) produces a narrow spectrum that enhances the microvasculature to visualize subtle 
changes in the mucosal surface, whereas the 450 nm laser light source provides white light illumination[2,8]. 
In 2016, Fujifilm released blue light imaging (also called BLI) to cater to some areas where LASER 
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Table 2. Narrow-band imaging international colorectal endoscopic classification (NICE)[24]

Characteristic NICE 1 NICE 2 NICE 3

Color Same or lighter than 
background

Brown relative to background Brown to dark brown relative to background; occasional 
white patches

Vessels None or lacy vessels 
along surface

Thick brown vessels surrounding white 
structures or dots

Areas of markedly distorted vessels (varying thickness 
and irregular pattern) or absence of vessel pattern

Surface pattern Dark spots surrounded 
by white

Oval, tubular, or branched white 
structures bordered by brown vessels

Distortion or absence of pattern

Most likely 
pathology

Hyperplastic or sessile 
serrated lesion

Adenoma Submucosal invasive cancer

From Hayashi et al.[24] (Permission for publication obtained).

Table 3. Japan NBI expert team (JNET) classification[25]

Type 1 Type 2A Type 2B Type 3

Vessel 
pattern

Invisible*1 Regular caliber 
Regular distribution (meshed/spiral 
pattern)*2

Variable caliber 
Irregular distribution

Loose vessel areas 
Interruption of thick 
vessels

Surface 
pattern

Regular dark or white 
spots 
Similar to surrounding 
normal mucosa

Regular 
(tubular/branched/papillary)

Irregular or obscure Amorphous areas

Most likely 
histology

Hyperplastic 
polyp/Sessile serrated 
polyp

Low grade intramucosal neoplasia High grade intramucosal 
neoplasia/Shallow submucosal invasive 
cancer*3

Deep submucosal 
invasive cancer

From Sano et al.[25] (Permission for publication obtained). *1If visible, the caliber in the lesion is similar to the surrounding normal mucosa; *2micro-
vessels are often distributed in a punctate pattern and well-ordered reticular or spiral vessels may not be observed in depressed lesions; *3deep 
submucosal invasive cancer may be included

Table 4. Modified Sano’s classification[27]

MS 
classification Predicted histology Description

Category I Hyperplastic (HP) Pale color ± round pits with central brown star-like dots or bland appearance ± 
minute capillaries that may meander across polyp

Category IIo Sessile serrated adenoma/polyp (SSA/P) Pale or light dark color ± open pits ± 3 out of 5: cloud-like surface, 
inconspicuous margins, mucous cap, irregular shape and varicose 
microvascular vessels1

Category II Tubular adenoma with low-grade dysplasia Light dark or dark color ± white linear or oval pits ± linear or oval regular 
capillary network surrounding pits

Category IIIa High-grade dysplasia2/villous or 
tubulovillous adenoma/superficial cancer

Light dark or dark color ± white villous/cerebriform pits ± tortuous/branched 
mildly regular capillary network surrounding pits3

Category IIIb Invasive cancer Dark surroundings with pale central area ± loss of pits and vascular pattern

From Zorron Cheng Tao Pu et al.[27](Permission for publication obtained). 1If no open pits and two serrated features = classified as low confidence 
for SSA/P; if one serrated feature = low confidence for HP; if no features = high confidence for HP; 2high-grade dysplastic SSA/Ps are included in 
this category; 3can have a slight loss of pit pattern and vascularity when leaning towards superficial cancer.

endoscopes have not been approved for use. This variation uses a four-light emitting diode (LED) as a light 
source instead of LASER[33].

BLI provides high-contrast images using three modes: (I) BLI mode for detailed magnified observation; (II) 
BLI bright mode to visualize both surface and vascular patterns even from a distant view; and (III) white 
light mode which uses a 450-nm laser to better enhance the microvasculature[8]. The Hiroshima 
classification system to delineate lesions was developed using BLI [Table 5]. It characterizes colorectal 
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Table 5. Hiroshima classification of colorectal polyps[25]

Type Description

A Microvessel intensity is vague or invisible 
None or isolated lacy vessels may be present coursing across the lesion. Brown or black dots, start or round shaped surrounded by white

B Regular surface pattern is observed by the increased microvessel intensity around the pits and enhanced image. 
Or regular meshed microvessel network pattern is observed

1 Irregular surface pattern is observed by the increased microvessel intensity around the pits and enhanced image. 
Thickness and distribution of vessels are homogeneous

2 A more irregular surface pattern is observed by the increased microvessel intensity around the pits and enhanced image 
Thickness and distribution of vessels are heterogeneous

C

3 Surface pattern is completely unclear 
Thickness and distribution of vessels are heterogeneous 
Avascular areas (AVA) and scattered microvascular fragments are observed

From Sano et al. [25] (Permission for publication obtained).

polyps using both surface and vascular patterns. In this classification, type A describes non-adenomatous 
polyps, type B describes adenomatous polyps, type C1 describes intramucosal carcinoma, and type C3 
describes deep submucosal invasion[8,25].

Linked color imaging
In 2014, Fujifilm developed linked color imaging (LCI) to further enhance the brightness and image 
contrast of the BLI system. In LCI, red-wavelength information was added to the green and blue 
wavelengths for signal processing to produce brighter images comparable to white light imaging[34]. In 
addition, LCI differentiates the red color spectrum by a unique image processing to produce increased color 
contrast making red regions more vivid[8]. This results in increased detection and accurate delineation of 
colorectal lesions.

Autofluorescence imaging
Autofluorescence imaging (AFI) is an endoscopic system developed by Olympus that highlights 
endogenous fluorescence generated from tissues by excitation light[35,36]. In AFI, excitation light 
(370-470 nm) and green light (540-560 nm) are radiated sequentially in autofluorescence mode[3]. This 
wide-field red-flag technology can potentially aid in the detection of dysplasia or early cancer displayed on 
the pseudo-color image as magenta. Nevertheless, due to inconsistent efficacy results in several studies, the 
overall benefit of AFI currently appears limited to the research setting[31].

Confocal laser endomicroscopy and endocytoscopy
Confocal laser endomicroscopy (CLE) and endocytoscopy are advanced endoscopic imaging technologies 
that provide higher-resolution, cellular-level views of gastrointestinal epithelia in real-time[3]. Using these 
technologies, the histological structure of the colonic epithelium can be recognized and evaluated.

In CLE, an image resolution is markedly increased through the confinement of an image to reflected laser 
light that is refocused using a source pinhole[37]. To allow tissue excitation and further achieve a higher 
resolution, topical or intravenous fluorescence dyes can be used to enhance the cellular, subcellular and 
vessel architecture. There are two different CLE systems in clinical endoscopy, namely probe-based CLE 
(pCLE) and endoscope-based CLE (eCLE). In pCLE, a probe is delivered in vivo through the endoscope 
channel, whereas in eCLE, the probe is fitted at the distal end of a conventional endoscope. In the lower GI 
tract, CLE can assist in targeted optical biopsies[38]. Several studies have shown that it has moderate to high 
diagnostic accuracy in the evaluation of colonic polyps and the characterization of colorectal lesions in 
IBD[39,40].
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Endocytoscopy generates ultra-high magnified white light images (520x) through a high-power fixed-focus 
objective lens in real-time[41]. In this technique, cellular structures are visualized in vivo with the application 
of crystal violet and methylene blue, which stains the cell stroma and nucleus[42,43]. As endocytoscopy can 
provide real-time cellular imaging, its utility includes the characterization and depth assessment of 
dysplastic or early cancerous lesions of the GI tract and their histological differentiation.

CLINICAL APPLICATIONS
Adenoma detection rate and polyp detection
High-definition imaging has resulted in an overall improvement in adenoma detection[16]. Studies have 
shown that newer IEE technology can potentially better enhance polyp detection by highlighting lesion 
characteristics. This is particularly significant as early detection can effectively avert colorectal cancer (CRC) 
and its related mortality. However, to date, different IEE techniques have heterogeneous evidence for 
adenoma detection.

Since the development of the first-generation NBI in 2005, consistent results have shown that the overall 
adenoma detection rate (ADR) was just the same when comparing first-generation NBI and WLE[44,45]. 
However, with the second-generation NBI introduced in 2012, where brighter images can be achieved, its 
benefits for adenoma detection were noted to be more evident. A recent meta-analysis of 4,491 individual 
patients in 11 randomized controlled trials (RCT) showed that second-generation NBI has a better ADR 
than WLE (OR: 1.28; 95%CI: 1.05-1.56; P = 0.02)[46]. Overall, including the trials using the first-generation 
NBI, the ADR was 45.2% for NBI vs. 42.3% for HD-WLE (OR for adenoma detection of 1.14 NBI vs. HD-
WLE; 95%CI: 1.01-1.29; P = 0.02).

The utility of i-Scan in improving ADR had contradictory results. A meta-analysis of five RCTs showed no 
significant difference in the ADR of i-Scan T/E mode and WLE (RR: 1.09; 95%CI: 0.97-1.23)[47]. In contrast, 
an RCT comparing the ADR between HD i-Scan S/E mode and SD-WLE revealed that the use of i-Scan had 
a significantly higher ADR (38% vs. 13%; P < 0.0001)[48]. A more recent RCT by Kidambi et al. has also 
shown that i-Scan (S/E + C/E mode) has a higher ADR compared to HD-WLE (47.6% vs. 37.2%; 
P = 0.005)[49].

Given its dark image, Fujifilm’s FICE has shown no benefit in the improvement of overall ADR[50,51]. 
However, with the development of the newer IEE mode BLI that produces a brighter image, its benefit in 
enhancing polyp detection was more definite, although the study results had been inconsistent. A small 
RCT in Singapore has shown that BLI-bright could enhance ADR compared to HD-WLE (46.2% vs. 27.8%; 
P = 0.010)[52]. In addition, a tandem endoscopy study by Shimoda et al. has shown that BLI had a lower 
colon adenoma miss rate compared to HD-WLE (1.6% vs. 10%; P = 0.001)[53]. In contrast, an earlier study 
showed that BLI-bright mode could make polyps more visible but with no improvement in ADR compared 
to WLE (54.8% vs. 52.7%; P = 0.52)[54].

With the enhanced brightness and image contrast, Fujifilm’s LCI has shown more favorable evidence for the 
improvement of ADR. Study results were more consistent when comparing the ADR of LCI over HD-WLE. 
A multicenter, randomized, crossover trial has shown that LCI was associated with higher ADR compared 
to HD-WLE (37% vs. 29%; P = 0.001)[55]. Another study by Paggi et al. demonstrated that LCI improves the 
ADR and decreases the polyp miss rate in the right colon (OR: 0.25; 95%CI: 0.11-0.56)[56]. Their group also 
published an RCT in which LCI is associated with a higher ADR compared to HD-WLE amongst the FIT-
positive population in a CRC-screening program[57]. Finally, a recently published meta-analysis of seven 
RCTs has concluded that LCI could significantly improve ADR compared to WLE (RR: 1.26; 
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95%CI: 1.14-1.39; P < 0.001)[58].

Polyp characterization and histology prediction
Both dye-based and equipment-based IEE have been shown to be promising tools for the characterization of 
colorectal polyps and real-time prediction of their histology[16]. Dye-based CE can highlight the surface 
pattern of polyps, and its histology can be reliably predicted using the Kudo pit pattern classification for 
colonic lesions[19,59]. Non-neoplastic lesions can be classified as Type 1 (round pits) and Type II (stellate 
pits), whereas neoplastic lesions can be classified as Type III (tubular pits), Type IV (gyros-like pits), and 
Type V (irregular pits). A meta-analysis has shown that the Kudo pit pattern classification can predict 
neoplastic vs. non-neoplastic lesions with a sensitivity of 92% and specificity of 94%[60].

The use of equipment-based IEE has also been shown to aid in the characterization of polyps and the 
prediction of histology of benign and neoplastic lesions. In a meta-analysis of 28 studies, NBI has been 
shown to accurately differentiate neoplastic from non-neoplastic lesions with a high sensitivity and negative 
predictive value (NPV) greater than 90%[61]. I-Scan can also predict histology with a sensitivity of 98% and 
specificity of 93%[48]. Similarly, FICE was shown to have a high sensitivity of 93% and NPV of 85% in 
distinguishing neoplastic from non-neoplastic colorectal lesions[62].

The utility of equipment-based IEE may permit a predict-resect-and-discard approach[63]. However, this 
strategy has several drawbacks. For instance, this approach may not be appropriate for larger polyps as 
evidence only recommends its use for diminutive polyps where the risk of advanced neoplasia is very 
low[64,65]. Likewise, identification of serrated lesions despite being classified as JNET type 1 or NICE type 1 
on IEE should not preclude the use of a resect-and-discard strategy as these lesions are associated with a 
higher risk of advanced neoplasia. Given these criticisms, while IEE can aid in the prediction of underlying 
histology, it is important to consider other polyp factors such as size, site, and morphology before 
considering a resect-and-discard approach.

Endocytoscopy is another modality with the potential to predict polyp histology. According to an RCT by 
Mori et al., endocytoscopy is noninferior to standard biopsy for the discrimination of neoplastic lesions, 
which supports using endocytoscopy as a novel alternative to standard biopsy in routine colonoscopy[66]. 
However, the technology is not widely available and has struggled to make inroads in routine clinical 
practice.

Prediction of the depth of invasion
The depth of invasion of a colorectal neoplasm can be predicted by endoscopic visualization of the lesion 
through WLE. In Japan’s national colorectal cancer screening program, submucosal invasion is significantly 
higher for non-polypoid lesions compared to polypoid types (42.4% vs. 21.0%)[67]. However, given the nature 
of these non-polypoid lesions, which are often subtle and flat, their detection remains a challenge.

Few studies have shown the potential of IEE in predicting the depth of invasion of a colorectal neoplasm. 
Dye-based CE with magnification can identify neoplastic invasive patterns and can aid in differentiating 
superficial or intramucosal submucosal cancers from deep submucosal cancers[68,69]. Virtual CE can also 
predict the risk of invasive cancer in suspected lesions[70]. The utility of NBI in predicting the depth of 
invasion was first described by Hirata et al., who noted that vessel thickness and microvascular density 
(meshed capillary vessels, vascular pattern intensity, or brown hue) are predictive of tumor invasion[71]. This 
knowledge has led to the development of the NICE classification system, which is based on visualized 
vessels, color, and surface patterns of colonic polyps [Table 2][24]. It had a high accuracy of 89%, sensitivity of 
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Figure 2. Sessile serrated lesion in the descending colon, NICE 1, JNET Type 1, MS IIo, on (A) WLE, (B) NBI, and (C) Magnification NBI. 
NICE: Narrow-band imaging international colorectal endoscopic classification; JNET: Japan NBI expert team; MS: modified Sano; WLE: 
white light endoscopy; NBI: narrow-band imaging.

Figure 3. WASP criteria: features of sessile serrated lesions (SSL), hyperplastic polyps, and adenomatous polyps. NICE: NBI 
international colorectal endoscopic classification; NBI: narrow band imaging. From IJspeert JE et al.[74] (Permission for publication 
obtained).

98%, and NPV of 95% in diagnosing small colorectal polyps[26]. A more recent classification system 
developed by Japanese endoscopists is the JNET classification[25]. This subdivides NICE type 2 
(adenomatous lesions) into JNET type 2A (low-grade adenomas) and JNET type 2B (high-grade adenomas 
and shallow submucosally invasive cancer). However, its performance is limited in the differentiation of 
superficial and invasive cancer types (e.g., JNET type 2B and 3).
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Endocytoscopy also proves to have a high diagnostic accuracy in predicting deep submucosal invasion 
compared to pit pattern diagnosis (OR: 1.31; 95%CI: 1.00-1.71; I2 = 0%; P = 0.05) based on a meta-
analysis[72]. However, selection bias could be possible because the four studies included in the analysis were 
all retrospective.

Evaluating sessile serrated lesions
Sessile serrated lesions (SSL) are recognized as antecedent lesions of colorectal cancer [Figure 2][73]. With the 
aid of IEE, four SSL-like features can be described, namely, clouded surface, indistinctive border, irregular 
shape, and dark spots inside the crypts. These constitute the ‘Workgroup serrated polypS and Polyposis’ 
(WASP) classification, in which the presence of at least two features is considered sufficient to diagnose an 
SSL [Figure 3]. This classification system was validated with a high pooled accuracy of 84% and a pooled 
NPV of 91% for diminutive neoplastic lesions[74].

Utility in inflammatory bowel disease
Dysplastic lesions in IBD can be difficult to detect because they often have subtle and flat characteristics[75]. 
As these lesions could be precursors to colorectal cancer, it is important to identify them on screening or 
surveillance colonoscopies, especially for high-risk patients with long-term IBD. To increase the yield of 
colorectal dysplasia detection, there are pieces of evidence supporting the use of dye-based pancolonic CE 
with targeted biopsy vs. standard definition WLE with random biopsies[16,76,77]. A study by Kiesslich et al. 
showed that pancolonic CE results in a significant 3.2-fold increase in dysplasia detection[40]. CE is now the 
recommended standard of care in international guidelines[15,78,79].

Equipment-based CE techniques have been shown to have evolving benefits in IBD. Compared to NBI, 
there was initially an insignificant trend in favor of dye-based CE for dysplasia detection in patients with 
long-standing IBD[80]. However, a large randomized prospective study by Bisschops et al. showed that CE 
and NBI do not differ significantly in the detection of colitis-associated neoplasia[81]. Given the easier 
technique, NBI may possibly replace dye-based CE in these settings. The newer IEE technologies, such as i-
Scan, FICE, and BLI, have no available data in the context of colitis surveillance[1].

PRACTICAL RECOMMENDATIONS FOR CLINICAL APPLICATION
For optimal utilization of IEE, an excellent field of view should be ensured. The entire colonic mucosa 
should be well visualized with no residual staining, stool fragments, liquid, gas bubbles or blood. Washing 
the field until clear may take more time than performing the advanced mucosal imaging technique itself. 
Hence, adequate bowel preparation should be advised prior to the colonoscopy. Simethicone may be 
flushed on areas with gas bubbles to lower their surface tension. Loop formation during scope insertion or 
any mucosal trauma should be avoided as far as possible. The use of a transparent cap during colonoscopy 
has been shown to improve polyp detection rates and might also contribute to colonoscope tip stability and 
may also help when combined with the underwater magnification technique[82].

Based on the current level of evidence and the applicability of the different IEE technologies, we suggest that 
the entire colonic lesion and the surrounding mucosa should be initially inspected with WLE, followed by 
careful inspection with IEE. Optical magnification is easy and only takes a short time when assessing colonic 
lesions. Any areas within the lesion that appears to harbor worrisome features (e.g., depression, suspected 
pit, or vascularity distortion) should be further inspected with magnification. High-quality images should be 
taken for documentation. Moreover, assessment of the margins of the lesion is paramount, especially in 
sessile serrated lesions where the inconspicuous margins might be assessed more clearly with IEE. IEE with 
magnification should also be performed before and after polyp resection to delineate lesion borders and to 
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Figure 4. Rectal polyp measuring 3.5 cm, Paris IIa + 1s, NICE 3, JNET Type 2B, MS IIIa, on (A) WLE, (B) TXI, (C) NBI, and (D) 
Magnification NBI.

ensure complete resection. As for surveillance of patients with IBD, WLE could be used during the 
progression of the scope to the cecum and IEE during scope withdrawal.

Given the relative availability of the different advanced technologies, it is recommended that endoscopists 
should make every effort to improve their performances whenever possible. The ESGE has suggested that 
training on advanced endoscopic imaging be a prerequisite for its use in clinical practice for improved 
performance[10].

NEWER DIRECTIONS AND ADVANCEMENTS
Optivista is a new IEE mode introduced by Pentax in 2016. It is based on the use of a mechanical optical 
filter that generates bandwidth-limiting light to improve mucosal surface and vascular characterization of 
colorectal polyps[5]. A recent study demonstrated that Optivista has a similar ADR with the older Pentax IEE 
technology i-Scan (39.4% vs. 38.3%, P = 0.82)[83]. Other data including a direct comparison to WLE remains 
lacking.

In 2020, Olympus introduced Texture and Color Enhancement Imaging (TXI). In TXI, three image factors 
in WLE, namely texture, brightness, and color, are enhanced to clearly define subtle tissue differences 
[Figure 4][84]. The images obtained under normal white light are divided into a texture image and a base 
image. These two images are then recombined to enhance the structure, color tone, and brightness of the 
mucosal surface[5]. A recent study of 27 patients in Japan showed that TXI provided higher visibility than 
WLE for colorectal polyps, including SSLs[85]. Another study of 22 Japanese patients with 68 lesions also 
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showed TXI enables improved visualization of colorectal lesions than WLE and NBI (TXI mode1 80.5, TXI 
mode2 75.6, WLE 70.0, NBI 69.0)[86]. Several studies are currently in progress to determine TXI’s efficacy in 
improving detection rates in colonoscopy.

Red dichromatic imaging (RDI) is a new IEE technology developed by Olympus, which can enhance the 
visibility of deep blood vessels using green (540 nm), amber (600 nm), and red (630 nm) wavelengths[87]. 
Hemoglobin can absorb different wavelengths, leading to the identification of possible bleeding points. RDI 
has three modes, with mode 1 helpful in visualizing bleeding points, whereas modes 2 and 3 in visualizing 
deep and superficial vessels. To date, limited published data on RDI exists. A study by Hirai et al. has shown 
that RDI improves the detection of bleeding points in acute GI bleeding compared to WLE (3.12 ± 0.51 vs. 
2.72 ± 0.50; P < 0.001)[88]. Recent case reports have also shown its efficacy in reducing the risk of bleeding in 
endoscopic submucosal dissection (ESD) and per-oral endoscopic myotomy (POEM)[89,90].

Computer-aided detection (CADe) using artificial intelligence (AI) for colonoscopy is a newer technology 
being developed and studied to improve ADR and allow pathological prediction of detected colorectal 
lesions[91]. A prospective, RCT by Repici et al. has shown that computer-aided detection (CADe) (GI 
Genius, Medtronic) during colonoscopy increases ADR when compared with the control group (53.3% vs. 
44.5%; RR: 1.22, 95%CI: 1.04-1.40; P < 0.01 for non-inferiority and P = 0.02 for superiority)[92]. A recent 
network meta-analysis of 50 RCTs, comprising 34,445 participants, has also shown that ADR was higher 
with CADe by 7.4% (OR: 1.78; 95%CI: 1.44-2.18) and higher with chromoendoscopy by 4.4% (OR: 1.22; 
95%CI: 1.08-1.39) compared with WLE[93].

Aside from polyp identification, AI has also been studied to provide real-time in vivo computer-aided 
diagnoses (CADx) of neoplastic vs. non-neoplastic lesions[94]. In a recent study of 60 colorectal polyps 
assessed with CADx vs. intuitive optical diagnosis, CADx had a diagnostic accuracy of 88.3% using high-
definition WL images and 86.7% using BLI images[95]. In a multicenter library of > 200,000 images from 1572 
polyps, CADx had a sensitivity, specificity, and accuracy of 85%, 79%, and 84%, respectively[96].

CONCLUSION
The advancements in IEE technology have allowed better detection and management of colorectal cancers 
and other pre-malignant conditions. It has played distinctive roles in polyp and histologic characterization 
and prediction of depth of invasion of colorectal cancers, thereby improving clinical outcomes. With the 
advent of tools such as AI and newer IEE modes, detection rates can potentially be further improved and 
promising future directions such as the resect-and-discard strategy of diminutive polyps, prediction of 
histology of difficult polyps such as sessile serrated lesions, and AI-driven prediction of depth of invasion of 
colorectal cancers can come to fruition. Growing research in this area could significantly impact the 
diagnostic and therapeutic process in GI endoscopy.
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