Sun et al. Intell. Robot. 2025, 5(2), 404-18

DOI: 10.20517/ir.2025.20 Intelllgence & RObOtlcs

Research Article

M) Check for updates

A phase search-enhanced Bi-RRT path planning algo-
rithm for mobile robots

Yuhao Sun', Huazhong Zhu', Zhaocheng Liang', Andong Liu', Hongjie Ni'!, Ye Wang?

"Department of Information Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
2Faculty of Engineering, Lishui University, Lishui 323000, Zhejiang, China.

Correspondence to: Prof. Hongjie Ni, College of Information Engineering, Zhejiang University of Technology, No. 288, Liuhe Road,
Xihu District, Hangzhou 310032, Zhejiang, China. E-mail: zdfynhj@zjut.edu.cn

How to cite this article: Sun, Y.; Zhu, H,; Liang, Z.; Liu, A.; Ni, H.; Wang, Y. A phase search-enhanced Bi-RRT path planning algorithm
for mobile robots. Intell. Robot. 2025, 5(2), 404-18. http://dx.doi.org/10.20517/ir.2025.20

Received: 30 Nov 2024 First Decision: 13 Mar 2025 Revised: 2 Apr 2025 Accepted: 21 Apr 2025 Published: 9 May 2025

Academic Editor: Simon Yang Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

Abstract

The proposed improvement to the Rapidly-exploring Random Tree (RRT) path planning algorithm is aimed at address-
ing the issue of slow convergence speed caused by boundary information in the original algorithm, by introducing a
phase search approach. The initial approach involves employing a three-stage search strategy to generate sampling
points that are specifically oriented toward real-time sampling failure rate, thereby significantly reducing the num-
ber of redundant nodes. Simultaneously, a balanced exploration strategy is introduced, enhancing the algorithm'’s
convergence speed by constructing two randomly growing trees for searching. Secondly, a path-pruning strategy is
implemented, effectively reducing the path length. Finally, the bidirectional exploration technique from the improved
algorithm is applied to the traditional RRT algorithm based on boundary information, and comparative experiments
are conducted. The experimental results demonstrate that, compared to the traditional boundary-based RRT method,
the proposed improved algorithm reduces the running time by 13.49% and decreases the path length by 9.51%.

Keywords: Phase search, mobile robots, RRT, balanced exploration strategy

1. INTRODUCTION

With the rapid advancement of robotics, mobile robots are increasingly employed in military applications,
industrial, medical, logistics, service'~*) and agriculture fields'*). Mobile robots have a wide range of applica-
tions thanks to the development of autonomous navigation technology. Path planning and trajectory tracking

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 E E
BV

International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-
ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you CIG“H
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate

if changes were made. E k

m www.oaepublish.com/ir

https://creativecommons.org/licenses/by/4.0/
www.oaepublish.com/ir

Page 405 Sun et al. Intell. Robot. 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

are at the core of autonomous navigation for mobile robots!®7): the former designs obstacle avoidance paths

based on criteria such as time and distance, and the latter ensures that the robot accurately tracks the path and
responds to dynamic disturbances. In the field of path planning, there are several main approaches, including
state-space search algorithms represented by the A*-algorithm [} intelligent bionic algorithms represented
by particle swarm optimization (PSO)°) and intelligent bug swarm algorithms (IBA) ') stochastic sampling
methods centered around Rapidly-exploring Random Tree (RRT) "'/, and machine learning methods based
on reinforcement learning!'?). Among these methods, the A* algorithm has gained popularity because it en-
ables robots to search for optimal results accurately. Nevertheless, it is computationally demanding, exhibits
poor real-time capabilities, and requires extensive computation time, and the algorithm’s search efficiency
deteriorates as the number of traversed nodes increases''*). To reduce the computation time of the A* algo-
rithm, a time-efficient A* improvement algorithm based on time efficiency is proposed by Guruji et al.!'*),
This method optimizes the speed of path planning by accepting slightly longer paths; however, these paths
have more turning points, making it difficult for robots to meet their kinematic requirements during actual
travel. RRT is a path-planning method that employs a sampling-based search strategy. The algorithm begins at
the starting point, samples random points, and identifies the closest obstacle-free point to each sample within
the random tree. This point is then added to the tree. This process is repeated until the vicinity of the endpoint
is thoroughly explored "*/.

The random tree expansion algorithm has been enhanced to boost its capabilities, and researchers have pro-
posed various improved versions. For example, the RRT-Goal Bias!'®'”) algorithm directs random samples
to the endpoint with a certain probability, thus increasing the likelihood that a path to the goal will be found
by the algorithm. Extend RRT!'®) algorithm further introduces the concept of a collection of path points,
which accelerates the convergence of the algorithm and enhances the stability of the generated paths. Addi-
tionally, Palmieri et al. introduced an RRT-based motion planning algorithm that addresses arbitrary angle
path bias!'?). This method utilizes an arbitrary angle search technique to find the near-optimal path in a
discrete search manner. So that, the performance of this method exhibits large differences under different
environmental conditions. This algorithm grows two fast-expanding randomized trees simultaneously from
the starting point and the endpoint, connecting these two trees through a greedy heuristic method, thereby
significantly improving the speed of path search. However, the Bidirectional (Bi)-RRT algorithm has several
significant drawbacks: the random sampling of the algorithm results in too many redundant nodes, leading to
a low search speed, and the convergence speed needs to be enhanced.

Many researchers have invested significant effort into improving and optimizing the limitations of the Bi-RRT
algorithm. Ma et al. introduced the probabilistic smoothing bidirectional RRT (PSBi-RRT) algorithm, which
enhances the traditional Bi-RRT by incorporating a goal bias strategy, a node correction mechanism, and a 6-
cut mechanism *°). These innovations effectively address issues such as the poor quality of initial solutions and
slow convergence rates. Similarly, Fan et al. developed a bootstrap bidirectional Informed-RRT* (BI-RRT*)
algorithm, which incorporates extended range exploration, bidirectional search, and trajectory refinement to
significantly improve path planning capabilities *'/. Despite these advancements, the computational efficiency
of these methods still requires further optimization to meet the demands of real-time online applications.

In this paper, an improved phase search-based Bi-RRT path planning algorithm for mobile robots has been
proposed. Initially, a three-phase search strategy is implemented, whereby sampling points are generated un-
der the guidance of the real-time sampling failure rate, and by balancing the exploration strategy, two randomly
growing trees are concurrently established for searching, enhancing the algorithm’s convergence speed. Sec-
ondly, by introducing a path pruning strategy, the overall path length is efficiently shortened and the quantity
of superfluous nodes is substantially decreased. Finally, the superiority of the proposed algorithm is verified
through simulation and real comparative experiments on Matlab and Robot Operating System (ROS).

http://dx.doi.org/10.20517/ir.2025.20

Sun et al. Intell. Robot. 2025;5(2):404-18 1 http://dx.doi.org/10.20517/ir.2025.20 Page 406

—_——— e

Figure 1. Diagram for detecting the valuable obstacles.

The rest of the paper is organized as follows: Section 2 systematically describes the principles of the fast search
random tree algorithm for path planning based on boundary information; Section 3 proposes a multidimen-
sional optimization strategy for the BI-RRT framework, and each subsection discusses specific improvements
such as probabilistic bias adaptation and dynamic heuristic constraints; Section 4 validates the algorithm
through simulation and physical experiments in a complex obstacle environment effectiveness and compares it
with the conventional RRT, its bidirectional variant (Bi-RRT), and the original BI-RRT; finally, the last section
summarizes the main findings and outlines future research directions for autonomous navigation systems.

2. BOUNDARY-INFORMED RRT

The current RRT algorithm has disadvantages such as more search nodes and longer planning paths; Wang
et al. restricted the sampling domain of the RRT algorithm to the environs of value obstacles, thus reducing
the number of nodes generated by sampling, improving the efficiency of the algorithm in path planning, and

(22]

optimizing the path length at the same time

As shown in Figure 1, since the straight line between the starting point and the target is the optimal path, it is
easy to see that it is easier to obtain the optimal path by sampling in the vicinity of the obstacles crossed by this
line. In the RRT algorithm, the focus is more on avoiding the barriers, resulting in the planned path needing
to be optimized more. At the same time, due to the sampling process’s randomness, the path search takes a lot
of time.

In the value obstacle method, as shown in Figure 1, obstacles 2, 3, and 4 (marked in green) are regarded as
value obstacles because they are crossed by a straight line from the start to the end.

Within the number of iterations, the value obstacle detection function DetectValObs generates any point
around the obstacle, i.e., the value obstacle, that the start-finish line crosses, denoted as x,,i4;

DetectValObs Detect the obstacles located between the starting point X, and the ending point x4, in the
first loop; the generated x,,;4 is the point located at the edge of the obstacle closest to xgyr+; The algorithm
will generate multiple points as alternative points for x,,;4, the number of which depends on the shape of the
obstacle, in case of a triangular obstacle, the algorithm will generate three points as alternative points for x4,
while in case of a quadrilateral, it will generate four alternative points; One point is randomly selected as x4
among the generated alternative points. Based on boundary information, the above RRT algorithm can plan

http://dx.doi.org/10.20517/ir.2025.20

Page 407 Sun et al. Intell. Robot. 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

an approximate optimal path offline based on the relative positions of obstacles. Nevertheless, the algorithm’s
rate of convergence still requires enhancement.

3. PHASE SEARCH BI-RRT

This section introduces a novel approach that integrates and enhances the Bi-RRT algorithm. By harnessing
the benefits of boundary information guidance and bidirectional search, this method aims to further optimize
the efficiency of path planning and decrease computational expenses.

3.1. Fundamentals

The basic principle of the Bi-RRT algorithm is to construct a randomized tree in space with the target point and
the initial point as the root node simultaneously, respectively, and generate connected paths by expanding the
two randomized trees alternately in relative directions to save path search time. The pseudo-code of Bi-RRT
algorithm is shown in Algorithm 1 as follows.

Algorithm 1 Algorithm of Improved RRT Based on Boundary Information

1 Ty« Treel(xstart); T2 < Tree2(xgoal)
. fori = 1ton do
3 Xrand < Sample(M);

N

4 Xnear1 <— Near(Xrand, 71);
5: Xnew1 <— Steer(Xpand, Xnear1, StepSize);
6: E| Edge(xnewlvxnearl);
7: if CollisionFree(xpews, Xnear1) then
8: T .addNode(xpews);
9: T .addEdge(El);
10: Xnearz <— Near(Xpew:, 12);
11: Xnewa — Steer(Xnew:, Xnearz, StepSize);
12: E; « Edge(xnewm Xnear2);
13: if CollisionFree(Xpewz, Xnear2) then
14: T,.addNode(xpew.);
15: T>.addEdge(E>);
16: do
17: if CollisionFree(x} .y, Xnear2) then
18: Tr.addNode(x} ..,);
19: T,.addEdge(E»)™;
20: else
21: BREAK;
22: end if
23: while not xpew1 = Xnewz
24: end if
25: if |T1| < |T3| then
26 Swap(T1, T»);
27: end if
28: end if
20: end for

The basic steps of the algorithm are as follows:

http://dx.doi.org/10.20517/ir.2025.20

Sun et al. Intell. Robot. 2025;5(2):404-18 1 http://dx.doi.org/10.20517/ir.2025.20 Page 408

(1) In the known state space M, initialize the random tree 7}, 7>, and set the start point and target point as
Xsrart and Xg041, respectively. Set the root nodes of the random trees 71 and 75 to X4 and xgoar, respectively.
Define and assign the relevant parameters, such as the number of iterations i, the step size is StepSize, and so
on;

(2) Use the random function to generate a random point in global space x,4,4, then denote the point on the
random tree 7} with the smallest distance from x,4nq 8 Xpeqr1, then start from x,.4,1 and extend a point along
the direction pointing to x,4,4 in steps of StepSize, denoted as xp., 1, and indicate the path connecting xy¢qr1
and x,¢,1 as Eyq;

(3) Detect whether there is an obstacle between xy¢qr1 and xp,1 through the collision detection function
CollisionFree(), if it passes the detection, add x,,,1 to the set of nodes of the random tree 7}, and add E| to
the set of edges of the tree T7;

(4) Similar to the above process, generate x,,,» and E, and add them to the node set and edge set of T»;

(5) When the spacing between two nodes on the random tree 73,75 is less than the set value and passes the
collision detection, it indicates that the path search is successful and the expansion of the random tree will be
stopped;

(6) Perform path backtracking to find and connect its parent node forward from the goal point, repeat this
process until it connects to the start point, and generate a feasible path connecting the goal and start points.

3.2. Balancing exploration strategies with three stage search strategies

Aiming at the problem that the Bi-RRT algorithm has a long sampling time and produces too many redundant
nodes, this paper introduces a balanced exploration strategy that effectively improves the efficiency of path
search by generating the search tree from two directions simultaneously.

This paper uses a three-stage search strategy based on the real-time sampling failure rate. The novel search
methodology adjusts the extension of x,4,¢ and X, within the Bi-RRT framework in response to environ-
mental data, enabling the algorithm to accommodate environments of varying complexity. The choice of the
search strategy is given in
ASS, ifp < pi;
Sample =31 DRAS, ifp; <p < ps; (1)
TBRRT, ifp > p.

where p; and p; are the search failure rate thresholds (SFRTS), p1, p2 € (0, 1), and p is the real-time sampling
failure rate. SFRT is obtained by dividing the number of failed samples by the total number of samples. The
search strategy for each sample is determined by p. When p < py, the adaptive sector search is selected for the
sampling points; When p; < p < p», the dynamic right angle search is run for the sampling points. Otherwise,
switch to the target biased RRT search strategy.

The creation of the reference points is illustrated in Figure 2. The light gray point labeled 7,. represents the
reference point, which is generated by expanding outward near each vertex of the obstacle. The dark gray
point n,. ¢ in Figure 3A indicates the returned reference point, which is located around the square centered
at Npearesr and ngoq;. Here, O marks the center of the square, d signifies the distance from n,c4res to O, and
a denotes the side length of the square area. The fan-shaped sampling area is depicted in Figure 3B. The line
segment connecting the vertices of the sector at 71,,04rc5: and the endpoint at 7,,,; determines the central angle
of the sector, denoted as @. Both the central angle o and the radius r are functions of the real-time sampling
failure rate p. As the failure rate increases, the central angle widens and the radius diminishes. ¢ and r are

http://dx.doi.org/10.20517/ir.2025.20

Page 409 Sun et al. Intell. Robot. 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

(- T \I
| |
: nrd |
| |
l |
I |
| |
| |
| Obstacle :
| |
| |
|
| |
| |
| |
|

|
_ >

Figure 2. Reference point extension diagram.
respectively calculated by
a=n(p+p)'" (2)
r=kL(1-p)'? (3)

where a is the center angle, r is the radius, & is the scale factor, and L is the robot’s extended step size.

The Dynamic Right Angle Search (DRAS) strategy and the Adaptive Sector Search (ASS) strategy exhibit iden-
tical algorithmic flows. The distinction lies in the DRAS policy, which substitutes the sector sampling region
with a dynamic right-angle sampling region. This right-angle sampling region propels itself toward 74,4, with
Hpearest SETVING as the vertex of the right angle. An acute angle is defined as the angle formed between any
right-angled edge and the line segment connecting n,cqresr and ngoar. When ng,, is situated in the upper right
quadrant relative to Ryeqress> the configuration of the right-angle sampling region is illustrated in Figure 3C.
The right-angle region comprises two congruent rectangles, mutually perpendicular and superimposed, with
the longer side b and the shorter side b, of these rectangles calculated by

by =kiLln (e - p) (4)

by =kyLin (e — p) (5)

where k; , ky are the gain coefficients, L is the AGV expansion step, e is the Euler number, and p is the
expansion failure rate. With the increase of p, the sample area in Figure 3C gradually shrinks from solid to
dashed areas.

3.3. Path pruning strategy

The RRT and Bi-RRT algorithms generate an excessive number of redundant nodes in narrow channel envi-
ronments, leading to the algorithms’ high path cost. In this paper, we optimize the node redundancy problem
in the RRT algorithm from two aspects. First, referring to the idea of the RRT* algorithm, the paths can be
pruned by comparing the costs of the paths to remove the unnecessary high-cost parts to obtain a better path.
Secondly, a triangular pruning strategy will be applied after receiving the feasible paths.

Upon identifying a feasible path, the algorithm employs a triangular pruning strategy, which hinges on the
principle that the sum of the lengths of any two sides of a triangle exceeds the length of the third side. The
path pruning process is depicted in Figure 4. When the non-collision point n, in the original path is pruned,
a new path is yielded, namely, nl — n3 — n4.

http://dx.doi.org/10.20517/ir.2025.20

Sun et al. Intell. Robot. 2025;5(2):404-18 1 http://dx.doi.org/10.20517/ir.2025.20 Page 410

Obstacle

(\
! I
|
| O |
: Obstacle n :
: goal :
l |
I |
| |
! I
i , Obstacl :
[-—== stacle |
|
| O |
| : I
! H— I
1 |
| . |
I
|
e b |
N e -

(c) Rectangular area search diagram

Figure 3. Diagram of reference point selection and search area.

Obstacle n

s T T T T T T T T T T T T T TN

Figure 4. Triangle pruning diagram.

3.4. Improvement of Bi-RRT

The RRT algorithm is based on boundary information, and the improved Bi-RRT algorithm is fused to ensure
the overall operational efficiency and stability of the algorithm. First, a two-dimensional grid map is created
by Light Detection and Ranging (Lidar), and the value obstacles in the map are labeled using the RRT algo-

http://dx.doi.org/10.20517/ir.2025.20

Page 411 Sun et al. Intell. Robot. 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

O N) . .) Using a balanced exploration

i ; Establish a 2D grid Labeling and updating .

! Sta rt | |:> \:> [of value obstacles I:> strategy to simultaneously generate

N J two random numbers
{Ives @

obstacle between
Yo AN X, ?

<:I [Three-phase search}

NO
Parent node <:I
reselection strategy

4

YES Triangle pruning (.
= —> Finish

strategy

Global
target point?

4

Figure 5. Algorithm flowchart for boundary-information RRT with NCB-RRT. RRT: Rapidly-exploring random tree; NCB-RRT: nonholonomic
constraints-based rapidly-exploring random tree.

rithm based on boundary information. Second, the fusion of the improved Bi-RRT algorithm improves the
convergence speed of the algorithm by reducing the generation of redundant nodes through the balanced ex-
ploration strategy and the three-stage search strategy. Further, the path pruning strategy is used to optimize
the generated paths, effectively improving the overall efficiency of path planning. The algorithmic flow of the
convergence algorithm is shown in Figure 5. The specific steps are summarized as follows:

(1) Add the initial point x4 to T.init as the growing root node of the tree, set the value of the iteration number
i to 0, and set the exploration point x;.,,, of the value obstacle detection function DetectValObs to the starting
point x4 Define two Boolean variables collisionFreel and collisionFree2 to record the return value of
the collision detection function Checkcollision(xpeqr-Xnew) (Algorithm 2, lines 1-4).

(2) The maximum number of iterations the user can set max iteration. If the algorithm fails to find a feasi-
ble path within the specified maximum number of iterations, it will return to failure (Algorithm 2, line 27).
Within the number of iterations, the value obstacle detection function DetectValObs generates any point
around the obstacle (value obstacle) that the start/end line crosses, denoted as x,,;4. Proximity node function
NearNeighbor will be generated from the tree 7 to search for a distance of x,,;4 the nearest node as x4 At
this point, it grows along x4 t0 Xpeqr in a specific step to generate a new node x,,,,. The collision detection
function Checkcollision detects whether there is any obstacle between x4 and the newly generated node
Xnew and stores the result as a boolean value in the variable collisionFreel. (Algorithm 2, section 5, paragraph
5) (Algorithm 2, lines 5-9).

(3) The three-stage search strategy is run. First, the algorithm finds the closest point to the endpoint in the
search tree denoted as nyeqress. At line 10, Algorithm 2 returns the set of reference points between 71,¢4res and
Ngoal- Then, the reference point in the set that does not collide with 7,474 is labeled n,,,, (line 12), and n,ey,
is added to the search tree. If the result returned by collisionFreel is true, x,,, is added to the tree nodes.
The new branch generated between x,,.4, and x,,,, is added to the tree (Algorithm 2, lines 14-16); If x,,,, falls
within the end range x,,4/, the search can be terminated and the path planning task is completed. If the line
between the newly generated node and the endpoint does not cross any obstacle, then x,,,, can be assigned to
Xiemp to update the value obstacle (Algorithm 2, lines 18-22).

http://dx.doi.org/10.20517/ir.2025.20

Sun et al. Intell. Robot. 2025;5(2):404-18 1 http://dx.doi.org/10.20517/ir.2025.20 Page 412

Algorithm 2 Pseudocode of Improved Bi-RRT algorithm

1 i=0, Xtemp = Xstart

2: 7.Init(Xgtart)

3. CollisionFree1 = false

4: CollisionFree2 = false

s: while i < maxIteration do

6: Xmia = DetectValObs(Xiemp, Xgoal);
7: Xnear = NearNeighbor(xpiq,1);
8: Xnew = Steer(xmid’xnear);
9 Npearest <~ Mnearests P <~ Ps
10: a, r «— Angle (npearests Ngoal> P)
11 Stec & Ssec (a, r);
12: Npew < Sample (§'sec);
13: collisionFreel = Checkcollision (Xpear, Xnew) ;
14; if collisionFreel == true then
15: 7.AddNode (xpev) ;
16: T.AddEdge (Xpear, Xnew) 3
17: end if
18: if (xnew € Xgoal) then
19: return 7,
20: collisionFree2 = Checkcollision (xnew, xg(,al);
21: else if (collisionFree2 == true) then
22: Xtemp = Xnew>
23: else
24: I+ +;
25: end if

26: end while
27: return failure

(4) Repeat the above process until a collision-free path is found from the start to the target point.

4. SIMULATION RESULTS AND ANALYSIS

4.1. Algorithm simulation and analysis

To assess the efficacy of the proposed algorithm, it was compared against the RRT algorithm, the Bi-RRT
algorithm, and the boundary information-based RRT algorithm. The superior performance of the proposed
algorithm was evaluated in terms of path length, the number of nodes generated, and the computational time
required.

The search component of the proposed algorithm in this paper consists of three distinct stages. The SFRT
serves as the critical indicator for delineating these stages. To optimize the algorithm’s performance across
varying environments, it is essential to select appropriate SFRT values accordingly. Therefore, we systematically
traverse the SFRT parameter space from 0 to 1 with a step size of 0.1. A cost function is specifically designed
to select the optimal threshold configuration by identifying the group with the lowest average cost in each
environment, as given in

Cost = 0.3node + 0.3len + 0.2iter + 0.2¢ (6)

where Cost denotes the total cost, node represents the average number of nodes, node indicates the average
path length, len corresponds to the average iteration count, and izer signifies the average runtime.

http://dx.doi.org/10.20517/ir.2025.20

Page 413 Sun et al. Intell. Robot. 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

(a) RRT (b) Bi-RRT (c) Boundary information RRT (d) Proposed

Figure 6. Simulation in the crowded environment. RRT: Rapidly-exploring random tree; Bi-RRT: bidirectional-rapidly-exploring random tree.

The hardware environment used for simulation is a computer with Intel Core(TM) i5-1135G7 CPU @3.5GHz.16GB
RAM with Windows 10 system, and the software environment is Matlab R2018b. The simulation experimental
environment adopts the 600 x 600-pixel ratio region of complex block-type obstacles as the two-dimensional
simulation environment, where the black pixels denote the obstacle region and the white pixels represent the
free region without barriers. Pixels denote the obstacle region, while white pixels denote the free region without
barriers. The initial parameters of the algorithm are as follows: initial position x; = (50, 400), target position

x5 = (440, 50), step size step = 40, distance threshold disTh = 40, i.e., nodes within the distance threshold
are considered as the same point.

Figure 6 shows the simulation comparison of the algorithm in the complex obstacle environment. Figure 6A
presents the simulation of the RRT algorithm, which causes the algorithm to explore blindly due to the random
selection of sampling points, resulting in the generation of more redundant nodes. Figure 6B shows a feasible
path planned by Bi-RRT, which makes the search rate much higher and generates a better path by growing the
tree in both directions. However, the algorithm still generates many redundant nodes. Figure 6C demonstrates
the RRT algorithm based on boundary information from the figure. The number of nodes of the algorithm
can be significantly reduced, and the planning efficiency is further improved. Figure 6D depicts the simulation
of the proposed algorithm at the SFRT = 0.2. Thanks to the path-pruning strategy, the node utilization of the
algorithm is further improved, and the search performance is significantly enhanced.

Due to the three-stage search strategy, the proposed algorithm can significantly improve the convergence speed
of the algorithm by evaluating the real-time sampling failure rate p associated with the threshold SFRT as a
measure of the complexity of the current environment. From the data analysis in Figure 7, it can be seen that
in terms of path length, it is improved by about 37.32% compared to the RRT algorithm, and about 0.31%
and 0.29% compared to the Bi-RRT and boundary information-based RRT algorithms, respectively; in terms
of number of nodes, it is improved by about 50.06% and 50%.In terms of number of nodes, it is improved
by about 50.06% and 50.20% over the RRT and Bi-RRT algorithms, respectively, and by about 50.06% and
50.20% over the boundary information-based RRT algorithm. information-based RRT algorithm by about
15.02%; in terms of running time, it is improved by about 19.23%, 10.50% and 23.32% over the RRT, Bi-
RRT and boundary information-based RRT algorithms, respectively. In summary, when compared with RRT
algorithm, Bi-RRT algorithm and boundary information-based RRT algorithm, the proposed algorithm shows
significant superiority in terms of path length, number of nodes and running time, which proves its robustness
and practicality in complex environments.

4.2. Real environment experiment

To deeply verify the effect of the algorithms proposed in this paper in practice, the authors decided to use a
highly realistic and operable software experimental platform, ROS. ROS is an open-source software platform
and a general platform widely accepted by most robot developers!>*). The experiments in this paper use a

http://dx.doi.org/10.20517/ir.2025.20

Sun et al. Intell Robot 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20 Page 414

WRRT ®Bi-RRT ™ Boundary information RRT Proposed WRRT ®Bi-RRT mBoundary information RRT Proposed WRRT ®Bi-RRT ®Boundary information RRT ~® Proposed

900 847.49 4500 16

800 4000 3801 3812 1 102
12.01
700 3500 12 1131 1075
600 53272 53266 531.06 3000 10
500 2500 2257
1918 8
400 2000
6
300 1500
200 1000 4
100 500 2
0 0 0

Path length/m Number of nodes time/s

(a) Path length (b) Number of nodes (¢) Running time

Figure 7. Performance comparison.

. (a) Complex indoor environment (b) Grid map for complex indoor environment

Figure 8. Experimental environment.

customized mobile robot with a differentially driven motor on each side to control its forward motion. The
front of the robot is also equipped with an auxiliary wheel whose main function is to provide balancing support
to ensure that the robot remains stable and non-slip during its movement.

The homemade mobile robot based on the above was experimented in a complex indoor environment to verify
the effectiveness and robustness of the algorithm. The complex indoor environment is shown in Figure 8A.
The dimensions of the environment in the laboratory are 10.8 X 5.8 meters. The floor smoothness of the
experimental site is consistent, while on the raster map, the black circle represents the robot’s position, and
the block graphic indicates static obstacles. First, a 2D map of the indoor environment is created based on
the Hector SLAM algorithm, and the resulting raster map is imported into RViz; as shown in Figure 8B, the
resolution of the raster map is set to 20 cm X 20 cm. Next, an adaptive Monte Carlo localization algorithm
is applied to accurately determine the position and direction of the mobile robot, which tracks the robot’s
movement by particle filtering method. With iterations, all the particles will converge gradually so that the
robot’s current position can be accurately determined.

In this paper, a comparison experiment between the proposed algorithm and the RRT algorithm based on
boundary information is carried out in a complex indoor environment as shown in Figure 9. The proposed
algorithm is used in the experimental scenario. The proposed algorithm introduces a balanced exploration
strategy, which effectively improves search efficiency by generating the search tree from two directions si-
multaneously. In addition, the introduced three-stage search strategy also enhances the quality of sampling
points. As for the improved RRT algorithm based on boundary information, since the selection of sampling
points near the obstacles is randomized, in real experimental scenarios, the robot will turn in place and move

http://dx.doi.org/10.20517/ir.2025.20

Page 415 Sun et al. Intell Robot 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

(b)

Figure 9. Results of the RRT algorithm using boundary data. (A) Schematic showing the robot spinning around an obstacle; (B) Schematic
of the robot spinning during operation; (C) Schematic of the robot spinning near the target point; (D) Rviz interface showing the schematic
of the robot spinning near an obstacle; (E) Rviz interface showing schematic of robot spinning near an obstacle; (F) Rviz interface showing
schematic of robot spinning near a target point. RRT: Rapidly-exploring random tree.

Figure 10. Experimental results of the improved RRT algorithm. (A) Diagram of the robot's movement process; (B) Diagram of the robot
reaching the target point; (C) Rviz interface during the movement process; (D) Rviz interface when the robot reaches the target point. RRT:
Rapidly-exploring random tree.

backward around the obstacles (as shown in Figure 9).

In contrast, the algorithm proposed in this paper introduces a balanced exploration strategy, which effectively
improves the search efficiency by simultaneously generating the search tree from two directions. In addition,
the introduced three-stage search strategy also improves the quality of the sampling points, which significantly
reduces the in-situ steering and backward phenomenon of the boundary RRT algorithm. According to the
actual measurement, the deviation of the final position of the robot from the expected target point is less than
0.1 meter, which basically meets the requirements of actual robot navigation [Figure 10].

Combined with the experimental results in Figure 11, the proposed algorithm in this paper improves the
running time by 13.4% and the planning path length by 9.51% compared with the RRT algorithm based on
boundary information. The proposed algorithm shows stronger robustness in complex indoor environments.

http://dx.doi.org/10.20517/ir.2025.20

Sun et al. Intell Robot 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20 Page 416

® Boundary information RRT M Proposed ® Boundary information RRT ™ Proposed
53 5.26 82 80.6

5.2 80
5.1 78
5 76
74
4.9 7

4.76 69.8
4.8 70
4.7 68
4.6 66
4.5 64

Path length/m Running time/ms

(a) Path length (b) Running time

Figure 11. Experimental results comparison.

5. FUTURE WORK

The algorithm proposed in this study demonstrated good performance in static environments, but there are still
some limitations and areas for improvement. Firstly, we will further explore the applicability of the algorithm
in dynamic environments, such as handling the situation of moving obstacles, to verify its robustness and
real-time performance. Additionally, in response to the issue of computational overhead, we will strive to
optimize the efficiency of the algorithm, reduce resource consumption, and study its applicability on different
robot platforms (such as unmanned aerial vehicles and wheeled robots). For the application scenarios of
unmanned aerial vehicles, we need to extend the algorithm from 2D space to 3D space to support a wider
range of practical needs. Finally, we plan to combine reinforcement learning with existing algorithms to achieve
adaptive adjustment and dynamic optimization, thereby further enhancing the performance and practicality
of the algorithm.

6. CONCLUSIONS

This paper presents an enhanced Bi-RRT algorithm based on boundary information. Initially, a balanced
exploration strategy is employed to search for new nodes by constructing two alternating random trees. Con-
currently, a three-stage search strategy is implemented to enhance the quality of sampling points. Additionally,
to address the issue of winding generated paths in the Bi-RRT algorithm, a path pruning strategy is introduced,
where paths are pruned by comparing their costs, thereby optimizing the generated paths. Furthermore, the
convergence speed of the algorithm is further improved by integrating the enhanced Bi-RRT with the bound-
ary information-based RRT algorithm. Finally, simulations and experiments demonstrate that the algorithm
not only outperforms mainstream path planning algorithms such as RRT and Bi-RRT but also that the fusion
algorithm surpasses the boundary information-based RRT algorithm in terms of algorithmic time and path
length. Future work will focus on enhancing the algorithm’s adaptability across various scenarios, real-time
performance, and path safety.

DECLARATIONS

Authors’ contributions

Made substantial contributions to the research, idea generation, algorithm design, simulation, wrote and edited
the original draft: Sun, Y.; Zhu, H.; Liang, Z.

Performed data acquisition and provided administrative, technical, and material support: Ni, H.; Liu, A.; Wang,
Y.

http://dx.doi.org/10.20517/ir.2025.20

Page 417 Sun et al. Intell Robot 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20

Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon reasonable
request.

Financial support and sponsorship
This work has been funded by the Key Research and Development Program of Zhejiang Province (Project No.
2023C01224).

Conflicts of interest

Liu, A. is the Junior Editorial Board Member of the journal Intelligence & Robotics. Liu, A. was not involved
in any steps of editorial processing, notably including reviewer selection, manuscript handling, or decision-
making. The other authors declare that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2025.

REFERENCES

1. Liu, S.; Wang, X.; Wu, Y.; Li, Q.; Yan, J.; Levin, E. Path planning method for USVs based on improved DWA and COLREGs. Intell.
Robot. 2024, 4, 385-405. DOI

2. Jin, Z.; Liu, A.; Zhang, W. A.; Yu, L.; Yang, C. Learning an autonomous dynamic system to transfer periodic human motion skills. /EEE
Tran. Neural Netw. Learn. Syst. 2025, 36, 7757-63. DOI

3. Qin, D;; Jin, Z.; Liu, A.; Zhang, W. A.; Yu, L. Asynchronous event-triggered distributed predictive control for multi-agent systems with
parameterized synchronization constraints. /[EEE Trans. Autom. Control, 2024, 69, 403-9. DOI

4. Jin, Z.; Si, W,; Liu, A.; Zhang, W. A.; Yu, L.; Yang, C. Learning a flexible neural energy function with a unique minimum for globally
stable and accurate demonstration learning. /EEE Tran. Robot. 2023, 39, 4520-38. DOI

5. Hassan, M. U.; Ullah, M.; Igbal, J. Towards autonomy in agriculture: design and prototyping of a robotic vehicle with seed selector. In
2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, Pakistan. Nov 01-02, 2016. IEEE; 2016.
pp. 37-44. DOI

6. Balding, S.; Gning, A.; Cheng, Y.; Igbal, J. Information rich voxel grid for use in heterogeneous multi-agent robotics. Appl. Sci. 2023, 13,
5065. DOI

7. Saleem, O.; Hamza, A.; Igbal, J. A fuzzy-immune-regulated single-neuron proportional—integral—derivative control system for robust
trajectory tracking in a lawn-mowing robot. Computers. 2024, 13, 301. DOI

8. Huang, H.; Li, Y.; Bai, Q. An improved A star algorithm for wheeled robots path planning with jump points search and pruning method.
Complex Eng. Syst. 2022, 2, 11. DOI

9. Tawhid, M. A.; Ibrahim, A. M. An efficient hybrid swarm intelligence optimization algorithm for solving nonlinear systems and clustering
problems. Soft Comput. 2023, 27, 8867-95. DOI

10. Zohaib, M.; Pasha, S. M.; Javaid, N.; Igbal, J. IBA: intelligent bug algorithm — A novel strategy to navigate mobile robots autonomously.
In: Shaikh, F.; Chowdhry, B.; Zeadally, S.; Hussain, D.; Memon, A.; Uqaili, M. editors. Communication technologies, information security
and sustainable development. IMTIC. 2013. Communications in Computer and Information Science. Springer, Cham; 2014. pp. 291-9.
DOI

11. LaValle, S. M.; Kuffner, J. J. Randomized kinodynamic planning. In Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), Detroit, USA. May 10-15, 1999. IEEE; 1999. pp. 473-9. DOI

12. Hua, M.; Zhou, W.; Cheng, H.; Chen, Z. Improved DDPG algorithm-based path planning for unmanned surface vehicles. Intell. Robot.
2024, 4, 363-84. DOI

13. Ha, I. K. Improved A-star search algorithm for probabilistic air pollution detection using UAVs. Sensors 2024, 24, 1141. DOI

14. Guruji, A. K.; Agarwal, H.; Parsediya, D. K. Time-efficient A* algorithm for robot path planning. Proc. Technol. 2016, 23, 144-9. DOI

15. Zhang, R.; Guo, H.; Andriukaitis, D.; Li, Y.; Krolczyk, G.; Li, Z. Intelligent path planning by an improved RRT algorithm with dual grid
map. Alex. Eng. J. 2024, 88, 91-104. DOL

16. Xia, Z.; Chen, G.; Xiong, J.; Zhao, Q.; Chen, K. A random sampling-based approach to goal-directed footstep planning for humanoid

http://dx.doi.org/10.20517/ir.2025.20
http://dx.doi.org/10.20517/ir.2024.23
https://doi.org/10.1109/TNNLS.2024.3397356
https://doi.org/10.1109/TAC.2023.3263757
https://doi.org/10.1109/TRO.2023.3303011
https://doi.org/10.1109/ICRAI.2016.7791225
https://doi.org/10.3390/app13085065
https://doi.org/10.3390/computers13110301
https://doi.org/10.20517/ces.2022.12
https://doi.org/10.1007/s00500-022-07780-8
https://doi.org/10.1007/978-3-319-10987-9_27
https://doi.org/10.1109/ROBOT.1999.770022
http://dx.doi.org/10.20517/ir.2024.22
https://doi.org/10.3390/s24041141
https://doi.org/10.1016/j.protcy.2016.03.010
https://doi.org/10.1016/j.aej.2023.12.044

Sun et al. Intell Robot 2025;5(2):404-18 | http://dx.doi.org/10.20517/ir.2025.20 Page 418

20.

21.

22.

23.

robots. In 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore. Jul 14-17, 2009. IEEE; 2009.
pp. 168-73. DOI

Urmson, C.; Simmons, R. Approaches for heuristically biasing RRT growth. In Proceedings 2003 IEEE International Conference on
Intelligent Robots and Systems, Las Vegas, USA. Oct 27-31, 2003. IEEE; 2003. pp. 1178-83. DOI

Li, D.; Li, Q.; Cheng, N.; Song, J. Extended RRT-based path planning for flying robots in complex 3D environments with narrow passages.
In 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Korea. Aug 20-24, 2012. IEEE; 2012.
pp. 1173-8. DOI

Palmieri, L.; Koenig, S.; Arras, K. O. RRT-based nonholonomic motion planning using any-angle path biasing. In 2016 I[EEFE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden. May 16-21, 2016. IEEE; 2016. pp. 2775-81. DOI

Ma, G.; Duan, Y.; Li, M.; Xie, Z.; Zhu, J. A probability smoothing Bi-RRT path planning algorithm for indoor robot. Future Gener.
Comput. Syst. 2023, 143, 349-60. DOI

Fan, H.; Huang, J.; Huang, X.; Zhu, H.; Su, H. BI-RRT*: an improved path planning algorithm for secure and trustworthy mobile robots
systems. Heliyon 2024, 10, €26403. DOI

Wang, J.; Li, X.; Meng, M. Q. H. An improved RRT algorithm incorporating obstacle boundary information. In 2016 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Qingdao, China. Dec 03-07, 2016. IEEE; 2016. pp. 625-30. DOI

Kohut, M.; Cornak, M.; Dobis, M.; Babinec, A. Teaching robotics with the usage of robot operating system ROS. In: Balogh, R.;
Obdrzalek, D.; Christoforou, E. editors. Robotics in Education. RiE 2023. Lecture Notes in Networks and Systems. Springer, Cham; 2023.
pp- 299-313. DOIL

http://dx.doi.org/10.20517/ir.2025.20
https://doi.org/10.1109/AIM.2009.5230019
https://doi.org/10.1109/IROS.2003.1248805
https://doi.org/10.1109/CoASE.2012.6386513
https://doi.org/10.1109/ICRA.2016.7487439
https://doi.org/10.1016/j.future.2023.02.004
https://doi.org/10.1016/j.heliyon.2024.e26403
https://doi.org/10.1109/ROBIO.2016.7866392
https://doi.org/10.1007/978-3-031-38454-7_25

	1. Introduction
	2. Boundary-Informed RRT
	3. Phase Search Bi-RRT
	3.1. Fundamentals
	3.2. Balancing exploration strategies with three stage search strategies
	3.3. Path pruning strategy
	3.4. Improvement of Bi-RRT

	4. Simulation results and analysis
	4.1. Algorithm simulation and analysis
	4.2. Real environment experiment

	5. Future Work
	6. Conclusions
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

