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Abstract
Despite progress in understanding molecular aberrations that contribute to the development and progression of 

ovarian cancer, virtually all patients succumb to drug resistant disease at relapse. Emerging data implicate bioactive 

sphingolipids and regulation of sphingolipid metabolism as components of response to chemotherapy or development 

of resistance. Increases in cytosolic ceramide induce apoptosis in response to therapy with multiple classes of 

chemotherapeutic agents. Aberrations in sphingolipid metabolism that accelerate the catabolism of ceramide or 

that prevent the production and accumulation of ceramide contribute to resistance to standard of care platinum- and 

taxane-based agents. The aim of this review is to highlight current literature and research investigating the influence 

of the sphingolipids and enzymes that comprise the sphingosine-1-phosphate pathway on the progression of ovarian 

cancer. The focus of the review is on the utility of sphingolipid-centric therapeutics as a mechanism to circumvent drug 

resistance in this tumor type.
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INTRODUCTION
Ovarian cancer is the fifth leading cause of cancer-related deaths and the leading cause of death among 
women with gynecological malignancies. Although progress has been made in understanding the biology 
of ovarian cancer, progress in treating patients with this tumor type has been equivocal. Fewer than half 
of patients achieve complete remission[1]. Seventy-five percent of women are diagnosed with advanced, 
metastatic disease mainly due to limitations in early detection and nonspecific symptoms. While a majority 
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of women respond favorably to tumor debulking and frontline chemotherapy with carboplatin and paclitaxel, 
more than half will relapse within 18 months of diagnosis with drug resistant disease[2].

Development of chemotherapy resistant disease is a fundamental obstacle in treating many tumor types and 
is a factor in treatment failure for many patients with advanced, disseminated disease. Due to the differences 
in molecular characteristics and complexities among tumor types, the mechanisms of and pathways involved 
in the emergence of a chemoresistant phenotype may be unique to specific classes of agents and tumor types. 
However, general resistance mechanisms include increased drug efflux, enhanced DNA damage response, 
defective apoptotic signaling, or activation of anti-apoptotic proteins[3]. Acquired resistance may include 
drugs with different mechanisms of action, to which tumors have not yet been exposed. Due to the late stage 
at which most ovarian cancers are diagnosed, a high proportion of tumors are resistant to platinum-based 
therapy at diagnosis. Because few alternative therapies are available, the 5-year survival for these patients 
remains at less than 50%. New treatment strategies are needed.

Manipulation of the sphingolipid-mediated sphingosine-1-phosphate (S1P) pathway may represent such 
a strategy. The S1P pathway, including sphingolipid metabolites, regulates multiple cellular processes 
including proliferation, neovascularization, migration, invasion, and metastasis by controlling cell signal 
transductions networks that contribute to both tumorigenesis and tumor progression[4-6]. Sphingolipids 
also contribute to the structural integrity and fluidity characteristics of cell membranes[6,7]. Few 
therapeutic agents directly target S1P pathway proteins, but this pathway can influence the efficacy of 
several classes of chemotherapeutic agents, including docetaxel, doxorubicin and cyclophosphamide. 
Further, aberrations in sphingolipid metabolism are associated with chemoresistance[8-11]. This review 
details current understanding of how the S1P pathway impacts the development and progression of 
ovarian cancer and addresses the therapeutic implications of targeting this pathway in this tumor type. 
The focus of the review is on one of the core lipids of the S1P pathway, ceramide, and on the role of 
ceramide in inducing tumor cell death.

THE SPHINGOLIPID RHEOSTAT AND CANCER
S1P pathway signaling is regulated primarily by the relative levels of ceramide, sphingosine, and S1P, which 
comprise the three core lipids of the S1P pathway. These lipids play critical roles in cellular processes such as cell 
growth, differentiation, death, and motility[12] [Figure 1]. Mechanisms that regulate the synthesis, catabolism, 
and clearance of these bioactive sphingolipids are tightly coupled to specific stimuli that engage and regulate 
downstream effectors, distinguishing them from lipids that have predominantly structural functions[4,8]. 
Adding another layer of complexity, sphingolipid metabolism constitutes an interconnected network 
comprised of numerous pathways that not only regulate the levels of individual bioactive sphingolipids, but 
also their interconversion and the sphingolipid balance[8]. The concept that the relative levels of the three 
core lipids are tightly regulated to influence cellular processes is referred to as the ceramide-sphingosine-
S1P rheostat model[13]. S1P is mitogenic and promotes growth, motility, and angiogenesis, whereas the S1P 
precursors sphingosine and ceramide mediate anti-proliferative and cytotoxic stress responses including 
apoptosis, cell cycle arrest, lethal autophagy, and growth suppression in vitro and in vivo[6,13-15].

These three core sphingolipid metabolites are rapidly interconverted in response to various stimuli such 
as growth factors, inflammatory stimuli and stress. The resulting changes in relative levels of these lipids, 
in turn, mediate specific responses[6,15]. For example, cellular stress such as chemotherapy, radiation, or 
oxidative stress increases levels of ceramide and sphingosine through the activation of de novo synthesis, 
sphingomyelin hydrolysis, or the salvage pathway which recycles sphingosine to promote apoptosis. 
However, tumor cells often have relatively low levels of ceramide, due to increased activities of ceramide 
metabolizing enzymes such as glucosylceramide synthase (GCS), sphingomyelin synthase (SMS), ceramide 
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kinase (CERK), acid ceramidase (AC), or sphingosine kinase (SPHK). These enzymes convert ceramide to 
glucosylceramide (GlcCer), sphingomyelin, ceramide-1-phosphate (C1P), or S1P sphingolipids, respectively, 
each of which has pro-survival activity[7,11,12]. In normal cells, the tightly regulated balance of synthesis and 
degradation of sphingosine, ceramide and S1P maintains sphingosine and S1P levels ~10-fold lower than the 
level of ceramide[16]. Of note, hydrolysis of less than 3% of ceramide can exponentially increase sphingosine 
and subsequent S1P levels[12]. The interdependent nature of sphingolipid metabolism facilitates rapid 
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Figure 1. Schematic representation of sphingosine-1-phosphate (S1P) pathway. Summary of sphingolipid degradation and synthesis and 
major components of the S1P metabolic pathway implicated in ovarian cancer progression and drug resistance. SMase: sphingomyelinase; 
CDase: ceramidase; SPHK1/2: sphingosine kinase 1/2; SPNS2: Spinster homolog 2; ABC transporter: ATP-binding cassette transporters, 
ABCA1, ABCC1, and ABCG1; S1PR1,2,3,4,5: S1P receptor; SMS: sphingomyelin synthase; GCS: glucosylceramide synthase; GlcCer: 
glucosylceramide; CERT: ceramide transport protein; SPT: serine palmitoyltransferase; CerS: ceramide synthase; SPPase: S1P Phosphatases



interconversion among core lipids, to orchestrate diverse cellular responses[5,15]. The complex regulation of 
the S1P pathway varies with cell type, and the abundance or deficiency of sphingolipids and their respective 
metabolizing enzymes make it challenging to define the mechanisms that regulate initiation or progression 
of a particular tumor type[4,17]. This review focuses on the function and potential utility of the S1P pathway 
as a therapeutic target in ovarian cancer.

SPHINGOLIPID METABOLISM
S1P synthesis is tightly regulated by the metabolism of ceramide. Ceramide sits at the hub of sphingolipid 
metabolism as the neutral, lipid building block for complex sphingolipids and glycosphingolipids, serving as 
a substrate for more than 11 different enzymes[12] [Figure 1]. Ceramide biosynthesis occurs either from the 
breakdown of membrane-resident sphingomyelin by sphingomyelinases or de novo from the condensation 
of serine and palmitoyl-CoA, catalyzed by serine palmitoyltransferase (SPT) to form 3-ketosphinganine. 
Subsequently, it is reduced to sphinganine by 3-ketosphinganine reductase and synthesized into 
dihydroceramide by (dihydro) ceramide synthases. Referred to as ceramide synthases (CERS1-6), these are 
the rate-limiting enzymes for the synthesis of endogenous ceramide, with different fatty acyl-CoA substrate 
preferences. Various chain-length ceramides are ultimately generated as the product of dihydroceramide 
desaturase[12,18]. The de novo formation of ceramide is induced by several stress-factors including tumor necrosis 
factor-α, hypoxia, and chemotherapeutic agents[19]. Ceramide can be converted to sphingomyelin by sphingomyelin 
synthase, glycosylated by glucosylceramide synthase (GCS) to form glucosylceramide, or ceramide can be 
hydrolyzed to form sphingosine by ceramidases (acid, neutral, or alkaline), characterized by the pH required 
for optimal enzymatic activity[7,20]. Ultimately, sphingosine is phosphorylated by sphingosine kinase isozymes 
(SPHK1 or SPHK2) to generate the bioactive lysophospholipid S1P. Through a range of different pathways, S1P 
acts as both an extracellular and intracellular signaling molecule. S1P can be transported out of the cell by 
members of the ABC transporter family and by spinster homolog 2 (Spns2), where it exists in high nanomolar 
concentrations in the blood[21]. Upon exit from the cell, S1P engages with 5 specific G-protein coupled receptors 
(GPCRs), referred to as S1PR1-5, in an autocrine or paracrine manner to induce downstream signal transduction 
cascades that promote proliferation and migration[11,16]. Alternatively, S1P can be rapidly metabolized by S1P 
phosphatases to reform sphingosine or irreversibly cleaved by S1P lyase (SGPL1) to yield phosphoethanolamine 
and hexadecanol, the final step in sphingolipid degradation[7,12,16]. Sustaining the flux between S1P generation and 
degradation is critical in regulating the balance of sphingolipids and plays a key role in pathological processes of 
tumorigenesis[17,22]. Specifically, with respect to ovarian cancer, S1P has been indicated to contribute to metastatic 
potential by stimulating the migration, chemotaxis, and invasion of ovarian cancer cells in several studies[23-26]. 
S1P may inhibit or enhance migration and invasion in a cell-type- and concentration-dependent manner[25].

SPHINGOLIPIDS IN OVARIAN CANCER AND DRUG RESISTANCE
Several literature have implicated dysregulated sphingolipid metabolism as key contributor of the progression 
and resistance of ovarian cancer. Using RNA-seq to compare and identify transcriptional variants between 
matched pairs of carboplatin and paclitaxel-treated vs. control patient-derived xenograft (PDX) models of 
ovarian cancer, Dobbin and colleagues identified S1P signaling in the top three most transcriptionally altered 
pathways following chemotherapy treatment[27]. Sphingolipid metabolizing enzymes directly involved in 
regulating the ceramide-sphingosine-S1P rheostat play a crucial role in cell survival and have been directly 
correlated with drug resistance in ovarian cancer[20,28]. Specifically, increased expressions of ceramide 
transport protein (CERT), SPHK1, SPHK2, and glucosylceramide synthase (GCS) have been associated with 
resistance to paclitaxel, doxorubicin, and N-(4-hydroxylphenyl) retinamide (fenretinide) chemotherapies 
and apoptotic responses[29-34]. 

Because altered levels or activity of bioactive sphingolipids regulate biological processes that influence tumor 
progression, several laboratories have investigated approaches to increase levels of the proapoptotic lipid 
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ceramide and to decrease levels of the antiapoptotic lipid S1P[7,13,15]. With respect to ovarian cancer, the 
higher levels of S1P present in the ascites fluid of ovarian cancer patients skew the ratio of the three core 
lipids, to promote proliferation, angiogenic potential, and dissemination of ovarian tumors[11,35]. Further, 
increased levels of sphingomyelin, glucosylceramide, and galactosylceramide have been postulated to confer 
a multidrug resistant phenotype in ovarian cancer cells[29,36,37]. Consistent with these observations, the 
level of ceramide is lower in ovarian tumor cells than in normal ovarian tissue and is further attenuated 
in paclitaxel-resistant compared to paclitaxel-sensitive ovarian cancer cells, again skewing the ratio of 
ceramide:S1P in favor of the anti-apoptotic lipid S1P in tumor cells[8,38]. These studies suggest that the balance 
between ceramide and S1P levels is critical in mediating drug-sensitivity and survival of tumor cells, which 
underscore targeting the rheostat for the evaluation of rational anticancer regimens.

PUTATIVE MECHANISMS BY WHICH CORE LIPIDS REGULATE APOPTOSIS
While development of such therapies may be challenging because of the rapid interconversion among 
core lipid components, it is well documented that increases in proapoptotic ceramide occur through a 
variety of mechanisms: (1) de novo synthesis, the conversion of serine and palmitoyl-CoA to ceramide via 
multiple steps; (2) hydrolysis of sphingomyelin; (3) inhibition of ceramide hydrolysis; and (4) hydrolysis 
of glucosylceramide (or inhibition of glucosylceramide)[15]. Induction of apoptosis by ceramide also occurs 
through multiple mechanisms: first, apoptosis through mitochondrial activation by forming ceramide 
platforms on cell membranes which subsequently invaginate and fuse with the mitochondria; also known 
as “the kiss of death”, ultimately leading to the induction of apoptosis. Second, ceramide can also form 
channels in mitochondrial membranes, to induce mitochondrial outer membrane permeabilization (MOMP). 
MOMP, in turn, promotes the release of apoptotic proteins such as cytochrome c and low molecular weight 
intermembrane space proteins into the cytoplasm[15].

Radiation-induced ceramide accumulation has been shown to function as a second messenger to activate 
the intrinsic apoptosis pathway and induce senescence through inhibition of telomerase activity, an 
enzyme overexpressed in approximately 90% cancer cells, enabling cells to escape senescence and acquire 
immortality[8,11,15]. Recently, El Kaffas et al.[39] demonstrated that activation of the acid sphingomyelinase-
ceramide pathway is necessary for radiosensitization following ultrasound-stimulated microbubble (USMB) 
exposure. This study is the first to investigate and highlight the role of acid sphingomyelinase-ceramide 
signaling in USMB-mechanotransducive vascular therapy, showing minimal tumor cell death and responses 
in S1P-treated and acid-sphingomyelinase knockout mice compared to wild-type mice implanted with 
fibrosarcoma xenografts. Approaches to increase ceramide levels merit investigation.

Alternatively, approaches to decrease the anti-apoptotic lipid S1P[7,11,13] may also be useful therapeutically. S1P 
blocks apoptosis by stabilizing mitochondrial membrane potential, thus preventing cytochrome c release 
from the mitochondria[40]. Specifically, with respect to ovarian cancer, S1P has been indicated to contribute 
to metastatic potential by stimulating the migration, chemotaxis, and invasion of ovarian cancer cells in 
several studies[23-26]. S1P may inhibit or enhance migration and invasion in a cell-type- and concentration-
dependent manner[25]. The antiapoptotic activity of S1P can be influenced by the level of S1P receptor 
expression, character of preexisting stress fibers, and levels of enzymes involved in extracellular matrix 
(ECM) remodeling and invasion[24,41]. 

Angiogenesis supports invasion and metastasis of solid tumors. S1P induces expression and/or secretion of 
several pro-angiogenic cytokines such as VEGF, IL-8, and IL-6, to promote vascular network formation[42,43]. 
Further the expression of SPHK1 and S1PR1/3 was correlated with microvascular density of ovarian cancer 
tissue, and inhibition of SPHK1 or S1PR1/3 attenuated angiogenic potential and angiogenic factor secretion 
of ovarian cancer cells in vitro and in vivo[42].
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Thus, therapeutic approaches would aim to promote ceramide accumulation and suppress S1P accumulation, 
to inhibit tumor growth and overcome drug resistance.

SPHK1 AND SPHK2
Despite their metabolic redundancy for generating S1P, SPHK1 and SPHK2 possess distinct, cell type-
dependent characteristics, with differences in level of expression and intracellular localization[11,44,45]. SPHK1 
localizes primarily in cytosol and cell membrane, whereas SPHK2 localizes at the nucleus, mitochondria 
and endoplasmic reticulum (ER). These distinct subcellular distributions have been cited as the factors that 
determine the divergent biochemical roles of SPHK1 and SPHK2[45,46]. Of the two, SPHK1 is better characterized 
and high levels of expression of this enzyme have been shown to promote oncogenic transformation, tumor 
growth, and drug resistance in ovarian cancer cells[29,47-49]. The oncogenic signaling mediated by SPHK1 
depends on its activation, translocation to the plasma membrane, and subsequent catalysis of sphingosine 
to S1P[13,50]. SPHK1 activity and expression are augmented by a range of agonists including protein kinase 
activators, tyrosine kinase growth factors, GPCR ligands, small GTPases, proinflammatory cytokines, 
and calcium[11]. Interestingly, p53 activation in response to DNA damage can mediate proteolytic cleavage 
and inactivation of SPHK1, to promote the initiation of apoptosis[51]. mRNA and protein levels of SPHK1 
are higher in primary ovarian tumors compared to their non-cancerous tissues and are associated with 
reduced 5-year survival[52-54]. Elevated SPHK1 expression accelerates the conversion of ceramide to S1P, while 
removing ceramide from the biosynthetic pool via dihydrosphingosine phosphorylation; thus, playing a role 
in regulating cellular ceramide levels[8,53]. In a recent study, Lee et al.[29] examined the antiproliferative effect 
of siRNA targeting SPHK1 combined with the sphingosine analog FTY720 in cultured EOC cell lines, and 
in xenografts and a patient-derived xenograft (PDX) model of clear cell carcinoma (CCC) in mice. SPHK1-
siRNA plus FTY720 inhibited proliferation and invasion, and increased apoptosis in chemotherapy-resistant 
as well as -sensitive models of EOC in vitro. Furthermore, treatment with FTY720 in vivo inhibited tumor 
growth and proliferation (P < 0.05) in cell line-derived xenografts models and a PDX model of CCC[29]. 
These data support the hypothesis that targeting SPHK1 has a therapeutic potential in ovarian cancer. In 
another study, SPHK1 was shown to be highly expressed in the tumor stroma of HGSOC and required for 
the differentiation and tumor promoting function of cancer-associated fibroblasts[55].

Compared to the extensively investigated SPHK1 isoform, the functions and mechanisms of SPHK2 in cancer 
remain largely elusive and the roles of SPHK2 in cancer cells are not fully understood with inconsistencies 
in published data[44,56]. For example, Liu et al.[57] revealed SPHK2 contains a putative BH3 motif, which is 
essential in the activation and initiation of apoptosis by BH3-only proteins, and mutations in the highly 
conserved catalytic domain decreased its ability to induce apoptosis in NIH 3T3 fibroblasts, human embryonic 
kidney (HEK293), PC12 pheochromocytoma, and MCF-7 breast cancer cells. In contrast, work by Gao and 
Smith[58] demonstrated that SPHK2 contributed to proliferation and survival of breast adenocarcinoma cells 
and kidney clear cell carcinoma and adenocarcinoma cells in vitro. Additional studies conducted using 
SPHK2-siRNA indicate that decreased expression of SPHK2 enhanced apoptosis and decreased resistance 
to etoposide and doxorubicin in cell lines derived from lung, breast, and colon tumors[59,60]. Further, the 
specific localization of SPHKs also contributes to the cell function. Nuclear localized SPHK2 and S1P have 
been reported to have anti-proliferative roles; through which SPHK2 forms a repressor complex with histone 
H3 and histone deacetylase 1 and 2 (HDAC1/2) producing S1P that regulates of histone acetylation, as a part 
of epigenetic regulation of gene expression[13,50,61]. Alternatively, nuclear SPHK2-derived S1P has been shown 
to bind hTERT and allosterically mimic protein phosphorylation which limits proteasomal degradation 
and maintains telomere integrity and stabilization, thereby, bypassing replicative senescence and enhancing 
tumor growth[44]. Data for the function of SPHK2 in ovarian cancer cells are limited. Dai et al.[42] showed 
that SPHK1, but not SPHK2, expression was correlated with microvascular density (MVD) of ovarian cancer 
cells and that the angiogenic factor secretion by ovarian cancer cells could be attenuated by SPHK1, but 
not SPHK2 inhibition and subsequently restored upon addition of S1P. Alternatively, few stimuli have been 
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shown to induce SPHK2-mediated S1P formation, such as epidermal growth factor (EGF), PMA, TGFβ, and 
FcεRI triggering[29].

CERAMIDE TRANSPORT AND METABOLISM
De novo ceramide biosynthesis pathway is initiated at the cytosolic leaflet of the endoplasmic reticulum 
(ER), where the enzymes required for ceramide synthesis localize. Ceramide is subsequently transported to 
vesicular or non-vesicular loci[19]. Ceramide either undergoes vesicular trafficking to the cis-Golgi where it 
is converted to glucosylceramide (GlcCer) or gets transported to the trans-Golgi where it is preferentially 
incorporated into sphingomyelin[20,62]. The ceramide transfer protein CERT, encoded by the COL4A3BP 
gene, regulates this non-vesicular transport, to control the conversion of ceramide to sphingomyelin by 
sphingomyelin synthase (SMS)[7,19,63,64]. siRNA-mediated silencing of COL4ABP sensitizes diverse cells 
types, including ovarian, colorectal, and HER2-positive breast cancer cells to doxorubicin, cisplatin, 5-FU, 
and paclitaxel. The mechanism by which this sensitization occurs is thought to be through the induction 
of ceramide-mediated ER stress or lysosome-associated membrane glycoprotein 2 (LAMP2)-dependent 
autophagic flux. Consistent with this hypothesis, drug-resistant SKOV3-TR ovarian cancer and ADR/RES 
breast cancer cells express relatively high levels of CERT, and silencing of COL4ABP sensitizes these cell 
lines to paclitaxel-induced cell death[7,28,32]. Thus, inhibition of ceramide metabolism via targeting CERT-
mediated trafficking of ceramide as well as conversion into glycosphingolipids may provide a novel strategy 
for sensitizing ovarian cancer cells to several classes of chemotherapeutic agents.  

Glucosylceramide synthase (GCS) transfers glucose from UDP-glucose to ceramide to form glucosylceramide, 
the precursor for approximately 90% of mammalian glycosphingolipids (GSLs). Both ceramide and GSLs 
play critical roles in modulating cellular signaling and gene expression, and thus modulating tumorigenesis, 
cancer progression, and the efficacies of cancer therapies[65,66]. Ceramide glycosylation by GCS is the rate-
limiting step in glycosphingolipid synthesis and is essential in regulating the balance between apoptotic 
ceramide and antiapoptotic glucosylceramide[20]. Comparison of GSL expressions using matrix-assisted 
laser desorption/ionization-mass spectroscopy (MALDI-MS) and MALDI-MS/MS showed increased 
and differential glycosylation of GSLs in the epithelial ovarian cancer SKOV3 cell line compared to the 
nontumorigenic epithelial ovarian T29 cell line, with five neutral globo-series GSLs detected only in the 
SKOV3 cell line[66]. Several studies have highlighted the influence of ceramide and glycolipid metabolism 
on function and expression of genes involved in response and metabolism of chemotherapies such as 
cisplatin, doxorubicin, vinblastine, paclitaxel and inflammatory responses to physiological stimuli such as 
tumor necrosis factor-α and cyclooxygenase-2[34,65,67-71]. In mechanistic studies associated with clinical trials, 
overexpression of GCS has been associated with poor prognosis and multidrug resistance in several tumor 
types including ovarian, breast, and colorectal cancers. These observations suggest that high levels of GCS 
expression merits investigation as a biomarker of clinical response or tumor progression[20,70,72,73]. Therefore, 
targeting the metabolism (and glycosylation) of ceramide presents an effective strategy for anticancer drug 
development to potentiate cellular sensitivity to ceramide-induced cell death and chemotherapeutics. These 
studies underscore ceramide’s essential role in mediating signaling cascades in response to cellular stressors 
such as physiological stimuli, chemotherapy, and ionizing radiation and provide rationale to investigate 
therapeutic strategies that target the metabolism (and glycosylation) of ceramide as anticancer treatments to 
potentiate cellular sensitivity to ceramide-induced cell death.

Interestingly, GCS overexpression is sometimes coincidental with overexpression of the multidrug resistance 1 
gene (MDR1) in drug-resistant breast, ovary, cervical and colon cancer cells[69]. MDR1 encodes the drug efflux 
transporter P-glycoprotein (P-gp), which facilitates export of several classes of chemotherapeutic agents including 
Vinca alkaloids, anthracyclines, paclitaxel, actinomycin D, and epipodophyllotoxins[68]. Furthermore, Liu et al.[34] 
demonstrated that suppression of GCS enhanced sensitivity to doxorubicin and restored ceramide-mediated, 
p53-dependent apoptosis in vitro and in vivo in p53 mutant OVCAR-8, NCI/ADR-RES, and A2780ADR 
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ovarian cancer cells. Mechanistically, GCS suppression increased long chain C18- and C24-ceramide species 
which, in turn, modulate pre-mRNA splicing to restore wild-type p53 expression[74]. However, in another 
cell type, inhibition of GCS expression resulted in cytokinetic dysfunction and multinucleation of human 
cervical adenocarcinoma (HeLa) cells, which have been associated with chemoresistance[75]. Consequently, 
while inhibition of GCS, to prevent the metabolism of ceramide to glucosylceramide, may provide an 
effective means to circumvent drug resistance, the effects of inhibiting GCS may be cell type-dependent 
and the utility of this approach needs additional studies before inhibition of GCS is considered a useful 
therapeutic approach.

SPHINGOLIPID-BASED ANTICANCER THERAPEUTICS
As discussed above, sphingolipids play a regulatory role in determining cell fate.  Multiple approaches have 
been investigated for influencing sphingolipid metabolism, to overcome drug resistance in ovarian cancer 
cells. Approaches that have demonstrated efficacy in ovarian cancer models include the use of synthetic 
ceramide analogs, inhibitors of SPHK, neutralization of secreted S1P, and S1PR antagonists. Studies 
addressing each approach are summarized below and tabulated in Table 1.

CERAMIDE ANALOGS
Cell-permeable ceramide analogs or mimetics induce apoptosis in cancer cells[76]. The solubility and 
bioavailability of such analogs has been increased by replacing the long-chain fatty acid of endogenous 
ceramide with short chain fatty acids (C2-, C6-, or C8-), or by encapsulating ceramide in liposomes or 
polymeric nanoparticles[9]. As a single “agent” bioavailable ceramide increases intracellular ceramide levels 
and induces apoptosis. Even greater efficacy has been reported when ceramide analogs or formulations are 
combined with more conventional chemotherapeutic agents[77-79]. As a first example, CAOV3 ovarian cancer 
cells exposed to C6-ceramide and paclitaxel demonstrated high levels of endocytic vesicle formation and 
synergy in inhibiting cell proliferation and migration[37,80]. A second example, the combination of paclitaxel 
with C6-ceramide-encapsulated in poly(ethylene oxide)-modified poly(epsilon-caprolactone) (PEO-PCL) 
nanoparticles restored sensitivity of taxane-resistant SKOV3.TR ovarian cancer cells to paclitaxel[77]. A 
third example, Zhu et al.[81] demonstrated that C6-ceramide and the histone deacetylase inhibitor (HDACI) 
trichostatin A (TSA) were synergistic in models of ovarian and pancreatic cancer in vitro and in vivo. 
The synergistic effects of this combination were attributed to increases in α-tubulin hyperacetylation 
and intracellular ceramide accumulation, the release and activation of protein phosphatase 1 (PP1), and 
subsequent dephosphorylation of AKT[81].

Preclinical data that support the use of ceramide nanoliposomes (CNL) are available for several preclinical 
tumor models of hepatocellular carcinoma, breast, melanoma, and ovarian cancers, and leukemia 
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Table 1. List of anticancer therapies targeting sphingolipid metabolism in ovarian cancer

Name Target/activity Stage of development References
Ceramide analogs

C6-ceramide nanoliposomes Survivin, prosurvival protein
kinase Cζ-dependent AKT and ERK 
signaling cascades, and VEGF production

Phase I [78,81-83,94] 

Inhibitors of S1P metabolism
FTY720 S1PR1 FDA-approved for 

multiple sclerosis
[29,106,137]

Anti-S1P (Sphingomab) 
(Sonepcizumab)

S1P Phase II [43,95,96]

ABC294640 SPHK2, GCS, DES Phase Ib and II [122,129]
SKI-II SPHK1, SPHK2 Preclinical [54,138]
Tamoxifen GCS, AC, P-gp FDA-approved [30]
Safingol SPHK, PKC Phase I [118,139,140]



models[77,82-91]. These studies provided strong support for the FDA phase I first-in-man-dose-escalation study 
in patients with advanced solid tumors (NCT02834611)[82,92,93]. Mechanistically, using SKOV3 ovarian cancer 
cells, Zhang et al.[82] made the novel observation that CNL targets the pseudokinase mixed lineage kinase like 
(MLKL) domain to induce necroptosis in vitro and in vivo. Their findings demonstrated an inverse relationship 
between monomeric MLKL expression and CNL efficacy and suggest that MLKL expression may serve as 
a biomarker of therapeutic efficacy of CNL-based therapy[82]. Also, Kitatani et al.[94] demonstrated that C6-
ceramide liposomes suppressed ovarian cancer cell motility in vitro and inhibited peritoneal metastasis in a 
murine xenograft model. The study by Kitatani et al.[94] also showed that C6-ceramide liposomes suppressed 
ovarian cancer cell motility in vitro and inhibited peritoneal metastasis in a murine xenograft model in vivo. 
Furthermore, metastasis of PI3KC2β knocked-down xenografts were insensitive to treatment with ceramide 
liposomes, suggesting the role of ceramide as a metastasis-suppressor lipid and an involvement of ceramide 
interaction with PI3KC2β in metastasis suppression[94].

S1P-SPECIFIC ANTIBODIES
S1P-specific murine (LT1002, Sphingomab) and humanized (LT1009, Sonepcizumab) monoclonal antibodies 
bind and neutralize S1P, and inhibit the activity of the endogenous enzyme by lowering circulating S1P. 
Although inactive, S1P-Ab complexes bind to the S1P receptor (S1PR) and competitively inhibit the binding 
of the active endogenous enzyme to this receptor, thereby decreasing the S1P pathway function. Anti-S1P 
antibodies reduced the expression and activity of hypoxia-inducible factor 1α (HIF-1α), secretion of the 
angiogenic factors IL-6, IL-8, vascular endothelial growth factor (VEGF), and basic fibroblastic growth 
factor (bFGF) and decreased vessel formation in in vitro and in vivo models of ovarian, breast, prostate and 
lung cancers[95-97]. The antiangiogenic effect of S1P antagonism in preclinical models led to the evaluation of 
Sonepcizumab in a phase II clinical trial in patients with metastatic renal cell carcinoma (mRCC) who were 
refractory to anti-VEGF therapy[98,99]. Forty patients who had undergone a median of three prior regimens 
were enrolled. Patients achieved a median overall survival of 21.7 months was observed, but the study did 
not achieve its primary endpoint of a 2-month progression-free survival. While Sonepcizumab demonstrated 
an encouraging overall survival of > 20 months in a heavily pretreated population of patients with mRCC, 
only 10% (4 patients) demonstrated a partial response, with a median duration of response of 5.9 months. 
Interestingly, biomarker studies showed simultaneous increases in serum S1P and antibody concentrations, 
but no significant association was found between response to therapy and increases in S1P levels.

FTY720
FTY720 (Fingolimod) is an FDA-approved, first-line, immunomodulatory therapy for relapsing multiple 
sclerosis, an inflammatory disorder of the central immune system. FTY720 is a sphingosine analog derived 
from the potent serine palmitoyltransfease (SPT) inhibitor myriocin, and is a prodrug phosphorylated 
primarily by SPHK2 to generate P-FTY720 which is a structural analog of S1P. FTY720 functions as an 
antagonist of S1PR1, thereby sequestering circulating lymphocytes in lymphoid tissues[100-103]. In addition to 
its primary indication as an S1PR ligand and immunosuppressive role, FTY720 has shown antitumor efficacy 
in multiple in vitro and in vivo models. FTY720 impacts multiple cell functions and pathways including 
motility, proliferation, death, angiogenesis, inflammation, and S1P[104-106]. FTY720 has been demonstrated 
as a competitive inhibitor (with sphingosine) of SPHK1 with a Kic of 2 μmol/L[107,108] and destabilizes 
SPHK1 by facilitating SPHK1 degradation via ubiquitination in human pulmonary artery smooth muscle, 
breast cancer, and androgen-independent prostate cancer cells[108,109]. Although somewhat controversial, 
compelling evidence suggests that the anticancer effects of FTY720 are independent of phosphorylation and 
that the “prodrug” FTY720 is an active antitumor agent[104,110]. Due to differences in the expression levels and 
tissue distributions of SPHK2, FTY720-P phosphatases, and the ATP-binding cassette (ABC) transporters 
ABCA1, ABCB1, ABCC1, and ABCG2, as well as the multipass transmembrane family protein SPNS2, the 
concentration of FTY720-P differs between cells and tissues. Therefore, even when the intended use of 
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FTY720 is as an antitumor agent, relatively high levels of FTY720-P are likely to be present in lymphoid 
tissue and to exert a potent immunosuppressive effect[109,111,112]. 

Notably, tumor cells resistant to radiation and conventional chemotherapeutic agents such as cisplatin, 
topotecan, doxorubicin, etoposide, and tamoxifen are sensitive to FTY720 as a single agent and show 
additive or synergistic effects when combined with chemotherapy or radiation. FTY720 has been shown to 
potentiate the effects of these agents in models of ovarian, glioblastoma, prostate, breast, colon, melanoma 
and pancreatic cancers[61,104,113-116]. These preclinical data support the use of FTY720 and this agent is currently 
being evaluated in combination with radiation and temozolomide in a phase I clinical trial in newly diagnosed 
high grade glioma patients (NCT02490930)[117]. FTY720 is toxic to ovarian cancer cells independent of their 
sensitivity to cisplatin, carboplatin, and paclitaxel (Kreitzburg and Yoon, unpublished data) and can initiate 
both autophagic and necrotic death and apoptosis[29,104,106]. In ovarian cancer cell lines, FTY720 inhibited 
SPHK1 activity, angiogenesis, invasion, and proliferation. Furthermore, administration of FTY720 to mice 
bearing cell line xenograft and PDX models of ovarian cancer inhibited tumor growth[29].

SPHK INHIBITORS
Because S1P contributes to cancer progression and drug resistance, the SPHK enzymes that generate S1P are 
also potentially useful targets for cancer therapy. Safingol (L-threo-dihydrosphingosine), a synthetic isomer 
of sphinganine, is the first molecule designed to inhibit SPHK1/2 to be evaluated in clinical trial. Safingol 
functions as a competitive inhibitor of SPHK1/2 and an inhibitor of ceramide kinase to increase ceramide 
levels. This compound also appears to inhibit protein kinase C, by an unknown mechanism[118,119]. In vitro 
data demonstrate that combinations of safingol with agents such as doxorubicin, cisplatin, or mitomycin C are 
synergistic in models of ovarian, colon, breast, cervical, and head and neck squamous cell cancer models. These 
combinations increase apoptosis and lethal autophagy induced by these conventional drugs as single agents. 
Based on in vitro data, safingol was combined with cisplatin for treatment of patients with advanced solid 
tumors in trial NCT0084812. Although safingol possesses limited activity as a single-agent in vivo, it potentiates 
the efficacy of cisplatin with little or no increase in toxicity and is being further evaluated in a phase I clinical 
trial in combination with fenretinide in patients with relapsed malignancies (NCT01553071)[118]. 

The SPHK1 isozyme has been extensively characterized and its diverse functions in tumor progression 
documented, while SPHK2 has not been as well characterized and its primary physiological functions 
are controversial[44,45,57,120,121]. Despite incomplete characterization of function and mechanism, in vitro and 
preclinical in vivo data document that the SPHK2-specific inhibitor ABC294640 has been shown to inhibit 
proliferation of tumor cells or tumors more effectively or similarly than agents that target SPHK1 in several 
tumor models, including ovarian[122], multiple myeloma[123], lung[124], kidney[58], breast[58,125], prostate[126], 
and pancreatic cancers[127]. Mechanistically, siRNA-targeted knockdown of SPHK2 expression inhibits 
ERK-mediated proliferation, invasion, and migration greater than knockdown of SPHK1 in kidney and 
breast tumor models[122]. In models of chemoresistant breast and ovarian cancer, ABC29460 decreases cell 
survival in a dose-dependent manner. Further, ABC29460 suppressed pancreatic and lung tumor growth. 
The proposed mechanisms for this inhibition in cell survival are inhibition of telomerase stability in lung 
tumor models and suppression of Myc and ribonucleotide-diphosphate reductase subunit M2 (RRM2) 
expression in pancreatic cancer cell lines[122,125,127,128]. Guan et al.[124] demonstrated in lung cancer cells that 
PDPMP-mediated inhibition or knockdown of GCS potentiated ABC294640-induced antitumor activity, 
increased intracellular levels of ceramide, and increased apoptosis, whereas forced overexpression of GCS 
abrogated ABC294640 cytotoxicity against lung cancer cells. Clinically, a recently completed phase I trial 
ABC294640 for solid tumor patients reported acute biphasic reductions in plasma levels of S1P over 24-hour 
increments; however, this effect was independent of dose administered[129]. ABC294640 is currently being 
evaluated in several other clinical trials, including a phase II trial as second-line monotherapy for patients 
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with advanced hepatocellular carcinoma (NCT02939807), a phase IIa study for treatment of patients with 
advanced cholangiocarcinoma (NCT03377179), and a phase Ib/II safety and efficacy study as a single agent 
in patients with refractory/relapsed multiple myeloma (NCT02757326).

TAMOXIFEN AS AN INHIBITOR OF SPHINGOLIPID METABOLISM AND MODULATOR OF DRUG 

RESISTANCE
Tamoxifen is a standard of care drug for treatment of breast cancer, and functions as a selective estrogen 
receptor modulator (SERM) to competitively inhibit estradiol-estrogen receptor (ER) interaction[130]. 
Independent of ER status, tamoxifen has oncolytic activity thought to be mediated by multiple mechanisms 
including inhibition of sphingolipid metabolism and inhibition of the activity of the drug efflux transporter 
P-glycoprotein (P-gp)[71,131,132]. Previous literature indicated that tamoxifen enhanced the therapeutic efficacy 
of a wide range of agents such as paclitaxel, cisplatin, vincristine, and fenretinide in drug-resistant cancer 
models of colon, prostate, ovarian cancer, and neuroblastoma[30,69,131,133,134]. The antiproliferative effect 
of tamoxifen has been proposed to depend on inhibition of acid ceramidase and GCS activity, and the 
resulting increase in ceramide levels[131,132]. Devalapally et al.[30] examined the in vitro and in vivo efficacy of 
encapsulated tamoxifen and paclitaxel using PEO-PCL nanoparticles in paclitaxel-resistant SKOV3. TR and 
wildtype SKOV3 ovarian cancer cells. As would be predicted, in tumor cells in vitro or tumor models in vivo, 
this formulation increased the efficiency of drug delivery, and intracellular drug retention, and increased 
intracellular ceramide levels and induction of apoptosis[30]. The data demonstrated that the combination 
of tamoxifen and paclitaxel decreased tumor volume and weight, induced apoptosis, and decreased GCS 
expression compared to control tumors. Additionally, our lab observed that the combination of tamoxifen 
and FTY720 inhibits proliferation of both ERα-positive and ERα-negative drug-resistant cell lines and 
an ERα-positive PDX model of ovarian cancer (Kreitzburg and Yoon, unpublished data). The multiple 
mechanisms of action of tamoxifen and its relatively high therapeutic index provide a strong rationale 
for combining tamoxifen with FTY720, as a strategy for treating ovarian tumors and circumventing drug 
resistance[30,131,135,136]. We suggest that therapeutics that promote ceramide accumulation by any of several 
pathways have broad translational potential.

CONCLUDING REMARKS
As reviewed herein, sphingolipids, enzymes that comprise the S1P pathway, and sphingolipid metabolism 
have strong influence on the pathogenesis and drug-resistance in ovarian cancer. In summary, the 
generation and accumulation of ceramide and sphingosine is induced in response to various cellular 
stresses including chemotherapy, radiation, and/or oxidative stress to mediate cell death, senescence, 
and/or cell cycle arrest. Conversely, the metabolic conversion of ceramide to S1P, sphingomyelin, or 
glucosylceramide is mitogenic and inhibits antiapoptotic pathways, thereby promoting the proliferation 
and drug resistance of cancer cells. Because the sphingolipid metabolic pathway is implicated in multiple 
biological processes that are recognized to be essential for the development, progression, and drug-
resistance of ovarian cancer, therapeutic modulation of sphingolipid metabolism may provide effective 
antitumor therapies for ovarian cancer[13,15].
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