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Abstract
Transition metal diborides (TMB2s) are renowned for their high melting point and exceptional wear, corrosion, and 
erosion resistance, making them promising candidate materials for applications in extreme environments. As such, 
there is an urgent need for reliable material design tools for TMB2s to improve efficiency in developing new 
materials. To address this need, we have developed a domain-specific medium-scale interatomic potential model 
for TMB2s that encompasses elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and B. The prediction errors in energy and 
force of our model are 8.8 meV/atom and 387 meV/Å, respectively. Furthermore, the model demonstrates high 
accuracy in predicting various material properties, including lattice parameters, elastic constants, equations of 
states, and melting points, as well as grain boundary segregations. By providing a reliable and efficient tool for 
material design, this model will play a crucial role in the development of new, high-performance TMB2s for use in 
extreme environments.

Keywords: Machine learning potential, atomic-scale simulation, transition metal diborides, melting point, grain 
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INTRODUCTION
Ultra-high temperature ceramics (UHTCs), encompassing transition metal diborides (TMB2s), carbides, 
and nitrides, are renowned for their extraordinary properties such as high melting points, excellent wear, 
oxidation, and corrosion resistance, and exceptional strength[1-3]. These characteristics make UHTCs ideal 
candidate materials for applications in extreme environments, particularly within the aerospace, defense, 
and energy industries. Over the years, significant efforts have been made to improve the properties of 
UHTCs. These efforts include developing composite materials, employing micro-alloying techniques, and 
refining sintering methods[3-9]. Recently, the high entropy design paradigm has expanded from alloys to 
ceramics, leading to the development of numerous high-entropy UHTCs[10-16]. Regardless of whether micro-
alloying is used in conventional UHTCs or heavy alloying in high-entropy UHTCs, there is an urgent need 
to understand: how elements are distributed within these materials; how alloying elements influence the 
microstructures and properties of the materials; and how we can tailor the alloying strategy based on the 
desired properties of the materials.

Atomic-scale simulations are powerful approaches in solving these problems, but they have long faced a 
dilemma between efficiency and accuracy. Density functional theory (DFT)-based methods offer high 
accuracy but suffer from extremely low efficiency. In contrast, molecular dynamics (MD) simulations based 
on classical interatomic potentials provide high efficiency but often with questionable accuracy. Fortunately, 
advancements in artificial intelligence have led to the development of machine learning potentials, which 
use machine learning models to learn from DFT datasets and generate interatomic potentials. Machine 
learning potentials bridge the gap between DFT and MD, ensuring that atomic-scale simulations maintain 
both high accuracy and high efficiency[17-22]. Several approaches have been employed to develop these 
potentials, including kernel ridge regression, Gaussian process regression, and artificial neural networks. 
These machine learning potentials have demonstrated significant promise in various applications in 
UHTCs, such as predicting material properties[23,24], investigating micro-mechanisms in materials[25,26], and 
aiding in materials design[5]. This breakthrough in materials research allows for more accurate and efficient 
atomic-scale simulations, opening new possibilities in the field.

In recent years, there has been significant progress in the development of machine learning potentials, 
particularly with the emergence of large models covering the entire periodic table. Numerous such models 
have been published in the past couple of years[20-22,27], demonstrating the potential of machine learning in 
understanding and predicting material properties. However, the training datasets for these models primarily 
consist of structures near equilibrium states, raising questions about their applicability to a diverse range of 
research fields. Furthermore, while these models are built on intricate neural network architectures to 
encompass the entire periodic table, their efficiency is greatly reduced, which limits their applicability for 
large-scale atomic simulations. To address these limitations, it is crucial to develop medium-scale models 
tailored for specific material types, which can serve as fundamental tools for materials simulation and 
design. In our study, we have focused on creating a medium-scale machine learning potential model for 
TMB2s, encompassing elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and B. This model not only boasts 
accuracy comparable to DFT-based methods but also enables highly efficient atomic-scale simulations in 
diborides, including both conventional and high-entropy TMB2s (HE-TMB2s). We believe that this machine 
learning potential model holds great promise for the future of TMB2s, paving the way for customizing and 
designing these materials to meet specific application requirements.
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METHODS
Dataset collection
In this study, we adopt the machine learning potential model proposed by Zhang et al., which is known as 
the Deep Potential (DP) model[17]. The DP model represents the potential energy surface using deep neural 
networks and consists of two sets of neural networks. The first set maps local atomic environments to 
symmetry-preserving descriptors, while the second set maps these descriptors to atomic energies[17]. We use 
the revised version of the DP model, called the DPA-1 model[28], which incorporates an element embedding 
mapping to improve generalizability and suitability for developing medium-scale interatomic potentials.

Training a machine learning potential requires a high-accuracy DFT dataset, containing atomic 
configurations and their corresponding energies, forces, and virial stresses. We collect the DFT dataset using 
the DP GENerator (DP-GEN) software, which generates the dataset under a concurrent learning scheme[29]. 
This scheme enriches the candidate DFT dataset iteratively in three steps: training, exploration, and labeling 
[Figure 1A]. Prior to the DP-GEN procedure, an initial dataset must be created. For this purpose, we 
produced 300 structures featuring random compositions and performed single-point first-principles 
calculations to generate the initial dataset. The approach for generating structures is consistent with the 
methodology employed in the second step of DP-GEN. The detailed DP-GEN processes are:

(1) During the training step, we train four DP models with different initialization parameters and activation 
functions based on existing data.

(2) In the exploration step, we explore the configurational space through MD simulations with DP models 
from the training step. We generate 100 diboride supercell structures with random compositions at the 
beginning of each iteration. A supercell with 72 atoms is created for each structure. The axes of the supercell 
are oriented along [420], [030], and [002] directions of TMB2 (The crystal structure of TMB2 is described in 
Supplementary Text 1 and illustrated in Supplementary Figure 1). Then, the metallic elements of the 
supercell are randomly occupied by the candidate elements. For example, the element is randomly 
generated from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W for each metallic site. Both bulk and surface structures 
are explored. For surface structures, the surface plane is randomly chosen from the x (normal to [420] 
direction), y (normal to [030] direction), and z (normal to [002] direction) planes of the supercell. For bulk 
structure sampling, we adopt the isothermal-isobaric (NPT) ensemble, with pressures ranging from 0 to 20 
GPa (with a step of 5 GPa) and temperatures ranging from 300 to 6,000 K (with a step of 300 K). For surface 
structure sampling, we adopt the isothermal-isovolumic (NVT) ensemble, with temperatures ranging from 
300 to 2,100 K.

(3) During the labeling step, we select candidate structures and label them using a DFT-based method. We 
randomly select the candidate structures from the MD trajectories based on “model deviation” (ε), which is 
the maximum standard deviation of forces predicted by the four DP models. We set two criteria for “model 
deviation”: εlow and εhigh. When ε < εlow, all models predict similar values for the configuration, and adding the 
configuration to the dataset may only marginally improve the model. When ε > εhigh, the models have strong 
conflicts on the configuration, and there is a risk that the configuration is non-physical due to the 
inaccuracy of the current DP model. Adding the configuration to the dataset may disrupt the model. 
Therefore, we choose configurations with “model deviation” between εlow and εhigh as candidates. The εhigh is 
set to be 2 eV/Å. The εlow changes based on the exploration temperature (T), which are 0.3 eV/Å (T < 2,000 
K), 0.5 eV/Å (2,000 K < T < 4,000 K), and 0.6 eV/Å (4,000 K < T < 6,000 K). We then label these candidate 
configurations using the Vienna ab initio simulation package (VASP)[30], adding them to the dataset. The 
calculations adopt the projector augmented wave (PAW)[31] approach to describe ion-electron interactions, 
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Figure 1. (A) Illustration of the DFT dataset generation process using a concurrent learning scheme in the DP-GEN software. The lower 
part of the image demonstrates the coverage of the configurational space by the current model, with accurate, candidate, and inaccurate 
regions distinguished by different colors; (B) Comparison of energy predictions between the DP model and DFT calculations; (C) Error 
distribution in predicted energy; (D) Comparison of force predictions between the DP model and DFT calculations; (E) Error distribution 
in predicted force. DFT: Density functional theory; DP-GEN: Deep Potential GENerator; DP: Deep Potential.

and the exchange-correction is described using the Perdew-Burke-Ernzerhof (PBE) generalized gradient 
approximation (GGA)[32]. We set the cutoff energy of the plane wave basis to 900 eV and adopt the 
Monkhorst-Pack[33] k-point mesh with a separation of 0.15 Å-1 in the Brillouin zone. Self-consistent field 
iteration stops when the difference in total energy of consecutive iterations is less than 10-6 eV.

Model training
After collecting the dataset, the DP model was trained using the DeePMD-kit software[34,35], specifically 
employing the DPA-1 model. The architecture of the DP model was established as follows:

(1) The descriptor net maps atomic environments to symmetry-preserving descriptors, utilizing a network 
type set as “se_atten_v2”. The “se_atten_v2” type in DeePMD-kit software designation refers to the DPA-1 
model architecture, as detailed in the reference[28]. The element embedding net consists of a single-layer 
neural network with eight nodes. The descriptor net is composed of three layers of neural networks, each 
containing 25, 50, and 100 nodes, respectively. The projection dimension is set to 16, and the cutoff is set to 
7.0 Å with a smooth function imposed from 6.0 Å. The activation functions used are tanh.

(2) The fitting net maps the descriptors to atomic energies, including three layers of neural networks with 
each having 128 nodes. A ResNet (residual network) architecture is adopted in the fitting net, and the 
activation functions are also tanh.

The model was trained in two steps with the “Adam” optimizer. During the first step, the learning rate, 
which scales the loss that feeds to the optimizer, decayed from 1.0 × 10-3 to 1.0 × 10-8, and the pre-factors of 
energy, force, and virial in the loss function changed from 0.1 to 1, from 100 to 1, and from 0.1 to 1, 
respectively. Subsequently, the model was retrained, inheriting the model parameters from the first training 
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round. In this round, the learning rate decayed from 1.0 × 10-4 to 1.0 × 10-8, and the pre-factors of energy, 
force, and virial in the loss function were set to 10, 1, and 1, respectively, remaining constant. In each 
training round, the total training step amounted to 8 million. For further details regarding the parameters, 
one may refer to ref[34,35] and the open-source software. The DeePMD method has been successfully 
integrated into the open-source MD simulation software LAMMPS[36]. Subsequent simulations were 
performed using LAMMPS with the trained DP model.

RESULTS AND DISCUSSION
The accuracy of the DP model was first examined by comparing its predictions to DFT calculations. 
Figure 1B compares the energy prediction by the DP model and the DFT calculations, while Figure 1C 
presents the distribution of the prediction error in energy values. Similarly, Figure 1D displays the 
comparison between the forces predicted by the DP model and the DFT calculations, and Figure 1E 
highlights the error distribution concerning the prediction error in the force values. The results demonstrate 
a high level of agreement between the DP model and the DFT calculations. The prediction errors in energy 
and force values stand at 8.8 meV/atom and 387 meV/Å, respectively. It is important to note that these 
prediction errors are in line with those observed in numerous other comparable systems, as documented in 
ref[5,23-26]. In the subsequent analysis, the DP model will be utilized to compute fundamental properties, 
predict melting points, and simulate grain boundary segregations. This will demonstrate the model's 
capabilities and effectiveness.

Prediction on fundamental properties
In addition to the comparable predictions of energy and force between the DP model and DFT calculations, 
it is crucial to assess the reliability of the DP model in predicting material properties. Table 1 presents a 
comparison of the lattice parameters (a and c), cohesive energy (E), and elastic constants (C11, C12, C13, C33, 
and C44) of TMB2s (TM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) as predicted by the DP model and the DFT 
calculations, where a good agreement can be observed. Although the model demonstrates high accuracy, it 
inadequately fits certain properties, such as WB2’s C33 depicted in Table 1. Fitting properties of unstable 
materials typically poses a greater challenge. The stability of TMB2s was assessed by examining their phonon 
dispersion curves [Supplementary Figure 2], where imaginary modes were detected for CrB2, MoB2, and 
WB2. The equation of state characterizes the variation of energy with respect to volume changes, which can 
be determined by relaxing the structures at different volumes. Figure 2 displays a comparison of the 
equations of state for TMB2 (TM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) as predicted by the DP model and the 
DFT calculations, all of which exhibit good agreements.

Melting point prediction
The family of TMB2s is well-known for their high melting points, with some exhibiting melting points 
higher than 3,000 °C and being classified as UHTCs[2]. Solid solutions are crucial for tailoring the properties 
of TMB2s, such as removing harmful impurities, enhancing sintering, and improving high-temperature 
strength[4,6,37]. In recent years, the high-entropy concept was introduced to ceramics, leading to the synthesis 
of new high-entropy diborides[11,13]. HE-TMB2s are believed to possess high melting points, high hardness, 
and other properties, making them promising candidate materials for extreme environments. However, the 
melting points of these high-entropy diborides are unknown, and the effects of solid solutions on their 
melting points are unclear.

In this section, the DP model is used to predict the melting points of diborides and to investigate the effects 
of solid solutions on melting points. TMB2s (TM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) were simulated, along 
with high-entropy compounds Zr0.25Hf0.25Nb0.25Ta0.25B2 (HEMB2_4), Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2B2 (HEMB2_Ti), 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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Table 1. Comparison of lattice parameters (a and c), cohesive energy (E), and elastic constants (C 11, C 12, C 13, C 33, and C44) of TMB2 

(TM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) predicted by the DP model and DFT calculations

a 
(Å)

c 
(Å)

E 
(eV/atom)

C11 
(GPa)

C12 
(GPa)

C13 
(GPa)

C33 
(GPa)

C44 
(GPa)

DFT 3.033 3.226 -8.144 650 65 105 445 258TiB2

DP 3.038 3.214 -8.139 650 98 91 426     248

DFT 3.172 3.543 -8.327 563 56 119 434 249ZrB2

DP 3.176 3.541 -8.319 566 86 141 369 261

DFT 3.143 3.487 -8.801 599 69 122 458 264HfB2

DP 3.151 3.469 -8.793 583 83 150 468 283

DFT 2.998 3.026 -8.211 684 119 122 490 227VB2

DP 3.001 3.037 -8.208 628 132 143 407 227

DFT 3.109 3.323 -8.610 603 112 183 439 223NbB2

DP 3.110 3.328 -8.613 560 110 174 447 206

DFT 3.103 3.324 -9.054 605 138 199 455 212TaB2

DP 3.104 3.330 -9.056 601 167 209 442 186

DFT 2.977 2.935 -7.973 592 175 200 352 166CrB2

DP 2.978 2.928 -7.970 668 197 147 345 212

DFT 3.029 3.331 -8.407 595 133 223 398 149MoB2

DP 3.034 3.324 -8.407 584 143 241 323 105

DFT 3.020 3.373 -8.866 619 153 243 414 136WB2

DP 3.007 3.420 -8.861 643 181 267 287 57

TMB2: Transition metal diboride; DP: Deep Potential; DFT: density functional theory.

Figure 2. Comparison of equations of state of TMB2 (TM = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) predicted by the DP model (dash line) with 
the DFT calculations (points). TMB2: Transition metal diboride; DP: Deep Potential; DFT: density functional theory.

V0.2Zr0.2Hf0.2Nb0.2Ta0.2B2 (HEMB2_V), and W0.2Zr0.2Hf0.2Nb0.2Ta0.2B2 (HEMB2_W). The solid-liquid coexistence 
method was employed to simulate the melting points of these compounds. The simulation box was aligned 
along the [010], [001], and [210] directions, with lengths of 8 × 8 × 10 (X × Y × Z) along each direction. The 
solid-liquid interfaces were parallel to the XY plane. The solid, solid-liquid coexistence, and liquid states are 
illustrated in Figure 3A.

During MD simulations, the timestep was set to 1 fs, and the NPT ensemble was adopted with P = 0 Pa and 
pressure control applied independently in each direction. The damping parameters were set to 500 fs for 
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Figure 3. (A) The snapshots of solid, solid-liquid coexistence, and liquid states of HEMB2_Ti during MD simulations; (B) Illustration of 
how the melting point value is determined based on V~T data; (C) Comparison of experimentally measured and calculated melting 
points of TMB2s, as well as the calculated melting points of HE-TMB2s, and the estimated values obtained by averaging the melting 
points of their constituent compounds. The composition of HEMB2_4, HEMB2_Ti, HEMB2_V and HEMB2_W are Zr0.25Hf0.25Nb0.25Ta0.25B 2, 
Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2B 2, V0.2Zr0.2Hf0.2Nb0.2Ta0.2B 2, and W0.2Zr0.2Hf0.2Nb0.2Ta0.2B 2, respectively. Melting point values are listed in 
Supplementary Table 1. MD: Molecular dynamics; HE-TMB2s: high-entropy transition metal diborides.

pressure and 100 fs for temperature. The system was first equilibrated at a solid temperature (Tsolid) close to 
the melting point for 50 ps. Then, half of the system was heated to a high temperature (Tliquid) and melted, 
while the other half remained frozen for 50 ps. This process resulted in a solid-liquid coexistence state. 
Finally, the entire system was set to another temperature (T) and equilibrated for 1 ns. Tsolid and Tliquid were 
fixed for each compound, and the system with a series of T values was analyzed. For different Ts, the final 
state could be solid, solid-liquid coexistent, or liquid [Figure 3A]. The volume (V) vs. T data was collected 
from the simulations and fitted with a sigmoid-like function:

where a, b, c, T0, and V0 are fitting parameters. The linear expansion effect is accounted for by cT + V0, while
the sigmoid function                      represents the volume jump during melting, and T0 is the melting
point. Figure 3B shows the V~T data of HEMB2_Ti and how well the equation fits the data. The midpoint of
the jump is defined as the melting point.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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Figure 3C displays the predicted melting points for all mono-compounds, experimentally measured data for 
TiB2, ZrB2, HfB2, NbB2, and TaB2 by Ruby et al., and estimated melting points for HEMB2s by averaging the 
melting points of their constituent compounds[38]. The results demonstrate that the melting points predicted 
by our DP model closely match experimental measurements, indicating the model’s accuracy. For high-
entropy compounds, their melting points closely align with the average values of their constituent 
compounds. This finding suggests that the mean value is a suitable initial estimate for the melting point of 
HE-TMB2s. The melting points of unstable compounds MoB2 and WB2 are also plotted in Figure 3C, which 
cannot be measured experimentally. With these values for mono-compounds and the mean value approach, 
the melting point of any composition can be estimated, which can be applied in the future for a better 
design of high-entropy diborides.

Grain boundary segregation
Grain boundary engineering through solid solution segregation has emerged as a promising strategy to 
improve the high-temperature strength of diboride and carbide UHTCs. This approach has been validated 
by both experimental evidence[6,37,39-41] and theoretical simulations[25,26], and has proven effective for both 
conventional and high-entropy UHTCs[40,41].

In this section, we demonstrate the capabilities of the DP model in simulating grain boundary segregation 
and its enhancement of grain boundaries. We constructed 14 symmetric tilt grain boundaries, similar to our 
previous work[26]. The construction method is detailed in Supplementary Text 2, Supplementary Figure 3 
and Supplementary Table 2. A grain boundary plane can be defined by two in-plane vectors, which are 
contained in its name. One is the rotation axis of the tilt grain boundary. The other is a combination of the 
other two basis vectors. For example, the 010_21 grain boundary has a rotation axis of [010] and another 
in-plane direction of 2[001]+[210], while the 210_12 grain boundary has a rotation axis of [210] and another 
in-plane direction of [001]+2[010]. For more information of the constructed grain boundaries 
[Supplementary Table 2]. The relaxed atomic structure of each grain boundary in ZrB2 is shown in 
Supplementary Figure 4. Hybrid Monte Carlo/molecular dynamics (MC/MD) simulations were employed 
to examine grain boundary segregations. The simulations were performed under the NPT ensemble with 
P = 0 Pa, T = 2,000 K, and a time step of 1 fs. The damping parameters were set to 500 fs for pressure and 100 
fs for temperature. Any pair of different metallic elements was swapped every five MD steps, with the 
acceptance probability of swapping following the Metropolis criterion: min(1, exp(-ΔE/kBT)), where ΔE is 
the energy change due to swapping and kB is Boltzmann’s constant. The total MC/MD simulation duration 
was 500,000 steps. A virtual tensile simulation was adopted to evaluate grain boundary strength, aligning the 
tensile direction normal to the grain boundary plane. The last snapshot of the MC/MD simulation was used 
to calculate grain boundary strength. The tensile simulations were conducted under the NPT ensemble at 
2,000 K and an in-plane pressure of 0 Pa, with no constraints on stress along the tensile direction. The time 
step and damping parameters were consistent with those used in the segregation simulations, and the strain 
rate was set to 1 × 109 s-1. During tensile simulation, stress variation is approximately 1 GPa in the tensile 
direction. Consequently, when the strength difference is less than 1 GPa, distinguishing which grain 
boundary is stronger becomes inconclusive due to the margin of error.

Initially, we investigated W segregation in ZrB2 grain boundaries and the grain boundary strengthening 
effect it caused. The average W concentration at the metallic sites is established at 5 at%, marginally 
exceeding the experimentally determined W levels in ZrB2 bulk, which range between 2 at% and 4 at%[8]. 
Following MC/MD simulations, W content in the bulk decreases owing to grain boundary segregation, 
aligning the concentration with experimental observations. Figure 4A displays the occupation probability of 
W at each metallic site for the 010_21 and 210_11 grain boundaries. Snapshots were extracted every 1,000 
steps from steps 250,000 to 500,000 for statistical analysis. The occupation probability of a given site was 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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Figure 4. (A) The occupation probability of W at each metallic site, with noticeable W segregation around grain boundaries. W forms a 
monolayer at the grain boundary plane in the 010_21 grain boundary, while it forms an off-center bilayer pattern in the 210_11 grain 
boundary. Gray atoms are B, and colored atoms are metals; (B) The concentration profile of W (RW) at the metallic site surrounding 
various grain boundaries, displaying prominent W segregation around these boundaries. The unit of horizontal axis is Å; (C) A 
comparison of the ideal grain boundary strength between pure ZrB2 and ZrB2 with W segregation. Ideal grain boundary strength values 
are listed in Supplementary Table 3.

calculated by NW/Nframes, where Nframes is the total number of selected frames and NW accounts for the number 
of times the site is occupied by W. Noticeable W segregation around grain boundaries can be observed in 
Figure 4A, with W forming a monolayer at the grain boundary plane in the 010_21 grain boundary and an 
off-center bilayer pattern in the 210_11 grain boundary. In our earlier studies[26,42], we demonstrated that size 
effects predominantly govern segregation behavior, leading to W atoms favoring smaller-sized grain 
boundary sites. The segregation pattern is mainly governed by the strain state of each grain boundary[26]. 
Additionally, the concentration profiles of W (RW) were calculated from the selected frames. Slices parallel 
to the grain boundary plane with a thickness of 10 Å were cut, and the W concentration in the slice was 
adopted as the concentration at the midpoint of the slice. Figure 4B displays the W concentration profiles of 
all calculated grain boundaries, revealing prominent W segregation around these boundaries, with W 
concentrations around grain boundaries reaching as high as ~20 at% in metallic sites, which are much 
higher than W contents in the bulk. Figure 4C compares the ideal grain boundary strength between pure 
ZrB2 and ZrB2 with W segregation. For pristine ZrB2 grain boundaries, the strength of the grain boundaries 
investigated in this study mainly depends on two factors. First, grain boundaries such as the 010_32, 210_13, 
and 210_23 types demonstrate low strength attributed to improperly self-accommodated structures, as 
evidenced by the strained B−B bonds near the grain boundaries. The relaxed structures in Supplementary 
Figure 4 show some bonds extending over 2 Å, signaling the weak bonding character of these grain 
boundaries and hence their reduced strength; Second, the strength of well-self-accommodated grain 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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boundaries is influenced by their orientation relative to the boron net plane. Typically, a smaller angle 
between the grain boundary normal and the boron net plane correlates with higher strength, as exemplified 
by the robust 010_31 grain boundary. With W segregation, the results indicate that most of the grain 
boundaries are significantly enhanced (improved by ~30%), except 010_13, 010_31, and 210_21, where the 
ideal strengths decrease slightly within the error level of calculation. Due to the large size of Zr, some of the 
boron bonds around grain boundaries are stretched and weakened, leading to low strength. Replacing Zr by 
W around grain boundaries is equivalent to introducing additional compressive strains to grain boundaries, 
reducing boron bond lengths around grain boundaries, which then enhances grain boundaries[26]. Especially 
for the 010_21 boundary, segregation of W will increase its strength substantially, which fractures shifting 
by one atomic layer into one of the crystals instead of the grain boundary plane[26]. The enhancement 
induced by segregation is highly dependent on the atomic structure of a grain boundary. For instance, the 
010_21 grain boundary exhibits the smallest in-plane periodicity [Figure 4A and Supplementary Figure 4], 
which allows near-total coverage by segregated W atoms at the boundary sites. This near total occupancy, if 
it indeed reinforces local strength, would result in considerable strengthening of the entire boundary. 
Conversely, a larger in-plane periodicity, as in the 010_13 grain boundary, results in tungsten atoms 
replacing only some sites[26], leading to a lower degree of segregated coverage. Subsequently, the strength of 
this grain boundary is marginally influenced by segregation. The reduction in the ideal strength of the 
010_31 boundary is consistent with our previous findings[26], where the W segregation level in this boundary 
is minimal [Figure 4B]. After MC/MD simulation, we obtained an asymmetrical segregation pattern of W 
around the boundary. Such asymmetry destroys the well-accommodated structure, potentially weakening 
the grain boundary. For the 210_21 grain boundary, additional space permits increased W segregation. As 
indicated in Supplementary Figure 4, the metal elements shift to one side of the grain boundary in the 
210_21 boundary, creating a large volume on the opposite side. The MC/MD methods employed here are 
incapable of filling this free volume, likely contributing to the slightly diminished grain boundary strength. 
Nevertheless, most of the grain boundaries can be enhanced due to grain boundary segregation, which may 
improve high temperature strength of ZrB2, agreeing with experimental observations[6,37,39].

In addition to micro-alloying for creating conventional solid solutions, heavily alloying with multiple 
elements to produce medium- or high-entropy diborides is another effective method for tailoring material 
properties. Our previous work has reported grain boundary segregation in medium- and high-entropy 
carbides through simulations, as well as the grain boundary strengthening effect due to segregation[25]. Here, 
the DP model is employed to investigate grain boundary segregation in a medium-entropy diboride 
Ti1/3Zr1/3Hf1/3B2 (ME-TMB2). Figure 5A illustrates the occupation probability of Ti at each metallic site in the 
010_21 and 210_11 grain boundaries, with results similar to W segregation in ZrB2 grain boundaries. Ti 
forms a monolayer at the grain boundary plane in the 010_21 grain boundary, and adopts an off-center 
bilayer pattern in the 210_11 grain boundary with Ti depletion at the grain boundary plane. Figure 5B 
presents the concentration profile of Ti (RTi) at the metallic site surrounding various grain boundaries, 
indicating significant Ti segregation around most of these boundaries. The concentration increase of Ti is 
not as substantial as W in ZrB2 grain boundaries, suggesting a lower segregation tendency of Ti. Figure 5C 
compares the grain boundary strength of pure ZrB2 and Ti1/3Zr1/3Hf1/3B2 after MC/MD simulations, 
demonstrating that all the grain boundaries of Ti1/3Zr1/3Hf1/3B2 are stronger. This finding indicates that 
medium- or high-entropy approaches are also effective in designing diborides with robust high-temperature 
strength.

To further enhance grain boundaries and improve high-temperature strength, we can incorporate micro-
alloying into medium- or high-entropy diborides, such as by introducing a solid solution of W into 
Ti1/3Zr1/3Hf1/3B2. We added 5 at% of W to the metallic site of Ti1/3Zr1/3Hf1/3B2 and then simulated segregation. 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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Figure 5. (A) The occupation probability of Ti at each metallic site, with noticeable Ti segregation around grain boundaries. Ti forms a 
monolayer at the grain boundary plane in the 010_21 grain boundary, while it forms an off-center bilayer pattern in the 210_11 grain 
boundary. Gray atoms are B, and colored atoms are metals; (B) The concentration profile of Ti (RTi) at the metallic site surrounding 
various grain boundaries, displaying prominent Ti segregation around most of these boundaries. The unit of the horizontal axis is Å; (C) 
A comparison of the ideal grain boundary strength between pure ZrB2 and medium-entropy Ti1/3Zr1/3Hf1/3B2 (ME-TMB2) after MC/MD 
simulation. Ideal grain boundary strength values are listed in Supplementary Table 3. MC/MD: Hybrid Monte Carlo/molecular 
dynamics.

As illustrated in Figure 6A, substantial W segregations were obtained, similar to those in ZrB2, with Ti 
depletion occurring around grain boundaries due to W’s higher segregation tendency. Figure 6B displays a 
comparison of the grain boundary strengths between Ti1/3Zr1/3Hf1/3B2 alloys with and without W segregation. 
It highlights that the grain boundaries 010_11, 010_21, 210_11, 210_23, and 210_32 experience a significant 
reinforcement from W micro-alloying. All of these grain boundaries have normals that form a small angle 
with the boron net plane. While certain other grain boundaries display slight improvements or weakenings 
owing to W micro-alloying, these changes fall within the limits of calculation error. In general, the findings 
demonstrate that, on average, W segregation contributes to the enhancement of grain boundary strengths. 
This result indicates that combining the medium/high-entropy design strategy with the micro-alloy strategy 
is effective in designing new high-performance materials.

When generating the training data for the DP model, no grain boundary structure is included. We examine 
the reliability of the DP model in predicting grain boundaries by evaluating grain boundary energies and 
segregation energies, with the results shown in Supplementary Text 3, Supplementary Table 4 and 
Supplementary Figure 5. Even though the DP model does not exhibit the same high accuracy as it does for 
other properties, its predictive capabilities on grain boundaries are reasonable, correctly capturing the 
elementary dependent grain boundary properties. In addition, our simulation results are in good agreement 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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Figure 6. (A) The concentration profile of W (RW) and Ti (RTi) at the metallic site surrounding various grain boundaries, displaying 
prominent W segregation around these boundaries, which results in Ti depletion around these boundaries. The unit of the horizontal axis 
is Å; (B) A comparison of the ideal grain boundary strength between pure Ti1/3Zr1/3Hf1/3B2 (ME-TMB2) and Ti1/3Zr1/3Hf1/3B2 with W 
segregation. Ideal grain boundary strength values are listed in Supplementary Table 3.

with previous simulations on ZrB2 with a solid solution of W[26], and they also correspond well with 
experimental results in ZrB2 and Ti1/3Zr1/3Hf1/3B2

[4,6,11,37,43]. In experiments, the segregation of W into ZrB2 
grain boundaries has been confirmed by transmission electron microscopy[39]. Furthermore, the high-
temperature fracture surface transforms from being dominated by intergranular features to being 
dominated by transgranular features with the addition of WC[6]. The grain boundaries also exhibit improved 
thermal corrosion resistance[37], which indicates a reduction in grain boundary energy and an enhancement 
in grain boundary strength due to W segregation. As reported in ref[11], similar to ZrB2 with WC as a 
sintering additive, medium-entropy Ti1/3Zr1/3Hf1/3B2 also demonstrates good strength retention at elevated 
temperatures, and the addition of WC can further improve the strength of Ti1/3Zr1/3Hf1/3B2, which is 
consistent with our simulation results. In addition to the strengthening effect, the addition of WC can also 
help remove surface oxides, resulting in cleaner grain boundaries[4]; pin grain boundaries, leading to an 
improved microstructure uniformity; and increase grain boundary oxidation resistance due to the low 
activation of W.

Discussion
In previous sections, we have demonstrated the accuracy and reliability of the DP model in predicting 
various properties, such as lattice parameters, elastic constants, equations of state, melting points, and grain 
boundary segregations. This indicates that our DP model can be effectively applied to TMB2 mono-
compounds or solid solutions, regardless of whether they are micro-alloyed, heavily alloyed, or even 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202408/jmi4014-SupplementaryMaterials.pdf
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designed as high-entropy materials. Consequently, the model serves as an efficient and accurate tool for 
predicting material properties, exploring micro-mechanisms, and ultimately assisting in material design. 
This paves the way for the customization and design of these materials to meet the demands of various 
applications.

While the model shows good accuracy, a few properties have not been well fitted, such as the C33 of WB2, as 
shown in Table 1. In machine learning potentials, there is still a need to strike a balance between accuracy 
and efficiency. The DPA-1 model achieves a satisfactory balance between these two factors, making it a 
suitable choice for simulating systems with up to 10,000 atoms. The prediction errors in energy and force 
values for this model are 8.8 meV/atom and 387 meV/Å, respectively. If a more accurate model is required, 
one can opt for a more complex model, such as the DPA-2 model[27] available in the DeePMD-kit software. 
This model can improve the prediction error by approximately 30%, with errors in energy and force being 
6.0 meV/atom and 245 meV/Å, respectively. However, this increased accuracy comes at the cost of reduced 
efficiency, which is one to two orders of magnitude slower than the DPA-1 model. As a result, the DPA-2 
model may only be suitable for simulations involving hundreds to thousands of atoms. For scenarios where 
simulations with millions of atoms are frequently conducted, a more efficient model is needed, such as the 
NVNMD model[44] in the DeePMD-kit software. This model offers an efficiency that is one order of 
magnitude faster than the DPA-1 model. However, the trade-off is an increase in prediction errors for 
energy and force values, which rise to 13.2 meV/atom and 410 meV/Å, respectively.

In addition to the models, our highly precise DFT dataset also plays a significant role in the impending 
revolution of atomic-scale simulations. The potential of big machine learning models is set to bring about 
substantial changes to the field of material research. In order to develop reliable big machine learning 
potential models, it is crucial not only to create new artificial intelligence models but also to enrich valuable 
datasets for model training. While large high-throughput DFT datasets have already been developed under 
the support of the Materials Genome Initiative, such as the Materials Project[45], AFLOW[46], and OQMD[47], 
there is still a need for many domain-specific datasets to cater to the varying demands of different fields. 
These datasets will not only aid in the development of big machine learning potential models but also assist 
in driving the revolution in materials research. By focusing on enriching our dataset resources and refining 
our artificial intelligent models, we can truly unlock the full potential of atomic-scale simulations and 
revolutionize the field of material research.

CONCLUSIONS
In this study, we have developed a medium-scale interatomic potential model for TMB2s, which is based on 
the DPA-1 machine learning potential model. This model encompasses elements Ti, Zr, Hf, V, Nb, Ta, Cr, 
Mo, W, and B, making it suitable for simulating TMB2 mono-compounds or solid solutions.

The prediction errors of our model are 8.8 meV/atom for energy and 387 meV/Å for force, respectively. 
Moreover, the model demonstrates high accuracy in predicting various material properties, including lattice 
parameters, elastic constants, and melting points. Additionally, we have showcased the model’s ability to 
simulate grain boundary segregation in TMB2s, where our simulations exhibit excellent agreement with 
experimental measurements.

This domain-specific medium-scale model enables researchers to predict material properties, investigate 
micro-mechanisms in TMB2s, and facilitate materials design based on specific requirements. We believe that 
the machine learning potential model developed in this work holds significant promise for the future of 
TMB2s research, paving the way for the customization and design of these materials to meet the demands of 
various applications.
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