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Abstract
Aqueous Zn batteries (AZBs) have emerged as a highly promising technology for large-scale energy storage 
systems due to their eco-friendly, safe, and cost-effective characteristics. The current requirements for high-energy 
AZBs attract extensive attention to reasonably designed cathode materials with multi-electron transfer 
mechanisms. This review systematically overviews the development and challenges of typical cathode hosts 
capable of multiple electron transfer reactions for high-performance Zn batteries. Moreover, we also summarize 
how to trigger the multi-electron transfer chemistry of cathodes, including transition metal oxides, halogens, and 
organics, to further boost the energy storage capability of AZBs. Finally, perspectives on critical issues and future 
directions of the multi-electron transfer battery systems offer novel insights for advanced Zn batteries.
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INTRODUCTION
As the global energy crisis in traditional fossil fuel energy continues, there is a growing urgency for 
developing clean and renewable energy sources, including wind, solar, hydrogen energy, and geothermal 
energy, towards achieving the goal of carbon peak and carbon neutrality. However, these clean energy 
sources are characterized by their intermittent nature, indirectness in conversion processes, and inherent 
instability, resulting in low energy utilization efficiency and high operational costs[1,2]. Therefore, aqueous 
batteries with low cost and safety play a pivotal role in efficient energy conversion and storage for large-
scale energy storage[3,4]. Compared to lithium-ion and other polyvalent metal batteries, aqueous zinc (Zn) 
batteries (AZBs) have been regarded as promising systems due to their highly abundant Zn reserves, 
outstanding theoretical specific capacity (820 mAh g-1), and lower redox potential of -0.76 V versus standard 
hydrogen electrode (SHE)[5]. Figure 1A clearly represents the number of publications related to zinc-ion and 
aqueous Zinc-ion battery technology research, proving the great potential for AZBs in large-scale energy 
storage systems[6-24]. However, the current state-of-the-art Zn batteries are still limited by the challenges 
related to the serve side reactions including shape change, passivation, and hydrogen evolution reaction 
(HER) of Zn anodes, particularly in alkaline environments[25]. Therefore, adopting mildly acidic and neutral 
electrolytes has driven great progress in rechargeable AZBs such as Zn-MnO2 and Zn-V2O5 cells[26,27]. It is 
worth noting that the energy density and battery lifespan of AZBs are highly related to the electrochemical 
performance of cathode materials. Generally, the single-electron transfer mechanism typically results in 
inferior capacity and sluggish redox kinetics between electrodes for non-durable Zn batteries[28-30]. Hence, 
the rational design of cathode materials based on multi-electron transformation reactions is essential for 
advanced AZBs.

Besides Zn anode protection and electrolyte optimization, numerous strategies have been adopted to 
achieve high-performance cathode materials, including manganese (Mn)-based oxides, vanadium (V)-based 
oxides, Prussian blue analogs, organic compounds, and halogens[4,31,32]. Figure 1B displays the recent 
progress of modified cathode materials, suggesting that the electron transfer numbers can significantly 
enhance the capacity and stability in aqueous Zn devices. Specifically, the MnO2 cathode with MnO2/Mn3+ 
displays an energy density of ~280 Wh kg-1 based on MnO2 mass. Furthermore, the redox reaction of 
MnO2/Mn2+ endows decoupled Zn-MnO2 batteries with an ultra-high platform (~2.3 V) and excellent 
energy density of ~1,100 Wh kg-1[33]. Moreover, vanadium oxide (VO) cathodes with polyvalent states and 
relatively low molar mass generally undergo two-electron redox reactions and exhibit exceptional 
theoretical capacities over 600 mAh g-1 for advanced AZBs with ~450 Wh kg-1[34]. Furthermore, the 
calix[4]quinone (C4Q) cathode containing eight carbonyls exhibits an excellent energy density of 
335 Wh kg-1 and a long lifespan over 1,000 cycles at 500 mA g-1. Recently, halogens involving multi-electron 
conversion chemistry have been proven promising conversion cathodes for high-performance AZBs[35]. For 
example, Chen et al. reported a four-electron transfer aqueous Zn-I2 batteries by triggering the redox 
reaction of I2/I+ by forming ICl inter-halogens, improving the energy density and battery lifespan to 
495 Wh kg-1 and 6,000 cycles, respectively[36]. Conversely, cathode materials with substantial structural 
frameworks, such as covalent-organic frameworks, and polyanionic cathodes generally offer lower capacity 
(< 200 mAh g-1) and inferior redox potential (< 1.0 V) for unsatisfied Zn batteries. Despite the substantial 
advancements achieved thus far, achieving industrial-scale production remains a distant objective for AZBs 
to exceed the target of lithium batteries of 400 Wh kg-1 in the "Made in China 2025" project[36,37]. To enhance 
the Zn battery performance and overcome the challenges mentioned above, multi-electron transfer 
reactions have been considered a suitable alternative to single-electron transfer[38-40]. Therefore, it remains 
crucial to explore methods for achieving reversible multi-electron transfer reactions with enhanced output 
voltage, high energy density, and low cost-effectiveness in advancing the application of AZBs[40,41].
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Figure 1. (A) The number of publications related to zinc-ion battery and aqueous zinc-ion battery technology research. (B) Recently 
published cathode materials with improved capacity and cycling stability for high-performance AZBs, including Mn- [6-10], V- [11-14], and 
halogen-based materials[15-19] and organic hosts[20-24].

Despite their potential for high energy density and commercial viability, we should further explore the 
multiple electron-transfer chemistry of cathode materials matched with the addition of redox couples in 
electrolytes, especially in mild acid or natural electrolytes. In order to attain stable long-term cycling and 
achieve high-rate performance, improvements in ion transport and storage capability are imperative for the 
metal oxide cathodes with sluggish ion insertion kinetics[42]. The key to realizing cathode materials with 
remarkable energy density lies in optimizing crystal or molecular structures while activating reversible 
multi-electron reactions, which requires continuous exploration and discovery of novel chemical systems. 
Additionally, attention must be paid to balancing the cathode output energy density with excellent cycling 
stability. Hence, understanding the intrinsic structure-effect relationship among the battery performance 
indexes is critical for designing high-energy AZBs with long lifespans[42,43]. This review aims to capture the 
challenges and the latest developments posed by cathode materials based on multi-electron transfer 
mechanisms in reported AZBs. Furthermore, we explore potential solutions to effectively trigger the 
multiple-electron transfer reactions for enhanced cathode materials. The ultimate goal is to offer valuable 
insights that can be utilized to develop better AZBs for the future energy world.

HOW TO TRIGGER MULTI-ELECTRON CHEMICAL REACTION
Cathode materials undergo multi-electron chemical reactions triggered by the migration of electrons from 
the Zn anodes during the discharge process. This reaction involves converting the cathode material into 
different chemical forms or variations in chemical valence, which stores the energy until it is needed during 
the charge process. Mn-based, V-based compounds, halogen, and organic hosts are common cathode 
materials based on multi-electron transfer reactions for high-energy AZBs. However, activating more than 
single-electron transfer chemistry in these materials requires different excitation pathways. For example, the 
MnO2/Mn2+ mechanism in Mn-based compounds can be divided into three excitation categories, including 
the dissolution-deposition reaction of MnO2 cathodes, chemical environment optimization of cathode/
electrolyte interface (CEI), and pre-deposition surface to active MnO2/Mn2+ reaction. Due to the ultra-high 
theoretical capacity of V-based compounds with V5+/V3+ reactions, it is extremely important to limit the 
dissolution of active substances, the generation of byproducts, and the slow diffusion kinetics to enhance 
the reaction activity of Zn-V batteries. Therefore, the modification strategy for more than two-electron 
transfer of stable V-based cathode hosts can be divided into the material design and the electrolyte 
modification.

Compared to the previous two types of cathodes, the number of electrons transferred in halogen (chlorine, 
bromine, and iodine) cathode materials is still being determined, and the conversion mechanism 
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exploration is urgent for constructing advanced Zn-halogen devices. For example, the maximum electron
transfer from I- to IO3

- can reach the twelve-electron transfer reaction for high-energy Zn-I2 batteries. Yet,
the modification strategies are essential to ensure the realization of a multi-electron transfer mechanism
with a long lifespan. Besides the halogen cathodes, it is worth noting that a multi-electron chemical reaction
can be initiated in organic hosts containing multiple redox centers by optimizing molecular structures to
achieve high-energy and durable Zn-organic batteries. The battery energy is determined by     , 
where ΣMg is the total weight of reactants (mol g-1), n represents the charge transfer number, E is the 
voltage (V), F is the Faraday constant, and η means the activity of charge carriers, including both cations 
and anions that participate during the redox (multi-ion effect)[44]. Thus, the strategies for higher 
battery energy can be achieved by enhancing the voltage, multi-electron reaction transfer number, 
and mass ration of light elements in electrode materials.

The following sections are an overview of the recent development and issues of reported cathode materials.
Furthermore, the corresponding strategies are provided to enhance the capability of accept/donate multiple
electrons during the battery working, thereby boosting the battery practical application of high-performance
AZBs.

Mn-based cathodes with MnO2/Mn2+ mechanism
The variable valence states of Mn atoms and diverse crystal structures of manganese oxides enhance their
suitability as an exceedingly captivating cathode material for high-performance AZBs[45,46]. The two-electron
transfer reaction of MnO2/Mn2+ endows Mn-based cathode materials with a notable theoretical specific
capacity (616 mAh g-1) and an ultra-high redox voltage (~1.9 V) in acid electrolytes. Besides, electrolytic
Zn-MnO2 batteries significantly boost the voltage and capacity based on the dissolution-deposition reaction
of MnO2/Mn2+, surpassing the energy limitation of the MnO2/Mn3+ reaction. For example, Chao et al.
proposed an electrolysis Zn-MnO2 battery via proton and electron dynamics for achieving high energy of
409 Wh kg-1 with a competitive battery cost of ~US$5 per kWh[46]. However, the strong acid H2SO4 as the
electrolyte addition causes inferior cycling stability in electrolysis Zn-MnO2 batteries. Therefore, we focus
on developing and modifying strategies to active MnO2/Mn3+/Mn2+ reactions in the mild acid environment,
highlighting the modification methods of the dissolution-deposition reaction, chemical environment near
the CEI, and the tailored electrodeposition surface for triggering MnO2/Mn2+ reaction [Figure 2].

Dissolution-deposition reactions of MnO2 cathodes
Since 2016, significant advancements have been made in understanding the mechanisms of Zn-Mn
batteries. Pan et al. discovered that adding MnSO4 to the mild acid ZnSO4 electrolyte can effectively
suppress the dissolution of MnO2

[47,48]. In 2018, Fu et al. demonstrated that Mn2+ convert into Mn(III)-based
oxides could contribute additional capacity, surpassing the theoretical capacity limit of 308 mAh g-1 based
on MnO2/Mn3+ reaction[49]. This finding underlined the importance of the two-electron transfer between
Mn2+ and MnO2, thereby attracting the widespread interest of researchers. Further reports by Xie et al. in
2019 demonstrated the electrodeposition mechanism of Mn2+ from the electrolyte to form MnO2, boosting
the capacity and cycling stability of electrolysis Zn-Mn batteries[48]. These insights suggest that efficient
design of Mn-based oxide materials can trigger the reversible dissolution-deposition reaction of MnO2/Mn2+

in the mild acid environment, facilitating the development of high-energy Zn-Mn batteries.

Henceforth, Xia et al. enhanced δ-MnO2 capacity and stability by incorporating high-valence Mo5+ ions,
altering the Mn-O bond angle and inducing structural distortion (Jahn-Teller effect) in the [MnO6]
octahedron of Mo-ZnMn2O4

[6]. This modification promoted the dissolution of Mn(III)-based oxides into the
electrolyte and enabled the activation of the MnO2/Mn3+/Mn2+ reaction, doubling the specific capacity to
652 mAh g-1 at 0.2 A g-1[6]. Furthermore, the Co-doped δ-MnO2 catalyzes the electrochemical deposition of
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Figure 2. Schematic illustration of three ways to stimulate the dissolution/deposition reaction of MnO2/Mn2+ for high-performance Zn-
Mn batteries.

active Mn compounds, enhancing self-recovery and energy storage performance of Zn-Mn batteries[7]. 
Besides ion doping strategies, constructing Mn-based hybrid hosts also greatly facilitates two-electron 
transfer reactions for high-energy AZBs. For example, the MnO2/MoO3 hybrid cathode with the reversible 
double electron transfer reaction exhibits a high capacity of 333 mAh g-1 caused by the weakened energy 
barrier for Mn2+ release and stronger attraction to Mn2+ during battery cycling tests in an electrolyte without 
Mn2+ additives[8]. Furthermore, Radha et al. prepared carbon-coated MnOx cathodes to achieve the 
reversible Mn4+/Mn2+ redox chemistry for advanced Zn-Mn batteries[50]. Specifically, birnessite-type MnO2 
was in-situ generated utilizing electrolyte addition of Mn2+ and finely divided MnOx particles during the 
charging process[50]. It is worth noting that the conductive carbon substrate further provides active sites for 
the MnOx cathode, yielding a peak energy density of 845.1 Wh·kgcathode

-1 with an extended cycle life of 
1,500 cycles[51].

In the reduction process of solid MnO2 to Mn2+, the absence of active sites for capturing dissolved Mn2+ can 
lead to significant capacity decline during battery cycling. To address this, strategies such as employing a 
carbon coating for surface protection and incorporating a porous carbon interlayer have been proven to 
substantially improve the electrochemical performance of Zn-MnO2 batteries by capturing dissolved Mn2+ 
ions[52]. Ultimately, the primary challenges in the dissolution-deposition energy storage mechanism of 
Mn-based cathode materials are severe capacity degradation and poor cycling stability. Therefore, it is 
essential to optimize Mn-based cathode materials, enhancing the Mn3+/Mn2+ conversion efficiency and 
ensuring the structural integrity for high-energy and stable Zn-Mn batteries.

The chemical environment adjustment near the CEI
Studies have identified the root causes of capacity degradation in Zn-Mn batteries based on the MnO2/Mn2+ 
reaction during cycling. As a result, the increased pH value and Mn3+ concentration in the electrolyte and 
the accumulation of inactive MnO2 (designed as “dead MnO2”) near the CEI severely hinder ion diffusion 
and reaction efficiency of MnO2/Mn2+[53-56]. Therefore, efforts are currently focused on preventing the 
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disproportionation of Mn3+, eliminating “dead MnO2”, and enhancing the applications for Zn-Mn 
batteries[15]. To address these issues, strategies such as increasing proton concentration, introducing ligand 
ions such as F- or P2O7

3-, and employing innovative electrolytes have been explored[57]. Xie et al. used 
Mn(AC)2 rather than conventional MnSO4 electrolytes to boost the direct conversion of Mn2+ to MnO2, 
resulting in a lower initial oxidation potential for fast-charging Zn-MnO2 devices in the Mn(Ac)2 system[48]. 
More importantly, incorporating redox couples such as Cr3+/Cr2+ or Fe3+/Fe2+ in acetate-based electrolytes 
further endows electrode functionality by removing inert species and optimizing cathodic potential, thereby 
improving the energy density and battery life[58,59]. In-situ electrochemical quartz crystal microbalance 
(EQCM) techniques provide insights into the deposition/dissolution chemistry of MnO2 cathodes, 
promoting the development of high-performance AZBs[59]. Very recently, iodide (I-) as a catalyst addition 
can boost the reduction of solid MnO2 to Mn2+, optimizing electrolysis kinetics and conversion 
efficiency[60,61]. More importantly, the effective removal of “dead MnO2” also temporarily reduces capacity 
attenuation and increases the cycle life, contributing to the industrialization of high-energy Zn-Mn 
batteries.

Electrodeposition surface to active MnO2/Mn2+ reaction
Very recently, the cathode-free Zn-MnO2 battery system has demonstrated the deposition/dissolution 
reaction of MnO2/Mn2+ on the cathode side for the higher energy density[45]. This system, characterized by a 
high redox potential (~1.99 V vs. Zn/Zn2+), benefits from carbon felt on the cathode side, providing active 
sites for efficient deposition of MnO2 and reduced capacity decay caused by Mn2+ dissolution[46,62-64]. These 
findings offer fresh insights into the operation of Zn-MnO2 batteries, especially in stationary applications, 
where the energy storage mechanism remains complex due to pH fluctuations and the formation of 
intermediate products during charge-discharge cycles[65-67]. In-depth studies using diverse in-situ detection 
techniques reveal that weakly acidic sulfate electrolytes can induce subtle changes in pH values, forming 
byproducts such as Zn4SO4·(OH)6·xH2O (ZSH)[68-70]. These byproducts are essential in the dissolution-
deposition reaction and provide insights into the MnO2/Mn2+ redox processes with non-MnO2 cathode 
materials. In electrolytes containing Mn2+, ZSH actively participates in the electrochemical reaction and 
forms layered zinc vernadite (ZnxMnO(OH)2) nanosheets on the cathode side. During the discharge 
process, these ZnxMnO(OH)2 nanosheets react with proton ions to alter the surface pH and promote ZSH 
re-deposition. This process enhances the dissolution-deposition reaction of Mn2+/ZnxMnO(OH)2 catalyzed 
by ZSH, which is crucial for enhancing cycle stability and better battery performance of Zn-Mn batteries[71].

In a weakly acidic electrolyte environment of zinc sulfate, ZnO, MgO, CaO, etc., can further be used as 
cathode catalytic materials to activate the two-electron transfer reaction in electrolytic Zn-Mn devices. 
However, these catalytic substrates with varying performances exhibit distinct properties in inducing the 
deposition mechanism for Zn batteries. For example, the Zn-CaO battery shows remarkable capacity 
retention compared to the Zn/MgO battery, possibly due to the stable CaSO4·2H2O phase deposition on the 
CaO cathode[72]. This study contributes to a better understanding of Zn-Mn batteries and guides the design 
of high-capacity ones in mild acid environments.

Long-cycle Zn-Mn batteries with stable and high capacity are required for their commercialization in large-
scale energy storage applications. Based on the above three excitation methods of two-electron transfer of 
Mn-based oxide materials, the introduction of defects in Mn-based dioxide, the electrolyte addition of redox 
couple, and substrate design for catalytic deposition of active Mn-based oxides are promising excitation 
methods for high-performance Zn-Mn batteries with the two-electron mechanism of MnO2/Mn2+ for high-
energy and durable Zn-Mn batteries.
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Vanadium-based cathodes with the V5+/V3+ reaction
V-based oxides are another promising cathode material due to their low cost, high theoretical specific
capacity (+3 +5 for V2O5, 589 mAh g-1)[73,74], and reversible cycling stability[75]. However, the practical
application of Zn-V batteries faces great challenges of inferior cycling stability, low capacity, and poor rate
capability caused by the dissolution of active substances, poor conductivity, and sluggish Zn2+ diffusion
kinetics. Therefore, enhancing the redox activity of V-based cathode materials is essential for high-rate and
high-energy AZBs. Based on these, this section summarizes the ways to solve the above issues, including
modifying V-based materials and the electrolyte optimization strategy [Figure 3].

Improved V5+/V3+ reaction activity
One common issue with V-based cathode materials is the serve capacity fading caused by the low
conductivity and active material dissolution during the battery cycling test. Incorporating conductive
materials such as MXene (the family of two-dimensional transition metal carbides), nitrides, and
carbonitrides[76,77], graphene oxide (GO)[78], reduced GO (rGO)[79-82], and carbon nanotubes (CNTs)[83] into V-
based composite cathode materials significantly enhances redox activity with the restrained vanadium
dissolution and byproduct formation. Besides, carbon-based materials also act as conductive additives into
V-based hosts via merely physical mixing with active substances. Such direct compositing with V-based
materials can significantly enhance the conductivity and stability for the improved energy density of Zn-V
devices. The dissolution of vanadium and formation of byproducts can be effectively inhibited by coating
carbon materials onto the surface of V-based cathodes. Wan et al. developed a KV3O8·0.75H2O (KVO)
material coated with single-walled CNTs (SWCNTs) to obtain an independent KVO/SWCNTs cathode
film, which displayed high capacity (379 mAh g-1 at 0.1 A g-1), excellent rate performance (92 mAh g-1 at
5 A g-1), and remarkable capacity retention rate of 91% over 10,000 cycles[11]. Therefore, introducing
conductive carbon materials is effective for the enhanced reaction activity of V-based hosts in high-
performance Zn batteries.

V-based cathodes often exhibit layered and tunneling characteristics, limiting the Zn2+ diffusion kinetics
caused by the electronegative O atoms[84]. Hence, ion doping and organic intercalation as the modified
strategies have been explored to enhance the rate capability and stability of Zn-V batteries[85,86]. For instance,
free-standing Ca-doped V2O5 (a-Ca-V2O5) with high utilization of the abundant active sites exhibits fast
reaction kinetics and improved discharge capacity even at large current densities[12]. Density functional
calculations (DFT) revealed that doped Ca atoms yielded lower adsorption energy for inserted Zn2+ ions,
thereby facilitating rapid reaction kinetics and achieving exceptional rate performance during the Zn2+

insertion/extraction process. Besides ion doping, Song et al. utilized p-aminophenol (pAP) pre-intercalated
into layered V-based oxides of V3O7·H2O, increasing the V-O layer spacing to improve rate performance
and cycle life[13]. The pAP intercalated-V3O7·H2O hybrid cathode exhibits double electron transfer,
demonstrating remarkable reversible specific capacity (386.7 mAh g-1 at 0.1 A g-1) at the high mass loading
of 6.5 mg cm-2[13]. Recently, Ma et al. successfully developed an organic-inorganic hybrid cathode by
combining the high capacity of VO with the high working voltage of ethylenediamine (EDA), resulting in a
remarkable working voltage of up to 0.82 V and ultra-long lifespan of VO-EDA cathodes[87]. Furthermore,
the incorporation of EDA molecules also improved ion diffusion ability, achieving higher capacity
(382.6 mAh g-1 at 0.5 A g-1) and extended cycle life (10,000 cycles)[87]. Therefore, the intercalation
modification strategies offer insights for exploring high-energy V-based cathode materials. Furthermore,
intercalating ions such as K+, Na+, Cs+, Li+, and Zn2+ can also significantly improve the structural stability and
cycling performance of Zn-V devices[86,88-91]. For instance, Wang et al. reported a novel cathode of Mg2+ pre-
intercalated V-based oxide (designed as MgV2O6·1.7H2O), enhancing the V-O layer distance for high redox
kinetics and cathode integrity[92]. These above-mentioned modification strategies for cathodes have
significantly enhanced the capacity, discharge platform, and rate performance of VO cathodes, thereby
constructing advanced Zn-V systems for practical applications.
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Figure 3. Graphic depiction of challenges and design strategies for constructing high-performance vanadium-based cathodes with more 
than two-electron transfer mechanism.

Improved CEI and additional redox couples
Optimizing the electrolyte is another critical strategy for developing high-performance Zn-V batteries. V-
based cathodes generally suffer from the dissolution of V elements and irreversible structure collapses in 
conventional aqueous electrolytes, such as ZnSO4 and Zn(CF3SO3)2. In light of this, the formation of CEI on 
the cathode surface prevents the side reactions and harmful substance exchange between the V-based 
cathode and the electrolyte, such as interlayer water shuttling effect and V-based compound dissolution. 
Among various options, using high concentration electrolytes enhances the cycling stability of the V-based 
cathodes. However, it still faces the challenges of water molecular interaction and the inferior rate capability 
of V-based cathodes during battery cycling. Hence, forming a reliable and stable CEI is crucial for zinc-
vanadium batteries with high energy density, particularly during the long cycling test. To lower the cost of 
the high concentration electrolyte, Wang et al. introduced an ultra-low water activity electrolyte addition of 
trimethyl phosphate (TMP) to improve the stability and capacity of Zn-V6O13 batteries, significantly 
suppressing vanadium dissolution and side reactions at the cathode interface[14]. Therefore, the Zn-V6O13 
battery with the innovative electrolyte addition exhibits an exceptional cycle life of up to 30,000. In light of 
these findings, the electrolyte modification strategy not only provides a more stable CEI interface but also 
inhibits vanadium dissolution to minimize byproduct deposition.

Additionally, functional electrolyte additives, such as I2/I-, can provide additional discharge capacity by 
participating in the energy storage process. Considering the higher redox potential of I2/I- than that of 
V5+/V3+, many researchers have attracted much attention to this modification strategy to construct high-
energy Zn-V batteries. Recently, Yang et al. proposed an ethylene glycol solution of Zn(CF3SO3)2 and ZnI2 
for a dual-functional cathode of NH4V4O10 and porous active carbon (AC) to realize the synergistic effect of 
Zn2+ insertion/extraction and electrolyte-assisted I2/I- conversion reaction mechanism[93]. During the cycles, 
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three-electron transfers (one-electron transfer for halogen ion) were realized, which obtained higher 
discharge medium voltage (0.96 V) and capacity retention rate (0.032%/cycle) at 0.2 A g-1[93]. The unique 
electrolyte modification method has deeply explored the compatibility of halogen redox and Zn2+ insertion/
extraction, improving the cycle stability and energy density of aqueous Zn-V batteries. Therefore, 
improving the redox activity of V5+/V3+ chemistry along with additional redox couples is the future 
developing direction for high-energy and long-life Zn-V batteries.

Halogen-based cathodes with multi-electron transfer chemistry
In contrast to conventional Zn batteries based on the ion insertion/extraction mechanism, Zn-halogen 
batteries (Zn-X2, X=Cl, Br, and I) exhibit a distinct energy storage chemistry through the conversion 
reaction between halogen and their ions. The conversion mechanism of halogen cathodes can avoid the 
issues of lattice distortion, sluggish Zn2+ diffusion, and poor conductivity in V- and Mn-based cathodes. 
Besides, the rich valence states of halogen atoms can achieve multi-electron transfer under certain 
conditions, thereby constructing long-life and high-energy AZBs [Figure 4][94,95]. When halogen hosts 
directly act as the cathodes, conductive and porous carbon materials are generally utilized as stabilizers to 
fix the halogen atoms, which is highly related to the electrochemical performance and lifespan of the Zn-
halogen batteries[96]. Yet, the mass loading of the halogen host is limited by the conductive carbon-based 
additions, resulting in inferior areal capacity and rate capability for the AZBs.

In the case of the conversion energy storage mechanism, it is also possible to prepare a cathode-free battery 
system by introducing halogen ions into the electrolyte, such as the electrolytic Zn-chlorine[97], Zn-
bromine[98], and Zn-iodine electrodes[99]. Moreover, Zn-halogen devices are cost-effective compared to other 
cathode materials due to the abundance of halogen elements in the ocean. The multiple valence states of 
halogen elements (-1, 0, +1, +3, +5, and +7) make halogen hosts highly promising for high-energy AZBs. 
The reversible conversion reaction based on X2/2X- involves a two-electron transfer chemistry, leading to 
the harmful polyhalides through the reactions between X2 and X-. Furthermore, it is interesting to note that 
three, four or even six-electron transfer reactions can also be triggered under the influence of other halogen 
ions in the electrolyte, thereby achieving the ultra-high energy density of 200 Wh kg-1[17,100]. Therefore, high-
energy and low-cost Zn-halogen devices exhibit application prospects to replace commercial lead-acid 
batteries with strong acid electrolytes and heavy metal lead pollution[101,102]. The early-stage challenges of Zn-
halogen batteries primarily include polyhalides shuttling effect and low energy conversion efficiency, 
leading to serious Zn corrosion, slow reaction kinetics, and poor lifespan. The following section mainly 
focuses on constructing high-performance Zn-halogen batteries through the modified methods of 
optimizing cathode material structures, incorporating functional electrolytes, and adjusting separator types.

Cl-based batteries with multi-electron transfer reactions
The chloride redox reaction (ClRR) in Cl-based batteries, known for its cost-effectiveness, high redox 
potential of 1.36 V (vs. SHE), and excellent theoretical capacity (756 mAh g-1 for two-electron Cl-based 
reaction), has gained prominence for producing high-energy AZBs[103,104]. However, the gas-liquid two-phase 
conversion reaction of ClRR faces the challenges of redox irreversibility and inferior cycling stability caused 
by the inadequate fixation of chlorine and electrolyte decomposition. These issues significantly influence the 
practicality of Zn-Cl2 batteries[97,105]. Enhancing chlorine fixation is vital for developing effective Cl-based 
devices, especially for the activation of multi-electron transfer chemistry. Recent efforts have focused on 
immobilizing oxidized chlorine in carbon-based host materials, including AC, graphite, CNTs, and porous 
carbon spheres[16,106]. Wang et al. developed a graphite cathode for accommodating the electrochemical 
generation of bromine and chlorine, demonstrating an increased average discharge voltage of 1.71 V and a 
capacity reaching up to 257 mAh g-1 based on double halogen redox reactions involving two-electron 
transfers (Br0/Br- and Cl0/Cl-)[18]. However,  physical adsorption on carbon-based materials cannot fully 
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Figure 4. Schematic illustration of the energy storage mechanisms, issues, and modified strategies for Zn-X2 batteries (X = Cl, Br, I, 
n = 1, 3, 5).

prevent Cl2 precipitation, Cl3
- dissolution, and Cl2 decomposition reaction, affecting the coulometric 

efficiency and cycling stability of Cl-based batteries[107].

Compared to carbon materials, a cathode that can form stable chemical adsorption via the chemical bonds 
with chloride species is required for reversible ClRR. A novel approach by Chen et al. involved diphenyl 
diselenide (di-Ph-Se) as a cathode material to activate the Se-halogen synergistic chemistry for efficient 
chlorine fixation[17]. This resulted in a highly reversible ClRR with low Cl2 emission and a significantly 
elevated discharge voltage (1.87 V vs. Zn2+/Zn). Each Ph-Se in the cathode can facilitate the fixation of two 
oxidized Cl0 and enable the polyvalent conversion of Se, thereby triggering a six-electron transfer reaction 
for an ultra-high energy density of 665 Wh Kg-1 with a high average voltage and coulombic efficiency (CE) 
of 1.51 V and 99.3%, respectively. Furthermore, the packaged Zn//Ph-Se/Cl exhibits a notable area capacity 
of 6.87 mAh cm-2 and exceptional self-discharge performance, demonstrating the practical application 
potential. The chemical reaction of Se and Cl synergism provides a novel approach for achieving reversible 
and efficient halogen redox reactions.

In addition to the rational design of cathode materials for achieving effective adsorption of chloride species, 
employing the redox reaction of active substances in the electrolyte represents a novel strategy for promoted 
Cl fixation. Similarly, the catalytic effect of metal ions is also evident in Zn-Cl2 batteries. Chen et al. 
introduced trace amounts of Mn2+ ions into the electrolyte, forming an in situ MnO2 redox adsorbent to aid 
in Cl2 adsorption during the charging process[108]. The resulting Zn-Cl2@MnO2 battery based on a multi-
electron transfer mechanism exhibits a high voltage of 2.0 V at 2.5 mA cm-2 and exceptional cycling stability 
over 1,000 cycles with an average CE of 91.6%[108]. These above-mentioned approaches present a promising 
direction for advancing viable aqueous Cl-based batteries.

Br-based batteries with multi-electron transfer reactions
Compared to Cl-based batteries, Zn-bromine (Br2) batteries with lower volatility and toxicity have seen 
practical advancements, including commercial demonstrations at the kW/kW h-1 level[109]. In 1980, the 
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Zn-Br2 battery introduced by Eustace et al. was a groundbreaking milestone, offering a high voltage of  
1.85 V, a theoretical capacity of 335 mAh gBr

-1, and a theoretical energy density of 440 Wh kg-1[110,111]. 
However, challenges of the corrosiveness of Br2 and the diffusion of soluble polybromine anions (Br3

-, 
Br5

-, etc.) can cause Zn anode corrosion and low CE, preventing further progress in Zn-Br2 systems[112-115].

Early single-chamber Zn-Br2 batteries utilized high-density Br2 and low water absorption for physical
separation, offering a cost-effective storage solution. Yet, this system still faces the volatilization of Br2

gas[102]. To address this issue, electrode materials, particularly conventional carbon materials such as porous
carbon, are used for their conductivity, large surface area, and stability. They provide active sites for
bromine ion adsorption but require enhanced catalysis and Br storage capacity[116-119]. Building upon this
foundation, Xiang et al. utilized N-doped carbon materials as adsorbents to enhance the capacity with high
reversibility, although some Br species still escaped[116]. Wang et al. designed a novel cage-like porous carbon
material (CPC) with tailored pore sizes according to the molecular size of Br- ions and bromine complexes
(MEP+ and MEPBR3)[18]. The optimized CPC can successfully fix Br2 within their porous structures,
effectively preventing Br2 gas leakage for stable Br-based cathodes over 300 cycles[18]. With advancements in
anode, cathode, and electrolyte modifications, zinc-bromine batteries with multi-electron transfer capability
and high discharge voltage are now commercially viable. Continuing research focuses on enhancing CE and
energy efficiency for further improvements.

Xu et al. constructed a practical water-based Zn-Br2 static battery based on continuous Br-/Br0/Br+ redox
reactions, which solved the shuttle and hydrolysis problems of polybromides (Br3

- and BrCl2
-) by synergizing

pyridine complexation chemistry and the salting-out effect of ZnSO4 water-based electrolyte[120].
Pyridinium-polybromide complexes (HPY Br) can be used both as a complexing agent and active material
and show excellent binding strength with polybromides. Additionally, 3 M ZnSO4 causes a strong salting-
out effect through SO4

2-, which is beneficial to the dissociation of complexes. Benefiting from these
advantages, the two-electron Zn-Br static battery exhibited good cycling stability (88.5% retention after
1,000 cycles), a high CE of 99.8%, and an energy efficiency of 89.9%[120]. This type of Zn-Br2 battery shows
great potential for expanded applications, and its cost in production is expected to be quite cheap. It
provides a promising sustainable power source of high-performance and low-cost Zn-Br2 batteries for large-
scale energy storage.

I-based batteries with multi-electron transfer reactions
Iodine (I2) stands out among halogen batteries for its low toxicity and corrosion, plus the practicality of
solid I2 for large-scale energy storage, making it one of the fastest-developing Zn-halogen batteries based on
the I2/2I- chemistry[109]. However, challenges such as the polyiodide shuttle effect, Zn corrosion, and low CE
severely limit the development of Zn-I2 devices[121]. Recent advancements in pinning I2 hosts have focused
on porous carbon materials[122,123], single-atom metal-nitrogen carbon materials[124], metal complexes[125], and
conductive polymers[126]. The shuttle problem of polyiodide ions can be fundamentally solved by improving
the reaction kinetics and reducing the production of polyiodide ions[127]. Zhang et al. developed a starch-
iodine complex as the cathode material to limit the polyiodide shuttle effect, enhancing the lifespan of up to
50,000 cycles in the modified Zn-I2 battery[19]. Additionally, novel electrolytes and functionalized
membranes are crucial in effectively preventing the polyiodide shuttle during battery working[128-130]. For
instance, Chen et al. designed a vermiculite nanosheet (VS) suspension electrolyte, which can efficiently
anchor polyiodides and improve the cycling stability[131]. This study demonstrated that the Si-O bond
between the primary intermediate I5

- and VS possesses high binding energy, enabling efficient anchoring of
dissolved polyiodides on the VS surface[131].
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To achieve high specific energy Zn-I2 batteries, the characteristics of iodine elements with variable valence 
states are utilized to stimulate new redox couples with enhanced electron transfer numbers and higher 
reaction potential. Zou et al. introduced an aqueous zinc-iodine battery with a four-electron transfer, 
leveraging the redox couple of I+/I2 (1.83 V vs. Zn2+/Zn) and I2/I- (1.29 V vs. Zn2+/Zn) with ZnCl2 electrolyte. 
This approach resulted in an increased specific capacity of 594 mAh g1 and an energy density of 750 Wh kg-1 
over 6,000 cycles[15]. Earlier attempts to use iodine oxides of IO4

-/IO3
- in an acidic electrolyte for multi-

electron transfer face issues such as HER and Zn corrosion[132-134]. A recent breakthrough with a six-electron 
transfer redox couple of IO3

-/I- achieved impressive capacities of 1,200 mAh g-1 and energy densities of 
1,357 Wh kg-1 by employing halogen interchange chemistry with Br-[100]. This cycling process happened 
through halogen interchange chemistry between I2 (in the electrode) and Br- (in the acidic electrolyte). 
Specifically, the polar IBr halogen interchange intermediate formed undergoes nucleophilic reaction with H2

O to form IO3
- during the charging process. During discharge, Br- acts as a catalyst for the dissociation of 

IO3
- and reduces it to IBr and Br2. Therefore, iodine-based devices offer significant potential for high-energy 

and fast-charging Zn batteries with a long lifespan.

Based on previously mentioned Zn-halogen batteries with multiple electron transfer mechanisms, Zn-I2 
devices have induced great attention for high-energy AZBs with the twelve-electron transfer reaction. 
However, the lighter molar mass of Br and Cl is positive for further improving the battery energy density. 
Therefore, preventing the gas formation of Cl2 and Br2 and the shuttle effect for the inferior CE and lifespan 
are urgent for developing high-performance Zn-halogen batteries.

Organic cathodes with multi-redox centers
Compared to inorganic cathode materials, organic cathodes with low mass, flexible molecular chains, and 
multiple redox groups generally offer improved structural stability, better rate performance, and the 
potential for higher energy densities[135-138]. Besides, the organic cathode in Zn batteries prevents Zn dendrite 
formation and extends battery life by creating a chemical barrier[139,140]. The energy storage mechanism in 
aqueous Zn-organic batteries (AZOBs) is driven by the insertion of Zn2+ or H+ ions combined with multiple 
active sites in the organic cathode materials during the discharge process[141-143]. As illustrated in Figure 5, 
electron transfer at the cathode often involves conjugated structures and delocalized electrons to facilitate 
ion and electron transfer kinetics[144-146]. Despite these advantages, organic cathodes face challenges such as 
low actual capacity, poor cycle stability, and inadequate rate performance, primarily due to low electronic 
conductivity and unstable organic intermediates[20,147]. Organic cathodes with redox-active centers such as 
C=O and C=N can improve electron transfer numbers by providing more reaction sites and faster electron 
transfer kinetics, increasing energy density and stability[140,148,149]. For example, quinone compounds and their 
derivatives including 6,8,15,17-tetraaza-heptacene-5,7,9,14,16,18-hexaone (TAHQ), 9,10-
phenanthraquinone (PQ), tetracyanoquinodimethane (TCNQ), pyrene-4,5,9,10-tetraone (PTO), and 8,21-
dihydronaphtho[2,3-a]naphtha[2',3':7,8]quinoxalino[2,3-i]phenazine-5,11,16,22-tetraone (DADB) exhibit 
multi-functional groups for boosting multiple electron transfer reactions for achieving advanced 
AZOBs[143,148-150]. Therefore, the rational design of organic molecular structures is the primary method for 
boosting their battery performance.

The selection of organic cathode materials for activating multi-electron transfer reactions is a complex 
decision involving a thorough evaluation of various factors to determine the optimal option for a specific 
application. The C=O (carbonyl) group is generally preferred over the C=N (imine) group due to its higher 
reduction potential, better stability, and stronger interaction with zinc ions, enhancing its electrochemical 
performance. However, some C=N and C≡N compounds have shown excellent electrochemical 
performance, depending on their specific molecular structures, electrolyte composition, and battery 
operating conditions[139,141,146,149,151-153]. To tackle the concerns mentioned above, it is imperative to modify the 
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Figure 5. Diagrammatic representation of the energy storage mechanism, challenges, and structural modification strategies for high-
performance Zn-organic batteries with multiple electron transfer reactions.

organic cathode structure to enable multi-electron transfer reactions for the enhanced battery performance. 
Recent strategies include modifying and rearranging the organic structures in various ways that further 
nudge the organic cathode to the subsequent multi-electron transfer[154-157]. The primary causes of the low 
conductivity of the organic cathodes are caused by the molecular structure of organic compounds with wide 
highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap 
values[158-161]. For instance, Zhao et al. fabricated a carbon-based poly(meta-aminophenol, 3-AP)/poly(para-
aminophenol, 4-AP) hybrid cathode for four-electron transfer AZOBs with a high capacity of 347 mAh g-1 
at 0.2 A g-1[21].

Addressing the high solubility and weak molecular bonding of organic cathodes requires increased active 
sites with high stability[21,152-154,162,163]. Peng et al. described the benzo[a]benzo[7,8]quinoxalino[2,3-
i]phenazine-8,17-dione (BBQPH) cathode with reversible multi-electron transferred by the Zn2+/H+ co-
insertion mechanism, exhibiting a superior capacity reservation of 380 mAh g-1 after 1,000 cycles at 5 A g-1 
and an excellent energy density of 355 Wh Kg-1[39]. Challenges such as sluggish ion diffusion are addressed 
by improving the morphology and electrical conductivity of organic molecules in cathode materials. For 
example, Zhao et al. sequentially deposited poly(1,5-naphthalenediamine, NAPD) and poly(para-
aminophenol, pAP) onto porous carbon to fabricate the C@multi-layer polymer cathode with an enhanced 
capacity of 348 mA h g-1 at 0.1 A g-1[164]. The intrinsic electrical conductivity in conjugated organic cathodes 
generally exhibits the rapid diffusion pathway of Zn2+ ions for improved rate capability of AZOBs[165-167]. By 
utilizing electroactive phenazine, Ye et al. prepared a liner π-conjugated poly(phenazine-alt-pyromellitic 
anhydride) (PPPA) cathode material with both C=O and C=N groups[22]. Quinone-based PPPA cathodes 
provide a remarkable capacity retention of 140 mAh g-1 and ultra-high lifespan over 20,000 cycles at 5 A g-1, 
evaluating promising applications in Zn//PPPA devices[22].
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In addition to increased redox activity, introducing multiple redox elements of halogen, sulfide, and 
selenium has been drawing great attention to enhance electron transfer reactions of high-performance 
AZOBs[23,148,168-170]. For example, Chen et al. developed dual-ion Zn-triphenylphosphine selenide (ZnǁTP-Se) 
batteries with a high-potential triphenylphosphine selenide organic cathode, achieving excellent cycling 
performance and remarkable discharge capacity after 4,300 cycles with a flat discharge plateau at 1.96 V[170]. 
Attention to selenium-based cathodes is growing due to their potential for fast charging and improved long-
term cycling performance[148,171-174]. Recently, Zhang et al. utilized polyaniline (PANI) as the catalytic cathode 
material to trigger the dual-redox mechanism of Zn2+ insertion and I-/I3

-, thereby achieving a high areal 
capacity of ~1.0 mAh cm-2 after 200 cycles[175]. Therefore, evaluating and assessing multi-functional organic 
cathodes matched with multiple redox couples is essential for developing high-performance Zn-organic 
batteries. Covalent organic frameworks (COFs) have emerged as a promising approach for enhancing the 
electron transfer kinetics and redox potential of AZOBs. For example, the COF (Tp-PTO-COF) with 
numerous carbonyl active sites exhibits a high pair of redox peaks at 1.53 V/1.54 V caused by the anti-
aromatic effect[44]. Moreover, a high capacity of 208 mAh g-1 and stable cycling over 1,000 cycles 
demonstrate the contribution of dual-redox sites (C=O and C=N) in the Tetraamino-p-benzoquinone- 
Benzoquinone (TAQ-BQ) COF cathode host[176,177].

SUMMARY AND PERSPECTIVES
AZBs with cost-effectiveness and intrinsic safety have emerged as promising candidates for the large-scale 
energy storage systems. However, several challenges impede their widespread adoption including 
limitations in the energy density and battery lifespan. This paper comprehensively reviews multi-electron 
transfer cathode designs, including Mn-based oxides, V-based oxides, halogens, and organic compounds. 
To further enhance the performance of zinc-based devices, it is imperative to explore new modifications 
and designs in cathode structures. The selection of the optimal cathode material is crucial for battery 
performance, necessitating a thorough evaluation of the specific requirements for different cathode hosts. 
Remarkable cathode materials significantly enhance the overall efficiency and energy density of the battery. 
The goal of current research in this area is to facilitate multiple redox reactions within a confined voltage 
range to achieve the high energy density and long lifespan. Pursuing alternative structural modification 
strategies for these common multi-electron transfer cathode materials is essential, such as metal oxide 
nanostructure doping agents, redox mediators (RMs) for halogen-based cathodes, and ion storage 
mechanism optimization for organic hosts. These strategies aim to amplify their inherent multi-electron 
transfer capabilities while preventing the dissolution of active materials during multi-step redox processes.

Furthermore, exploring novel cathode materials is crucial for developing innovative battery systems. In 
designing cathodes, principles based on light element multi-electron reactions are employed to achieve 
high-energy and long-life AZBs, such as transitioning from V2O5 to VO2, and iodine to chlorine or sulfur 
elements. It is also important to note that cathode-free systems can still achieve high surface capacity and 
long cycle life by constructing Zn batteries with active substances present in the electrolyte. Additionally, 
exploring more redox couples that facilitate synergistic oxidation/reduction processes involving both 
cations and anions could further advance AZB technology. For Mn-based, V-based compounds, organics 
and halogens, incorporating specific redox couples not only inhibits the generation of deactivated matter for 
enhanced cycle life but also increases the redox activity for boosted energy density. Therefore, the coupling 
or mutual excitation of multiple redox reactions between the cathode and the electrolyte, resulting in 
multiple electron transfers, is the future research trend of Zn batteries. In addition, artificial intelligence 
(AI) can be used to predict electrode material functions and design structures to efficiently build high-
energy density and durable cathode materials. For example, AI can calculate to predict the physical/
chemical properties of MnO2 cathodes doped with different transition metals, thereby quickly choosing 
optimal combination for superior cathode materials with the sensitized MnO2/Mn2+ redox reaction.
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Figure 6. Perspectives of the high-energy aqueous Zn batteries enabled by multi-electron transfer reactions.

AZBs hold the potential to revolutionize the energy storage landscape, offering solutions that address safety 
concerns, leverage abundant resources, and stand at the forefront of emerging battery technologies. To 
achieve this potential, however, advanced electrode materials, electrolytes, and cell designs are necessary to 
be integrated into full zinc-ion battery systems, along with the comprehensive optimization and testing. 
This process ensures the AZB system meets safety, efficiency, and durability standards, achieving high-
energy and long-life Zn batteries based on light-element hosts and multi-electron reactions. Moreover, 
exploring more redox couples that facilitate synergistic oxidation/reduction processes involving cations and 
anions could greatly boost the further advancements in AZBs. Besides developing novel cathode materials 
matched with the optimized electrolyte, understanding the battery degradation mechanisms and operating 
condition optimization is essential for constructing advanced AZBs. Meanwhile, strategic optimization of 
battery design is required with targeted modifications to both the Zn anodes and electrolytes, as shown in 
Figure 6. To mitigate common issues associated with Zn anodes, such as dendritic growth, hydrogen 
evolution, and corrosion, several strategies can be employed. These include surface coatings or treatments, 
structural modifications, and the use of advanced materials or anode-free Zn battery systems. Each of these 
approaches aims to enhance the stability and longevity of the anodes, thereby improving the overall battery 
performance. Similarly, electrolyte modifications play a critical role in enhancing battery efficiency. 
Electrolyte additives, regulating pH buffers, temperature control, and redox couples, are pivotal for 
improving Zn stability, CE, and energy density of Zn batteries. For example, the addition of pH buffers can 
not only protect the Zn anode from corrosion but also inhibit the side reactions of the cathode for the high 
reaction efficiency. Therefore, creating a more conducive working environment can greatly optimize the 
battery performance of AZBs.

The successful commercialization and integration of AZBs into our existing energy infrastructure hinge on 
thorough integration and compatibility studies. These batteries have a wide range of potential applications, 
from small-scale portable electronics to large electric grids, each with unique requirements and challenges. 
To this end, scientists and engineers are actively engaged in exploring how Zn battery technology can be 
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seamlessly incorporated into current energy systems, with a vision to foster a more sustainable and energy-
efficient future. This review aims to offer insightful perspectives and recommendations for ongoing research 
in multi-electron transfer AZBs, with the additional goal of stimulating further innovation in this field. The 
ultimate objective is to realize the full potential of Zn devices, delivering energy storage solutions to meet 
the diverse needs of modern and future energy demands. By continuing to push the boundaries of this 
technology, AZBs with multiple electron transfer reactions could play a pivotal role in shaping the energy 
storage landscape and contribute significantly to global sustainability efforts.
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