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Abstract
Tumor heterogeneity can contribute to the development of therapeutic resistance in cancer, including advanced 
breast cancers. The object of the Halifax project was to identify new treatments that would address mechanisms of 
therapeutic resistance through tumor heterogeneity by uncovering combinations of therapeutics that could target 
the hallmarks of cancer rather than focusing on individual gene products. A taskforce of 180 cancer researchers, 
used molecular profiling to highlight key targets responsible for each of the hallmarks of cancer and then find 
existing therapeutic agents that could be used to reach those targets with limited toxicity. In many cases, natural 
health products and re-purposed pharmaceuticals were identified as potential agents. Hence, by combining the 
molecular profiling of tumors with therapeutics that target the hallmark features of cancer, the heterogeneity of 
advanced-stage breast cancers can be addressed.
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Breast cancer is a consequence of complex epigenetic and genetic alterations. The heterogeneity and 
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evolution within breast cancers underpin tumor progression, as well as therapeutic resistance[1-3]. In recent 
years, significant efforts have focused on addressing therapeutic options that can address tumor 
heterogeneity in breast cancer[4-6]. This is particularly important in triple-negative breast cancers and 
metastatic breast cancers because many patients with advanced breast cancers will succumb to their disease 
as tumor heterogeneity gives rise to therapeutic resistance[7-9] [Figure 1].

To address the challenge of therapeutic resistance and tumor heterogeneity, a group of 180 cancer 
researchers collaborated in “The Halifax Project” to consider combinations of agents that might be 
employed[10]. In this effort, twelve teams of researchers were organized around the Hallmarks of Cancer[11] 
and tasked to identify high-priority targets along with corresponding therapeutic agents that could reach 
those targets with limited toxicity. The hallmarks used are attributes ultimately found in most cancers (i.e., 
genomic instability, sustained proliferative signaling, tumor-promoting inflammation, evasion of anti-
growth signaling, resistance to apoptosis, replicative immortality, dysregulated metabolism, immune system 
evasion, angiogenesis, tissue invasion and metastasis, and an accommodating tumor micro-environment). 
The overarching goal was to identify a significant number of agents that have limited to no toxicity, that 
might be combined to reach a multitude of key targets simultaneously.

Cancer is caused by an array of mutations and genomic events that coordinate to activate aberrant 
pathways. To address this complexity, we used the Hallmarks of Cancer as an organizing framework. We 
then focused on the development of a  "broad-spectrum" methodology and therapeutic agents that could be 
combined using this approach. In particular, we focused on identifying natural health products (NHPs) and 
re-purposed pharmaceuticals, because both are readily available, often well tolerated, and broadly applicable 
to many cancers[10,12-22]. A detailed rationale for the methodology was provided and it was determined that it 
should be feasible from a safety standpoint and relatively inexpensive to implement[23].

In the table below [Table 1] we have provided a sampling of NHP with updated references to show how 
these agents act on key mechanisms and pathways across the hallmarks of cancer[10-22].

Some NHPs, such as curcumin and resveratrol, target multiple signaling networks and pathways 
simultaneously which is attractive molecular promiscuity[68,69]. The appropriate selection of NHPs can also 
offer synergies for chemotherapy and radiation therapy treatment. For example, curcumin, resveratrol, 
tocotrienol, garcinol and quercetin have a mechanism of action that increases chemosensitivity[70,71] and can 
reduce chemoresistance. While other NHPs, such as ellagic acid, diindolylmethane, and berberine, can 
increase radiation sensitivity[72-74].

Other NHPs, such as gingerol and curcumin can also protect normal (healthy) cells from adverse toxicity 
from cytotoxic agents[75,76]. Thus, NHPs have many features that may designate them particularly suited as 
agents that might be used in situations where tumor heterogeneity has resulted in chemoresistance.

In particular, for breast cancer, the presence of subpopulations of cancer stem cells (CSCs) is known to be 
one cause of chemo-resistance and ultimately contributes to therapeutic relapse[77]. Notably, there are 
specific NHPs such as sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-
gallate that have been shown to promote cell cycle arrest and apoptosis in triple-negative breast cancer cells 
and which have also been shown to inhibit important CSC pathways, such as NF-κB, PI3K/Akt/mTOR, 
Notch 1, Wnt/β-catenin, and YAP[78].
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Table 1. Aligning targets with the hallmarks of cancer

Cancer hallmark Examples of potential agents Key mechanism or pathway

Genomic instability Allyl Isothiocyanate[24] 
Chrysin[25] 
Plumbagin[26]

DNA damage and condensation 
DNA double-strand break repair 
DNA damage

Sustained proliferative signaling Resveratrol[27] 
Perillyl alcohol[28] 
Artemisinin[29] 

Cell cycle  
Cell cycle 
Cell cycle

Tumor-promoting Inflammation Rosmarinic acid[30] 
Berberine[31] 
Curcumin[32] 
Punica granatum L[33] 

NF3 kappaB-p53-caspase-3 pathways 
NLRP3 Inflammasome pathway 
Nuclear factor-κB (NF-κB) 
miRNA-27a and miRNA-155

Evasion of anti-growth signaling Deguelin[34] 
Luteolin[35] 
Withaferin A[36,37] 
Curcumin[38]

EGFR-p-AKT/c-Met p-ERK 
AKT/mTOR pathway 
Notch2 
SLC1A5-mediated ferroptosis

Resistance to apoptosis EGCG[39] 
Gossypol[40] 
Triptolide[41] 
Kaempferol[42] 
Berberine[43,44] 

P53/Bcl-2 pathway 
miRNA expression of many apoptosis related genes 
p38/Erk/mTOR 
Bcl2 
Bcl2 (and many other pathways)

Replicative immortality Curcumin[45,46] 
Silibinin[46] 
Coumestrol[47] 
Diosmin[48]

Telomerase expression 
Telomerase expression 
Protein kinase CKII 
Senescence

Dysregulated metabolism Resveratrol[49] 
Metformin[50] 
Baicalein[51] 
Carpesium abrotanoides L.[52]

6-phosphofructo-1-kinase 
HIF-1alpha 
HIF-1alpha 
Glucose Metabolism and PKM2/HIF-1alpha axis

Immune system evasion Astragalus polysaccharides[53] 
Cordycepin[54] 
Resveratrol[55] 

Macrophage activation 
IL-2, TGF-β, IL-4 
MICA/B and natural killer cells

Angiogenesis Curcumin[56] 
EGCG[57] 
Melatonin[58,59] 
Resveratrol[60]

NF-κB pathway 
VEGF 
VEGF 
VEGF

Tissue invasion and metastasis Diallyl trisulfides[61] 
Resveratrol[62] 
Anthocyanins[63] 
Cordycepin[64] 

HIF-1alpha 
TGF-beta1 / Epithelial-Mesenchymal Transition 
FAK 
Hedgehog pathway

Tumor micro-environment Resveratrol[65] 
Sulforaphane[66,67]

Macrophage polarization 
Adipose mesenchymal stem cells

FAK: Focal adhesion kinase; EGCG: epigallocatechin gallate; VEGF: vascular endothelial growth factor.

In addition to NHPs, there are also many existing pharmaceuticals that could provide additional targeting 
options. Numerous commonly prescribed non-oncology drugs possess multi-targeted anti-cancer effects. 
Pharmaceuticals already on the market have significant safety records and robust drug-drug interaction data 
compared to natural products and several researchers have looked at the effects of existing pharmaceuticals 
as it relates to relapse. Retsky (2012, 2020), for example, observed that the perioperative use of the NSAID 
analgesic ketorolac appears to reduce early relapse following mastectomy in breast cancer[79,80]. Hence, the 
use of both NHPs and repurposed pharmaceuticals to reach a broad-spectrum of molecular targets could be 
useful in developing personalized treatment protocols[81] [Figure 2].

Although our proposed approach has many potential advantages, there are challenges to conducting 
validating clinical studies. First, there is a shortage of funding for this type of initiative due to lack of 
patentability, manufacturing difficulties, contamination, and lack of product consistency[82]. Second, the use 
of NHPs among cancer patients is quite common. In fact, many patients who use them do not share the 
details with their physicians because they feel their physicians are not knowledgeable or will be indifferent 
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Figure 1. Therapeutic resistance - Developing tumors begin with a single immortalized cell that may have a single therapeutic target 
that can act to stop those cells from replication. For example, Tamoxifen (TAM) is the most common therapy used for the treatment of 
estrogen receptor-positive (ER+) breast cancer and it is used successfully in many cases. However, there are advanced-stage breast 
cancers that are plagued with mutated subpopulations of immortalized cells and cancer stem cells that play a key role in breast cancer 
progression, and metastasis. In these cancers, a single targeted therapy may produce a remission by successfully arresting some of the 
immortalized cells that have been targeted. However, if the remaining subpopulations of cells are driven by different mechanisms and 
prove to be chemoresistant, they will persist during remission and ultimately produce a relapsed cancer that is fully refractory to the 
initial treatment or combination of treatments.

Figure 2. A broad-spectrum approach - In a broad-spectrum approach, heterogeneous subpopulations of chemoresistant immortalized 
cells are not targeted using a single targeted therapy or even a combination of 2-3 chemotherapy agents. Instead, a significant number 
of low toxicity agents are aimed at a multitude of key pathways/mechanisms simultaneously. Since most immortalized cells are driven 
by the pathways/mechanisms described in the Hallmarks of Cancer framework[11], this approach increases the chance that a significant 
number of synergistic effects will be produced (i.e., since each affected cell will potentially be acted on in a multitude of ways).

or negative toward their use[83,84]. Finally, NHPs have yet to be approved by the FDA and although many 
NHPs are available as supplements and generally well-tolerated over an extended duration, the clinical 
evidence for these agents is often weak or non-existent.

One example of how NHPs can be used to improve the treatment of breast cancer is that NHPs have been 
shown to combine with Tamoxifen synergistically in inhibition of tumor cell growth, improved Tamoxifen 
sensitivity and reduction of Tamoxifen side effects[85]. However, some NHPs showed estrogen-like activity, 
which could reduce the effect of Tamoxifen, underscoring the need for a detailed analysis of any protocol 
that combines a multitude of agents[85]. They did find that some NHPs (e.g., morin, silybin, epigallocatechin 
gallate, myricetin, baicalein, curcumin, kaempferol, and quercetin) helped to increase the bioavailability of 
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Tamoxifen in vivo. These promising observations suggest that NHPs with Tamoxifen are worthy of clinical 
studies.

Some NHPs are used to support cancer therapy by clinicians who practice integrative oncology; however, 
these physicians are typically less familiar with the molecular mechanisms of cancer signaling[86]. Instead, 
integrative oncology mainly focuses on the treatment of cancer-related symptoms such as acupuncture for 
nausea, exercise for sleep, and anxiety[86]. Indeed, a survey of clinics in Washington State showed that more 
than 72 oral or topical, nutritional, botanical, fungal and bacterial-based medicines had been used during 
the first year of care of the female breast cancer patients studied (n = 324)[87]. Since most of these agents are 
not aimed at the molecular mechanisms of cancer, the use of NHPs for these purposes would typically not 
include the type of analysis that would be needed to target tumor heterogeneity.

We highlight this approach as an important avenue that should be investigated further because the idea of 
reaching many key targets simultaneously makes sense given what is now known about the biology of 
cancer. Importantly, this is not something that has been attempted previously. Clinical trials of NHPs that 
have been undertaken typically involve single agents or limited combinations of agents at best. We speculate 
the use of combinations of NHPs that are able to hit multiple targets is most likely to be clinically effective.

The goal should be to provide a clinical treatment protocol that makes a rational utilization of the evidence 
base. If this approach is to work, future efforts utilizing NHPs and repurposed pharmaceuticals will require 
clinical studies involving unique combinations of dozens of agents in protocols that are 
tailored/personalized for each patient. The agents that are used will therefore need to be carefully 
considered for potential interactions, and some of these agents may have shown limited or no activity when 
used individually. Until there is clinical research that fully explores the synergies that can be produced when 
a significant number of pathways are targeted simultaneously, the true potential of combining these actions 
all at once will simply not be known.

Finally, we acknowledge that what we are proposing would require a change from phased clinical trials. A 
case series or a cohort study might be a more appropriate means to document the results of experimental 
efforts of this nature[88], since each patient will require an individualized protocol. We do believe that such 
an approach may be able to help address the challenges of therapeutic resistance that emerge in many breast 
cancers.
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