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Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with a poor prognosis 
and high recurrence rate. Liver cancer stem cells (LCSCs), a small subset of HCC cells, have the capacity for self-
renewal and the property of treatment resistance, suggesting that LCSCs are key factors in causing poor prognosis 
for HCC patients. In addition, LCSCs interact with immune cells to participate in the formation of an 
immunosuppressive microenvironment and escape the immune surveillance in HCC, especially lymphocytes. At 
present, immunotherapies for HCC are mainly based on reactivating the lymphocyte system, including immune 
checkpoint inhibitors, multifunctional antibodies, and adoptive cell therapy. Therefore, blocking the interactions 
between lymphocytes and LCSCs in combination with immunotherapy may be a promising therapeutic strategy. 
This review summarizes the interaction mechanisms of lymphocytes and LCSCs and the current exploration of 
combination therapy in HCC.
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INTRODUCTION
HCC is the most common type of primary liver cancer and a leading cause of cancer-related death 
worldwide[1]. HCC has a poor prognosis, and its 5-year overall survival (OS) rate is less than 20%, making it 
the second most lethal tumor after pancreatic cancer[2]. Early-stage HCC patients can largely improve 5-year 
OS rates through liver transplantation or radical surgery[3]. However, only 15% of HCC patients benefit from 
it, and most patients are diagnosed at an advanced stage[4]. Acquired drug resistance and tumor recurrence 
after treatment are the key factors leading to the poor prognosis of advanced HCC patients[5,6].

Cancer stem cells (CSCs) are a small subset of cancer cells with stem cell properties that play a major role in 
tumor growth, metastasis, recurrence, and resistance to therapy[7]. Liver cancer stem cells (LCSCs) often 
express biomarkers such as CD44, CD47, CD24, EpCAM, and CD133[8]. Targeting LCSCs therapy based on 
their specific biomarkers may be an effective strategy to eliminate tumor recurrence at the source. LCSCs 
are involved in the formation of an immunosuppressive microenvironment, altering or impairing the 
natural function of immune cells, thereby evading immune surveillance[9-13]. Mobilizing or reactivating the 
immune system can effectively eliminate cancer. Immunotherapy, especially the strategy for activating the 
immune activity of lymphocytes, is currently a promising tumor treatment[14]. Immune checkpoint 
inhibitors (ICIs), multifunctional antibodies and adoptive cell therapy are increasingly used for 
immunotherapy in the lymphocyte system, but the high drug resistance and relapse rate are still unsolved 
problems[15]. Combining immunotherapy and LCSCs targeted therapy may better solve the current problem. 
This review briefly summarizes the research on the mutual regulatory mechanism of lymphocytes and 
LCSCs and some explorations of combination therapy in HCC.

THE INTERACTIONS BETWEEN LYMPHOCYTES AND LCSCS
Lymphocytes, the main population targeted by immunotherapy, play an important role in the development 
and progression of HCC. LCSCs, although only a small fraction of HCC cells, possess the ability of self-
renewal and tumor formation and are a key factor leading to poor prognosis[16]. This section describes the 
progress of research on the interactions of lymphocytes with LCSCs and non-LCSCs [Table 1 and Figure 1].

CD8+ cytotoxic T lymphocytes
CD8+ T cells are important lymphocytes in the tumor-adaptive immune response. CD8+ T cells are modified 
into antigen-specific cytotoxic T lymphocytes (CTLs) via the T-cell receptor (TCR), which recognizes the 
major histocompatibility complex I (MHCI) on the antigen-presenting cells[17]. On the one hand, CTLs 
directly cause cell destruction by releasing cytotoxic substances such as granzyme, perforin and interferon 
γ (IFN-γ). On the other hand, FasL+ CTLs bind to Fas receptors on tumor cells and trigger the caspase 
signaling pathway, which induces tumor cell apoptosis[18]. Recently, researchers have found that cytotoxic 
substances such as granzyme and perforin are not directly released around target cells. They are assembled 
with various proteins, including thrombospondin-1 (TSP-1), into supramolecular attack particles (SMAPs) 
that attach to the target cell membrane surface. SMAPs can prolong the cytocidal activity of CTLs. The 
glycoprotein coat TSP-1 of SMAPs is crucial to their ability to destroy cells. By interacting with the N-
terminus of macrophage signal regulatory protein-α (SIRPα) on immune cells, CD47 on tumor cells 
prevents macrophages from phagocytosing them. TPS-1 can bind to the CD47 on tumor cells, which 
weakens the inhibitory effect of like macrophages and increases the long-lasting lethal power of SMAPs[19,20]. 
Generally, CTLs are the most important members for killing HCC cells. However, not all HCC cells are 
sensitive to the cytotoxicity of CD8+ T cells. By upregulating PVRL1, HCC stabilizes the cancer cell surface 
poliovirus receptor, which interacts with T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and 
simultaneously suppresses the antitumor immune response. The combination of PVRL1/TIGIT inhibitors 
with anti-PD1 effectively inhibits the development of HCC[21]. Moreover, in the immune microenvironment 
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Table 1. Interaction between lymphocytes and liver cancer stem cells

LCSCs Molecule(s) Activity of Lymphocytes References

SOX2+ LCSCs PD-L1↑ TILs↓ [35,36]

CK19+ LCSCs 
SALL4+ LCSCs

PD-L1↑ TILs↓ [109]

CD133+ LCSCs Galectin-3↑ CD8+ T cells↓ [134]

CD44+ LCSCs Histone macroH2A1↓ Tregs↑ [10]

CD44+ LCSCs TGF-β-miR-34a-CCL22↑ Tregs↑ [60,61]

GEP+ LCSCs MICA↑ NK↓ [12]

EpCAM+ LCSC CEACAM1↑ NK↓ [11]

CD133+ LCSCs 
SOX2+ LCSCs

HMBOX1↑ NK↑ [69]

CD44+ LCSC ceRNA CD44 3' UTR↑ NK↑ [70]

LCSCs: Liver cancer stem cells; PD-L1: programmed cell death ligand-1; TILs: tumor-infiltrating lymphocytes; CK19: cytokeratin 19; SALL4: Sal-like 
protein 4; Tregs: regulatory T cells; GEP: granulin-epithelin precursor; MICA: MHC class I-related chain A; NK: Natural killer; CEACAM1: 
carcinoembryonic antigen-associated cell adhesion molecule 1.

Figure 1. Liver cancer stem cells interact with lymphocytes.

of HCC, CD8+ T cells express high levels of immune checkpoint proteins, such as programmed cell death-1 
(PD-1) and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which implies that these T cells enter a 
state of exhaustion with decreased antitumor activity[22].
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Single-cell RNA-sequencing studies have revealed that the infiltrating T cells are characterized by an 
enrichment of regulatory T cells (Tregs) and exhausted CD8+ T-cell clones. This landscape exemplifies an 
immunosuppressive microenvironment. 37% of exhausted CD8+ T-cell clones shared TCR β chain with 
other CD8+ T-cell clusters, suggesting that exhausted CD8+ T cells were likely derived from other CD8+ T 
cells in HCC microenvironment[23,24]. Subsequently, Wang et al. identified a T-cell exhaustion mechanism in 
which thymocyte selection-associated high mobility group box protein (TOX) in T cells promotes its own 
entry into a state of functional failure by stimulating the PD-1 endocytic cycle[25]. The latest study revealed 
that HCC patients with enrichment of severely exhausted CD8+ T cells (TEX) had a lower survival rate, 
while those with a predominance of CD103+ tissue-resident memory cells (TRM) had a higher survival rate. 
Dynamic changes in TEX and TRM affect the prognosis of HCC patients[26]. Therefore, reactivation of 
exhausted T-cell activity is important for treatment of HCC. Using antibodies to block immune 
checkpoints, including PD-1, CTLA-4, Lag-3, TIGIT and Tim-3, can reverse the function of exhausted T 
cells and restore the antitumor activity of tumor-infiltrating T cells[27,28]. Removing the inhibitory effect of 
immune microenvironment suppressor cells may also be a strategy to reshape the antitumor activity of T 
cells. Hypoxia-inducible factor-1α (HIF-1α) induces the expression of triggering receptor-1 expressed on 
myeloid cells-1 (TREM-1) in tumor-associated macrophages (TAMs), which reverses the activity of 
dysfunctional CD8+ T cells and reduces resistance to programmed cell death ligand-1 (PD-L1) blockade[29]. 
Icaritin, an adjuvant, also inhibits myeloid-derived suppressor cells (MDSCs) to improve HCC therapeutic 
efficacy[30].

CSCs are one of the important factors contributing to immunosuppression. Reduction of MHC-I 
expression on CSCs suppresses CTL-mediated tumor killing[31]. Meanwhile, LCSCs recruit M2-type 
macrophages by activating Yes-associated protein to evade immune clearance[32]. Compared to non-LCSCs, 
LCSCs express more PD-L1 and show stronger immunosuppressive effects. In addition to generating 
negative regulatory signals to PD-1+ effector T cells, PD-L1 derived from tumor cells also releases signals 
into themselves that enhance the expression of stemness-associated genes like cytokeratin 19 (CK19) and 
regulate LCSCs number and function[33,34]. Several studies have revealed that microenvironmental regulatory 
factors can upregulate PD-L1 expression on LCSCs to support their growth. On the one hand, the 
transcription factor Sox2 enhances PD-L1 transcriptional activity by binding to the PD-L1 promoter region 
to promote LCSCs survival[35,36]. On the other hand, the IL-6/JAK1 signaling pathway drives PD-L1 Y112 
phosphorylation, which recruits the endoplasmic reticulum-associated N-glycosyltransferase STT3A to 
catalyze PD-L1 glycosylation and maintain PD-L1 stability[37]. Upregulation of PD-L1 expression impairs 
IFN-γ secretion from CTLs by a negative feedback regulatory mechanism, enhancing the ability of LCSCs to 
protect against T-cell killing and immune evasion[38]. Therefore, targeting the above sites, such as Sox2 
combined with anti-PD-L1, may contribute to antitumor therapy.

Dendritic cells (DCs) pulsed with total HCC RNA induce effector T lymphocyte activation. Activated 
effector T lymphocytes enhance the ability to kill tumors and secrete more IFN-γ[39,40]. LCSCs can inhibit 
cytotoxic T-cell activity by inhibiting the recruitment of DCs and promoting tumor cell growth. 
EpCAM+/AFP+ LCSCs have the ability to self-renew and differentiate, regulated by Wnt/β-catenin signaling, 
and are capable of triggering highly aggressive HCC in NOD/SCID mice[41]. β-catenin activation in HCC 
cells impairs the recruitment of CD103+ DCs by downregulating the expression of the chemokine CCL5. 
This defective DC recruitment impairs the function of liver antigen-specific CD8+ T cells, promoting 
immune evasion and suppressing anti-PD-L1 efficacy[42]. In addition, the EpCAM+/AFP+ LCSCs secreted 
AFP into the tumor microenvironment, which significantly inhibited DCs differentiation. These immature 
DCs reduce inflammatory mediator levels and fail to induce a robust T-cell proliferative response[43]. 
Researchers indirectly enhanced the killing effect of CTLs on LCSCs by modifying DCs. Annexin A3 
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(ANXA3) may regulate the activity of LCSCs through the HIF-1α/Notch pathway. More functionally active 
T cells were induced by ANXA3-transfected DCs, and these effector T cells can specifically recognize and 
kill CD133+ LCSCs both in vitro and in vivo[44]. These studies suggested the multiple interactions between 
the LCSCs and the tumor immune microenvironment.

Regulatory T Cells (Tregs)
Tregs are a subpopulation of CD4+ T cells that are characterized by the expression of CD25 and Foxp3[45,46]. 
Tregs are the main subpopulations that maintain the body’s immune tolerance to tumors. Tregs derived 
from peripheral blood and tumor-infiltrating lymphocytes (TILs) of patients with HCC are increasing and 
are more inhibited than those derived from normal subjects[47,48]. An elevated level of Tregs in the tumor 
microenvironment is associated with poor prognosis[49]. Mechanistically, intratumor Tregs upregulate the 
expression of glucocorticoid-induced tumor necrosis factor receptors (GITRs) and inhibit tumor-specific T-
cell activity[50,51]. In addition, Tregs stimulate their own differentiation and promote HCC immune escape 
via the upregulation of lnc-EGFR[52].

Tregs interact with other immune cells via cell contact and cytokine secretion to inhibit their activity and 
thus participate in the formation of the immunosuppressive tumor microenvironment. For example, Tregs 
mediate the loss of the human leukocyte antigen-DR isotype (HLA-DR) on type 2 conventional dendritic 
cells (cDC2s), which impairs DC antigen presentation and thus suppresses antitumor immunity in HCC[53]. 
Indeed, HCC cells can also secrete cytokines or nutrients to maintain and enhance the immunosuppression 
of Tregs. Mechanistically, HCC-derived growth differentiation factor 15 (GDF15), by recognizing the 
receptor CD48, promotes the production of induced Tregs and enhances the suppressive function of natural 
Tregs, which induces tumor immunosuppression[54]. In addition, tumors phagocytose nutrients that are 
necessary for effector T cells to exert cytotoxicity while flushing out lactate to provide nutrients to Tregs. 
Tregs use the lactate transporter protein monocarboxylate transporter 1 (MCT1) to convert lactate into 
energy and maintain a state of tumor immune tolerance[55].

Both CSCs and Tregs are responsible for tumor immune tolerance and tumor recurrence. The preoperative 
peripheral blood quantity of EpCAM+ circulating tumor cells and Tregs is positively correlated with the risk 
of postoperative recurrence and metastasis in HCC patients[56]. The interactions between CSCs and Tregs 
further lead to tumor immunosuppression. Enriched LGR5+ LCSCs are associated with poor prognosis in 
HCC, whereas Tregs increased LGR5 of CSCs expression in gastric cancer through TGF-β1[57-59]. Tregs and 
LGR5+ CSCs may also be associated in HCC. For instance, CD44+ LCSCs regulate TGF-β1 expression, and 
TGF-β1 has been shown to recruit Tregs through the miR-34a-CCL22 axis, which promotes immune 
escape[60,61]. In addition, downregulation of histone macroH2A1 in HCC cells increases LCSCs and 
CD4+/CD25+/FoxP3+ Tregs proliferation[10].

Natural killer cells
Natural killer (NK) cells, a subpopulation of normal human peripheral blood lymphocytes, can 
nonspecifically kill tumor cells. This natural killing activity requires neither specific antigen nor MHC 
restriction. NK cells express a large number of immune recognition receptors, including kill-activated 
receptors (KARs) and inhibitory receptors, to recognize ligands on normal cells and tumor cells, thus 
maintaining a balance between the immune response and immune tolerance of NK cells. Correspondingly, 
abnormal NK cell receptors could promote HCC development[62].

Natural killer group 2D (NKG2D) is a typical KAR on the surface of NK cells, and its expression plays a 
significant role in the innate immunity of NK cells against the malignant transformation of HCC[63]. 
Increased expression of the soluble form of MHC class I-related chain A (MICA) in patients with advanced 
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HCC correlates with downregulation of NKG2D expression and impairs NK-cell function[64]. However, 
recent studies have found that activation of the NKG2D system perhaps contributes to a strong 
inflammatory response that exacerbates liver tissue damage. Cadoux et al. discovered for the first time that 
NKG2D ligands MICA/B and ULBP1/2 are linked with poor prognosis and early tumor recurrence in 
HCC[65]. In addition, β-catenin signaling downregulates the expression of murine NKG2D ligands Rae-1 
through binding to TCF4, which attenuates the invasive capacity of HCC[65]. The above findings suggest that 
targeting NK cells to treat HCC is a double-edged sword. We should pay attention to indicators of liver 
injury and inflammatory response in the treatment.

Cytokine-induced killer (CIK) cells recognize and kill LCSCs via the NKG2D system. Intravenous infusion 
of CIK cells can significantly retard tumor growth[66]. However, LCSCs can attenuate the toxicity of NK cells 
by synthesizing inhibitory proteins, such as granulin-epithelin precursor (GEP). GEP is a hallmark of the 
LCSCs and functionally increases the stemness of CSCs by regulating the expression of stemness-associated 
signaling molecules, including β-catenin, Oct4, Nanog and Sox2[67]. In addition, GEP confers the ability of 
HCC cells to evade NK cytotoxicity by regulating MICA expression[12]. Another study found that 
EpCAMHigh LCSCs also resisted NK-cell-mediated cytotoxicity by upregulating carcinoembryonic antigen-
associated cell adhesion molecule 1 (CEACAM1)[11]. Restoring the sensitivity of LCSCs to NK-cell-mediated 
cytotoxicity can enhance innate immune suppression in HCC. Blocking the expression of GEP and 
CEACAM1 restores the natural killing activity of NK cells[11,12,68]. In addition, LCSCs overexpressing 
HMBOX1 suppress their self-renewal and improve NK-cell-mediated antitumor immune responses[69]. 
Recently, researchers also found that LCSCs enhance their own sensitivity to NK cells by upregulating the 
competitive endogenous RNA (ceRNA) CD44 3' UTR[70].

Tertiary lymphoid structures
Tertiary lymphoid structures (TLSs) are classically defined as lymphoid aggregates formed in 
nonhematopoietic organs. TLSs do not exist under physiological conditions but are formed during chronic 
and non-resolving inflammatory processes such as infection, transplant rejection, autoimmune diseases and 
cancer[71]. TLSs are characterized by CD20+ B surrounded by CD3+ T-cell structures, similar to the lymphoid 
follicles in secondary lymphoid organs. In addition, TLSs contain components such as distinct DC 
populations, dense stromal networks, and specialized vascular systems provided by peripheral node 
addressin (PNAd)-positive high endothelial venules (HEVs) that are thought to mediate lymphocyte 
recruitment[72].

TLSs are involved in antigen-specific antitumor immune responses mainly by promoting the induction of 
effector T cells, central memory T cells and plasma cells. In almost all solid tumors, TLSs are associated with 
a reduction in recurrence risk and an improvement in survival rate[73]. However, the role of TLSs in the 
pathogenesis of HCC is controversial, as they may promote the growth of tumor progenitor cells. Finkin 
et al. found that patients with abundant TLSs after tumor excision were more likely to have late recurrence 
and death. In the IKKβ(EE)Hep model, NF-κB activation induces TLSs formation[74]. This model provided the 
first functional information for TLSs, showing that they support LCSCs growth by activating and secreting 
protumor cytokines such as lymphotoxins[74]. This is also the first study to reveal the relationship between 
TLSs and LCSCs. On the other hand, Calderaro et al. analyzed data from patients with HCC undergoing 
surgical resection from the pathological and public database Liver Cancer Institute (LCI) and found that 
intratumor TLSs were associated with a lower risk of early recurrence[75]. Intratumor TLSs may reflect the 
presence of sustained and effective antitumor immunity. Wu et al. first revealed the heterogeneity of TLS 
function across spatial locations[76]. The cellular scoring and indicator gene expression levels of CD8+ central 
memory T cells and CD8+ effector memory T cells correlate with the distance from TLSs to tumor cells, 
indicating that TLSs function is influenced by tumor cells to some extent. These comparative data show that 
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TLSs and LCSCs interact and constantly reach a new balance, thus promoting the occurrence and 
development of HCC to reach a new balance. PD-L1/PD-1 checkpoint inhibitors can enhance the tumor-
killing effect of T cells. Further understanding of the mechanism of action of TLSs on LCSCs may improve 
the effectiveness of immunotherapy in HCC.

COMBINATION OF IMMUNOTHERAPY AND TARGETING LCSCS
Multifunctional antibody against LCSCs
Several LCSCs-specific markers have been directly discovered, such as CD24, CD44, CD47, CD90, CD133, 
EpCAM and ANXA-3. Antibody-mediated targeted therapeutic strategies can effectively target CSC 
subpopulations and inhibit tumor growth or recurrence [Table 2]. CD44 is a surface feature of CSCs, and its 
expression level correlates with poor patient prognosis. Anti-CD44 antibody effectively eliminates CSCs 
from tumors and prevents pancreatic cancer tumor formation and tumor recurrence after radiotherapy[77]. 
Under low glucose conditions, CD133 antibody induces apoptosis of LCSCs by inhibiting autophagy and 
enhancing chemotherapeutic efficacy[78]. IgG1-iS18, an antibody targeting the 37 kDa/67 kDa laminin 
receptor (LRP/LR), impairs the adhesion and invasive ability of HCC cells and is a strategy for the treatment 
of metastatic HCC[79]. Antibody 1B50-1, which targets calcium channel α2δ1, reduces the self-renewal and 
tumorigenic capacity of LCSCs by affecting intracellular calcium signaling, thereby inhibiting HCC 
recurrence[80]. An anti-ANXA-3 antibody blocks the MKK4/JNK pathway in CD133+ LCSCs, attenuating cell 
self-renewal and inhibiting tumor growth[81]. When combined with sorafenib, the antitumor effect of anti-
ANXA-3 antibodies was better. In addition, ANXA-3 can stratify resistance to sorafenib, which is beneficial 
to help HCC patients develop better treatment plans on their own[82]. Anti-Dickkopf-1 (DKK-1) inhibits 
angiogenesis and cancer cell proliferation in vitro and suppresses LCSCs growth in vivo[83].

The interaction between CD47 and SIRPα inhibits the phagocytosis of CSCs by macrophages[84,85]. By 
blocking the binding of CD47 and SIRPα, an anti-CD47 antibody restores the phagocytic activity of 
macrophages and inhibits HCC tumor growth[86]. Lo et al. found that treatment with chemotherapeutic 
drugs or sorafenib in combination with an anti-CD47 antibody reduced the occurrence of drug resistance 
and enhanced the antitumor effect of the drugs[87,88]. Recently, Du et al. invented a bispecific antibody 
targeting the HCC-associated antigen Glypican-3 (GPC3) and CD47, which could inhibit HCC 
development by enhancing the innate immune response involving macrophages and neutrophils[89]. In 
addition, blockade of CD47 can increase microenvironmental CD8+ cytotoxic T-cell infiltration as well as 
enhance tumor cell sensitivity to radiation therapy[90]. Anti-CD47 antibodies combined with T-cell immune 
checkpoint inhibitors may be an effective therapeutic strategy to achieve stronger antitumor benefits by 
exploiting the respective advantages.

Antibody-drug couples use specific monoclonal antibodies to transport cytotoxic agents, which can 
selectively kill tumor cells[91]. He et al. designed a CD24-targeting monoclonal antibody, G7 mAb, and used 
its combination drug to target LCSCs[92]. G7 mAb-conjugated doxorubicin (Dox) was shown to effectively 
inhibit tumor growth with less systemic toxicity in tumor-bearing nude mice[93]. G7 mAb can also form an 
immunoconjugate targeting CD24+ HCC with NO donor HL-12. This immunoconjugate not only induces 
apoptosis of LCSCs via antibody-dependent cytotoxicity, but also inhibits tumor growth by upregulating 
intratumor NO levels, exerting effective antitumor effects in vivo and in vitro[94].

Antibodies can also be conjugated to biomaterials such as nanoparticles or thermosensitive liposomes to 
achieve local-specific imaging and elimination of tumors. Anti-CD44 antibody-conjugated liposomal 
nanoparticles can specifically deliver the chemotherapeutic drug Dox or killer genes to target cells and 
induce their apoptosis. Such nanoparticles can also be combined with bioluminescence imaging to quantify 
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Table 2. Combination therapy of immunotherapy and stem cells targeting

Therapeutic setting Target cell Molecule(s) References

Anti-CD133 antibody LCSCs CD133 [78]

Antibody(1B50-1) LCSCs α2δ1 [80]

Anti-ANXA-3 antibody LCSCs ANXA-3 [81]

Anti-Dickkopf-1 antibody LCSCs Dickkopf-1 [83]

Antibody(G7mAb) LCSCs CD24 [92]

G7mAb-conjugated doxorubicin LCSCs CD24 [93]

G7mAb-conjugated HL-12 LCSCs CD24 [94]

Anti-CD44 antibody-targeted liposomal nanoparticles LCSCs CD44 [95]

Anti-CD44mAb-conjugated Nd3+-doped UCNPs LCSCs CD44 [96]

CD90@TMs LCSCs CD90 [97,98]

CD90@17-AAG LCSCs CD90 [98]

Anti-EpCAM-UPGs-MX LCSCs EpCAM [99]

Anti-GEPmAb (A23) LCSCs GEP [11]

Anti-CEACAM1 antibody LCSCs GEP [68]

Bispecific antibody(cG7-MICA) NK/LCSCs NKG2D/CD24 [102]

CAR-T LCSCs CD44 [125]

CAR-T LCSCs CD133 [127]

EpCAM/CD3 bispecific antibody T-cell/LCSCs CD3/EpCAM [136]

UCNPs: Upconversion nanoparticles; TMs: thermosensitive magnetoliposomes; CAR-T: chimeric antigen receptor-specific T.

the effect of in vivo killer gene therapy, thereby dynamically monitoring the tumor treatment process[95]. 
Nd3+-doped core-shell upconversion nanoparticles (Nd-CSUCNPs) are a novel multimodal imaging 
reporter combining magnetic resonance (MR) and real-time upconversion luminescence (UCL). Anti-
CD44 antibody conjugated with Nd-CSUCNP can deliver the imaging tool to HCC and improve the 
accuracy of preoperative multimodal imaging-guided HCC surgical resection[96]. Thermosensitive 
magnetoliposomes (TMs) loaded with anti-CD90 antibodies (CD90@TMs), which are transported to LCSCs 
in a targeted manner, effectively kill CD90+ LCSCs by magnetic hyperthermia therapy[97]. Heat shock protein 
(HSP) inhibitors encapsulated in thermosensitive magnetic liposomes make LCSCs continuously sensitive 
to hyperthermia and then induce apoptosis[98]. Han et al. invented a nanoparticle micelle combining 
mitoxantrone (MX) and anti-EpCAM antibody, which can synergistically treat EpCAM+ HCC cells with 
drugs and optical targeting. Nanoparticle micelles can be used for MR/UCL dual-mode imaging, which can 
help to diagnose HCC more accurately[99]. A variety of specific antibodies have been shown to have good 
antitumor effects in preclinical trials, but their application in the clinical setting needs to be further 
explored. On this basis, the application of first-line drugs for the clinical treatment of HCC, such as 
sorafenib combined with LCSCs-specific antibodies, may be a promising therapeutic strategy. The 
combination therapy now seems to be effective, at least in preclinical trials, greatly inhibiting tumor growth 
and recurrence.

Lymphocytes targeting LCSCs
NK cells
NK cells protect the organism that produces them from damage while recognizing and killing harmful 
foreign substances such as viruses and tumors by expressing a series of activated and inhibitory 
receptors[100]. A preclinical trial found that the NK-cell-activated receptor ligands MICA/MICB, Fas, and 
DR5 were upregulated in CSCs, suggesting that NK cells preferentially target cancer stem cells[101]. 
Enhancing the strength and targeting of NK cells to kill CSCs may be an effective therapeutic strategy. 
Several studies have shown that NK cells can effectively kill LCSCs through antibody-dependent cell-
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mediated cytotoxicity (ADCC). As previously described, both GEP and CEACAM1 are upregulated in 
LCSCs[67]. Anti-GEP monoclonal antibody A23 or anti-CEACAM1 antibody can enhance the killing activity 
of NK cells and promote tumor regression[11,68]. cG7-MICA, a bispecific antibody against CD24 and 
NKG2D, recruits NK cells to the periphery of CSCs and promotes the release of IFN-γ and TNF-α from NK 
cells. In addition, cG7-MICA can enhance the inhibitory effect of sorafenib on tumors, suggesting that 
cG7-MICA can be used as an adjuvant therapy to alleviate the problem of sorafenib resistance[102].

The infusion of autologous or allogeneic NK cells after activation, culture and expansion in vitro can break 
the immune tolerance of the body and enhance the antitumor immune response[103]. The 
NKG2D-CD3ζ-DAP10 receptor, which is made up of the NK cell activation component NKG2D and two 
important signaling molecules, DAP10 and CD3ζ, can improve NK cell killing capabilities against cancer 
cells[104]. Kamiya et al. used the K562-mb15-41BBL cell line to stimulate NK-cell activation and expansion in 
vitro and then reinfused NK cells into mice. Activated NK cells significantly inhibited the growth of HCC, 
and the chimeric NKG2D-CD3ζ-DAP10 receptor could greatly enhance the antitumor activity of NK 
cells[105]. NK cells can be used as CAR carriers to form CSC-specific CAR-NK cells. CAR-NK cells retain the 
ability of NK cells to target abnormal cells through natural recognition receptors and the ability of CAR to 
target antigens, effectively killing cells and inhibiting cell escape[106]. In addition, NK cells do not need to be 
matched with patients. Therefore, they can be derived from a variety of sources, including pluripotent stem 
cells (PSCs) and peripheral blood mononuclear cells (PBMCs), which makes CAR-NK-cell therapy safer 
and more affordable[106,107]. Relying on CSCs antigen markers to modify CAR is beneficial to NK cells to 
inhibit the immune escape of CSCs.

T cells
Immune checkpoint

ICI therapy is an important approach in current immunotherapy, especially targeting the PD-1/PD-L1 
pathways. Calderaro et al. found that PD-L1 was highly expressed in a subset of LCSCs[108]. Nishida et al. 
also demonstrated that PD-L1 expression in HCC was positively correlated with the presence of tumor stem 
cell markers, including cytokeratin 19 (CK19) and Sal-like protein 4 (SALL4)[34]. In addition, the 
accumulation of PD-L1 on CSCs promotes the occurrence of immune evasion[109]. Considering that CSCs 
induce CTLs apoptosis by binding to PD-1, immune checkpoint inhibitors may indirectly inhibit the 
growth of CSCs. Atezolizumab selectively targets PD-L1, restoring T cells’ ability to destroy tumor cells. The 
Food and Drug Administration (FAD) authorized the combination immunotherapy of atezolizumab and 
bevacizumab for the treatment of hepatocellular cancer in 2020. The combined drug group outperformed 
the sorafenib group in terms of OS rates, progression-free survival, and objective response rate in the Phase 
III clinical study (NCT03434379)[110]. Single ICI immunotherapy improved OS rates but did not reach 
prespecified statistical significance[111,112]. Combining ICIs with other treatments may be more effective and 
have more durable responses[113]. Antiangiogenic drugs can improve the microenvironment of solid tumors 
and enhance the sensitivity of ICI therapy to tumors, thereby improving their efficacy. Several clinical trials 
(NCT03434379, NCT03006926, NCT03794440, NCT03463876, etc.) have shown that anti-PD-1/PD-L1 
inhibitors combined with antiangiogenic drugs have good tumor effects and prolong the survival of HCC 
patients[114-118].

An increased frequency of mutations in genes involved in the phosphatidyl inositol 3-kinase (PI3K)-Akt 
pathway was also observed in HCC with high PD-L1 expression[34]. In glioma, loss of phosphatase and 
tensin homolog (PTEN) function and activation of the PI3K pathway lead to upregulation of PD-L1 in 
tumor cells[119]. Correspondingly, downregulation of PTEN and upregulation of PI3KCA in HCC increased 
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the expression of LCSC markers, such as CK19 and CD133[120]. Therefore, activation of the PI3K-Akt 
pathway may lead to PD-L1 overexpression and increased tumor self-renewal. Activation of the PI3K-Akt 
pathway is one of the hallmarks of CSCs, and PI3K inhibitors preferentially reduce the levels of CSCs in 
tumors[121]. Therefore, the combined targeting of PI3K-Akt pathway inhibitors and anti-PD-1/PD-L1 
inhibitors may help suppress HCC growth, especially the LCSCs. This treatment may be a promising 
strategy for relapse-prone HCC patients, which needs to be confirmed by further preclinical studies.

Chimeric antigen receptor-specific T (CAR-T) cells

CAR-T cells express specific antigen receptors and recognize tumor-associated antigens (TAAs), thereby 
targeting tumor areas to perform cytotoxic T-cell functions. CAR-T-cell therapies targeting CD19 are 
efficient against hematological tumors, so the FDA has approved two related CAR-T products[122,123]. 
However, for solid tumors, CAR-T-cell efficacy still faces many challenges, such as virus-related risks and 
appropriate targets[124]. CSCs have the ability of self-renewal and differentiation and play an important role 
in tumor initiation and recurrence. Therefore, an increasing number of studies use markers of CSCs as 
TAAs recognized by CAR-T cells. After CAR-T cells targeting CD44+ LCSCs were infused into CD44+ HCC 
xenograft mice, they accumulated in CD44+ tumor regions and effectively inhibited tumor growth[125]. 
NKG2D-BBz CAR-T cells can effectively eliminate NKG2DL+ HCC cells in vitro and in vivo[126]. A phase I 
clinical trial involving CD133+ advanced metastatic malignancies (NCT02541370) revealed that CD133-
specific CAR-T cells (CART-133) were a feasible and effective therapeutic strategy to stabilize the disease 
and prolong patient survival[127].

Tumor heterogeneity is a key factor affecting the efficacy of CAR-T therapy. Biopsy specimens from two 
patients revealed that CART-133 effectively eliminated CD133+ tumor cells, but some CD133- tumor cells 
that were not eliminated may cause tumor progression and recurrence[127]. This suggests that it is essential to 
inhibit the rapid growth of antigen-negative cells while improving the efficacy of CAR-T targeting antigen-
positive cells. A phase I clinical trial (NCT02414269) revealed that the efficacy of CAR-T cells in the 
treatment of malignant pleural disease can be enhanced with the help of anti-PD-1 drug[128]. PD-1 blockade 
works through endogenous tumor-specific T cells, potentially eliminating antigen-negative cells left behind 
after CAR-T-cell treatment. The combination of the two complementary advantages is a promising 
antitumor strategy[129].

The limited expansion of CAR-T cells in vivo is also one of the important factors affecting their antitumor 
efficacy[130,131]. Coexpression of cytokines enhances the ability of CAR-T cells to persist against tumors in 
vivo. Batra et al. found that coexpression of IL15 and IL21 enhanced the antitumor strength and persistence 
of GP3-CAR T cells. Two clinical trials (NCT02932956 and NCT02905188) are exploring the therapeutic 
efficacy of this modified GP3-CAR T biohybrid in HCC patients[131]. Another clinical trial (NCT03198546) 
showed that CAR-T cells with upregulated IL-7 and CCL19 expression increased patient survival[132,133]. 
Hence, modification of CSC-specific CAR-T cells by coexpressing cytokines may enhance their efficacies for 
patients with HCC.

Other approaches

Therapeutic modalities such as small molecule inhibitors, bispecific antibodies, and cancer vaccines can also 
enhance the immune response of cytotoxic T cells to tumors. LDN193189, a small molecule compound, 
relieves the inhibition of Galectin-3 on the proliferation activity of CD8+ T cells by downregulating the 
expression of Galectin-3 in CSCs, thereby inhibiting the immune evasion ability of LCSCs[134]. Bispecific 
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antibodies can simultaneously bind to two different specific antigens, such as TAAs of tumor cells and CD3 
of T cells, which facilitates the accumulation of cytotoxic T cells at the tumor site. Anti-GPC3/CD3 
bispecific antibodies rely on GPC3 to recruit cytotoxic T cells to the HCC xenograft region and effectively 
inhibit tumor growth[135]. Zhang et al. developed a bispecific antibody targeting EpCAM and CD3-specific 
antigens that induced strong cytotoxicity and inhibited the expression of stemness-associated genes in 
LCSCs. An EpCAM/CD3 bispecific antibody significantly inhibited the growth of HCC xenografts 
in vivo[136]. Catumaxomab, a trifunctional receptor targeting EpCAM and CD3, enhances antitumor activity 
by recruiting T cells and Fcγ receptor (FcγR)-positive helper cells to tumor sites. Several clinical studies have 
shown that catumaxomab can effectively remove tumor cells and prevent ascites accumulation in patients 
with ovarian cancer and gastric cancer[137,138]. Furthermore, compared with paracentesis alone, catumaxomab 
can prolong the survival time and maintain a better quality of life in malignant patients[139]. Catumaxomab 
has a good effect in the prevention and treatment of malignant patients, but its efficacy in solid tumors, 
including HCC, needs to be further explored in clinical trials.

Pulsed DCs carrying specific antigens can induce the activation of naive T lymphocytes to generate tumor 
cell antigen-specific CTLs, thereby inhibiting tumor growth in a targeted manner[140]. DCs loaded with 
CD133+ LCSCs RNA stimulate specific CTL proliferation and IFN-γ secretion in vivo and effectively inhibit 
tumor growth[141]. Choi et al. demonstrated that using EpCAM peptides as loaders for DC vaccines can 
effectively promote specific CTL activation and kill EpCAM+ LCSCs[142]. In addition to using proteins and 
nucleic acids as loaders for DC vaccines, fusion of LCSCs and DCs is also a potential strategy that may 
effectively activate multiple antigen-specific CILs for the immune response. Pang et al. revealed that CD90+

HepG2/DC fusion cells upregulate T lymphocyte-mediated specific antitumor immune responses both in 
vivo and ex vivo[143]. Attenuated listeria monocytogenes (LM) is also a promising tumor vaccine vector that 
induces the activation and proliferation of antigen-specific T lymphocytes in vivo by upregulating the 
MHC-I and MHC-II pathways. Yang et al. prepared a novel cancer vaccine using LM replication-deficient 
LMΔdalΔdat strain-loaded CD24, which can reduce the number of Tregs in tumor TILs and enhance the 
activity of specific CD8+ T cells[144]. This vaccine effectively inhibits tumor growth by altering the balance 
between cells in the immunosuppressive tumor microenvironment and is a promising therapeutic tool. 
Cancer vaccines targeting CSCs produce antigen-specific CTLs in vivo and potently kill LCSCs. This 
therapeutic strategy may be effective in killing tumors and inhibiting tumor recurrence, and its efficacy 
needs to be further explored in the clinic.

PROSPECTIVE AND CONCLUSION
In the process of antitumor immunity, lymphocytes play an important role in eliminating tumors. CSCs are 
currently recognized as a key factor in tumor heterogeneity and tumor recurrence. During HCC 
progression, LCSCs participate in the formation of an immunosuppressive microenvironment by damaging 
or altering lymphocyte phenotypes, thereby evading immune surveillance. Understanding the interaction 
mechanisms between lymphocytes and LCSCs and reversing the immunosuppressive microenvironment 
could help develop more effective treatment strategies.

With the development of technologies such as single-cell sequencing and lineage tracing, we have the 
opportunity to further explore the origin of lymphocytes and CSCs in the tumor immune 
microenvironment and their interaction mechanisms in tumorigenesis and development. The current 
strategy of immunotherapy is mainly to reshape the immune function of lymphocytes, including immune 
checkpoint inhibitor therapy, CAR-T therapy, multifunctional antibodies, etc. Although immunotherapy 
has a good effect, high drug resistance and recurrence rates are still problems that need to be solved. 
Combination immunotherapy and other treatments, such as antiangiogenic drugs, can effectively improve 
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the treatment effect and prolong the survival time of patients. Immunotherapy targeting LCSCs is also a 
promising treatment modality. This strategy not only kills tumors but also inhibits tumor recurrence in a 
targeted manner. At present, some preclinical experiments have shown that immunotherapy targeting 
LCSCs has good antitumor effects and low toxicity. For instance, anti-ANXA3 antibodies can block CD133+ 
LCSCs’ capacity for self-renewal and slow the growth of tumors, with no overtly harmful side effects 
reported[80,81]. Furthermore, anti-CD24 mAb-conjugated Dox can considerably increase the longevity of 
Huh7 tumor-bearing mice. Analysis of the in vitro activity of tumor cell proliferation revealed that anti-
CD24 mAb-conjugated Dox specifically suppressed the proliferation of Huh7 and HT29 cells under 
comparable conditions, but had no appreciable inhibitory effect on HCT116 cells[93]. Of course, more 
research is needed to confirm its combined treatment effect and its safety. The combined treatment is 
predicted to benefit liver cancer patients when the mechanism is further explored. In addition, there is great 
heterogeneity between tumors in different patients, and even within the same patient, there is great 
heterogeneity within tumors. Therefore, which subgroup of LCSCs to target is also one of the issues to be 
considered. Moreover, antiangiogenic drugs, epigenetic modifiers, oncolytic virotherapy and phage therapy 
have been shown to have better tumor-killing effects in combination with immune checkpoint 
inhibitors[145-148]. Therefore, integrating the advantages of the above combination therapy into therapy 
targeting LCSCs may be a therapeutic direction worth exploring in HCC.
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