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A B S T R A C T
The success of targeted therapies for cancer patients rests on three major components: the right target(s), the right drug and drug 
combination, and the right patient population. Although much progress has been made in understanding the mechanism of disease 
and in refi ning pharmaceutical properties of therapeutic agents, the attrition rates between target discovery and drug marketing 
approval have been high, especially in oncology. One of the main reasons underlying this undesirable statistics is believed to be the 
lack of predictive power of the model systems used in the preclinical setting. Several strategies have been employed with the aim 
of improving the predictive value of the preclinical studies, such as incorporating genomic profi ling and molecular segmentation 
into model selection, and enhancing the development and application of   patient-derived xenograft models even during early stage 
of drug discovery. This brief review will summarize some of the recent concept and practice in incorporating patient-derived 
models into all stages of drug discovery process, from target to clinical development.
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Introduction
The past decades have witnessed an explosive growth 
of scientifi c understanding of human diseases especially 
those of highly unmet medical needs. In the fi eld of 
oncology, the signifi cant progress in basic research 
coupled with technology advancement in drug discovery 
has resulted in a signifi cant number of breakthrough 
therapies with improved effi cacy and manageable 
toxicity. However, the overall track record of oncology 
drug research and development remains one of the 
worst in all therapeutic areas, with high attrition rate 
and prohibitive cost.[1,2] Recent survey indicated that in 
oncology drug development, close to 95% of drugs tested 
in Phase I trials failed to reach marketing authorization 
stage.[3] Signifi cant efforts have been invested in 
scrutinizing every aspect of the drug discovery and 
development process and looking for ways to improve 
the success rate and effi ciency. Among all, three 
pivotal areas have received much attention. First, it is 
commonly accepted that more refi ned, clinically relevant 
preclinical models are critical for accurately predicting 
patient response in clinical trials. Second, as we have 
fully embraced the concept and practice of personalized 
medicine and targeted therapy, tumor profi ling and 
patient segmentation based on predictive biomarkers 
need to be an integral part of preclinical and clinical 

research and drug development. Finally, there is a need 
for bi-directional fl ow of information between preclinical 
and clinical investigators, and for increased collaboration 
between industry, academia and regulatory agencies to 
ensure optimal alignment of interests and resources. This 
short review will only focus on patient-derived models as 
a promising approach for improving the successful rate 
of oncology programs.

Patient-derived Xenograft Models for Target 
Identifi cation and Validation
In the past 4 decades, signifi cant progress has been 
made in the understanding of cancer biology and 
emergency of new classes of targeted therapies that have 
signifi cantly changed the landscape of cancer treatment 
and management. The key to these successes has been 
the identifi cation and validation of cancer targets that 
distinguish cancer cells and tissues from normal ones, 
as elegantly summarized in the landmark articles by 
Hanahan and Weinberg.[4,5] Although a dauntingly 
complex disease, cancer can be viewed as evolved 
around a number of rational commonalities, or hallmarks, 
necessary for tumor initiation, progression, metastasis, 
evasion of immune surveillance and resistance to 
therapeutic intervention. These processes involve not 
only genetic and epigenetic changes in the cancer cells 
themselves, but also recruitment and alterations in the 
tumor-associated stroma and micro-environmental factors. 
Therefore, it is conceivable that therapeutic approaches 
involving targeting multiple hallmark functions will 
continue to be the cornerstone for targeted cancer therapy 
and management.[6]

Cancer target identifi cation traditionally involves the search 
for differential expression and function between cancer 
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and normal cells and tissues at the DNA, RNA, protein 
and microRNA levels. Multiple approaches of various 
through-put have been developed to identify differentially 
expressed genes and proteins.[7,8] Recent advances in 
transcriptomics, proteomics, genomics, functional genomics, 
epigenomics and metabolomics have signifi cantly expanded 
the scope and depth of novel targets as well as utility 
of existing targets.[6,9-11] Although cell lines have been 
traditionally used due to their availability and accessibility, 
most recent efforts have been focused on patient samples, 
tumor biopsies and resections, for example, for their clinical 
relevance and heterogeneity. Once a potential candidate 
target is identifi ed, the next key step is to functionally 
validate the target in the context of relevant patient 
population. The routinely employed approaches include 
tool compound, blocking antibody, dominant negative 
and RNA interference/short hairpin RNA. In addition, it 
is imperative to investigate whether the target identifi ed 
in a small set of cells and tissues are refl ected in a larger 
population ideally identifi able with selective biomarkers. 
To this end, a collection of large number of clinically 
collected tumor samples and patient-derived tumor models 
are critical to ensure translatability from target to drug and 
from laboratory to clinic.

Although cancer cell lines are the most widely used 
starting material as they are readily available and 
propagated to provide suffi cient material for in vitro 
manipulation and in vivo tumor growth, most of 
them have been established long time ago and have 
been selected and cultured under nonphysiological 
conditions. In contrast, the least manipulated samples 
are those directly obtained from patients through surgical 
procedures or needle biopsies. However, one of the 
major challenges of using primary patient tumors is their 
limited “shelf-life” and very low quantity in most cases. 
Compared with cell line models and patient tissues, 
patient-derived xenografts (PDXs) provide a practical 
solution by both preserving the fi delity of clinical 
characteristics and providing tumor supply suffi cient for 
most target identifi cation and validation strategies.[12,13] 
Another signifi cant benefi t of using PDX for target 
identifi cation and validation is that the process from 
target identifi cation to validation and then to effi cacy 
screening can be streamlined around the same models, 
therefore, offering a complete circle from patient to 
mouse and then back to patient.

Patient-derived Xenograft Model 
Characterization
Typically, when patient samples are obtained for 
establishing PDX models, basic patient information 
(such as age, sex, ethnicity, clinical diagnosis) with the 
exception of patient identity will be provided. Once the 
tumors are established in immune-compromised mice, 
comprehensive characterization at DNA, RNA and protein 
levels will be carried out to gain detailed understanding 

of the histological, biochemical, molecular and genomic 
characteristics of the models.[14-16] As many of the 
technologies have become more effi cient and affordable, 
whole-genome or transcriptome sequencing is increasingly 
being used to replace traditional microarray-based gene 
expression profi ling and copy number variation studies. 
Next generation sequencing (NGS) approaches such as 
exome sequencing or whole genome sequencing also 
provide information on mutations and chromosomal 
aberrations such as duplication, deletion and translocation, 
many of which identify tumor suppressors or oncogenic 
drivers[17] and potentially predict drugs likely to be 
effi cacious in particular patient subgroups.[18]

A number of studies were carried out to study the 
impact of successive passages on the gene expression, 
chromosomal stability and copy number variation. 
Although not defi nitive and most likely model-dependent, 
the general consensus in the fi eld is that PDX models 
should be used at early passages.[19] At relatively low 
passage, the histological features, gene expression profi le, 
copy numbers and chromosomal stability remains very 
similar to the matching tumor directly harvested from 
patient.[20-23] On the other hand, with each passage to a 
new mouse host, subsequent genetic changes may occur 
at different tendencies intrinsic to individual tumors, 
although the extent and impact of these alterations 
remain unclear.[24]

In reality, each cancer patient’s tumor is heterogeneous 
and unique. And within each of the tumor indications 
mainly defi ned by anatomic locations of tumor 
incident (e.g. lung cancer, breast cancer), many 
subtypes can be identifi ed by histopathology and 
immunohistochemistry (IHC) of an abbreviated panel of 
markers. Although these approaches have been widely 
used to describe and categorize tumors, they have 
largely failed to capture the variation of disease within 
indications. Recently, gene expression profi ling and NGS 
have helped further refi ne the models via molecular 
subtyping within individual cancer indications.[25-29] 
Such molecular subtyping can be particularly helpful 
in delineating subtypes that can be challenging to 
distinguish with routine histopathology or IHC. For 
example, traditionally, breast cancer subtyping is mainly 
based on histology fi ndings of IHC staining of selected 
markers. Recent molecular profi ling has identifi ed six 
distinct subtypes (luminal A, luminal B, human epidermal 
growth factor receptor 2, basal-like, claudin-low, and 
a normal-like) with clinically signifi cant differences 
in risk factors, incidence, prognosis, and treatment 
response.[30-33] A similar approach has also been used 
in lung cancer to defi ne clinically relevant subtypes to 
which targeted therapy can be applied to achieve optimal 
effi cacy. In lung cancer, especially in non-small cell 
lung cancer (NSCLC), recurrent oncogenic drivers such 
as epidermal growth factor receptor, KRAS,   anaplastic 
lymphoma kinase, as well as their related pathways can 
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be successfully employed to select responsive patients 
and predict response and resistance.[34-36]

Patient-derived Xenograft Models More 
Accurately Refl ect Human Cancer
Accumulating evidence has indicated PDX models are 
superior to traditional cell line xenograft models because 
they maintain more similarities to the tumors found in 
actual patients.[14] For example, a detailed cytogenetic 
analysis of PDX models revealed strong preservation 
of the chromosomal architecture observed in patients.[23] 
Furthermore, other studies have shown strong fi delity 
in histology,[37,38] transcriptome,[39] polymorphism[40] 
and copy number variations.[41] In some cases, certain 
oncogenic gene amplifi cation can be found in cell 
lines at levels that are several-multitude higher than 
in patient rumors, a cell culture-derived artifact that 
may lead to over-predict drug response in the clinic 
(unpublished data). On the other hand, emerging data 
started to show that PDX models may be more accurately 
refl ect clinical response when treated with therapeutic 
agents at clinically relevant doses (CRDs).[21]

Modeling Drug Resistance
Despite the continuously growing arsenal of new and 
improved anti-cancer drugs, for most cancer patients 
with advanced diseases, treatment failure remains 
an inevitable outcome. To a given treatment, only a 
fraction of the patients would respond the regimen 
favorably (responders), which stresses the importance 
of selecting patients with the appropriate molecular and 
pathological characteristics for maximal therapeutic 
benefi t. On the other hand, even when a particular 
treatment is initially effi cacious in selected patients, 
drug resistance will develop overtime. Therefore, drug 
resistance is a fundamental cause of therapeutic failure 
in cancer therapy. Numerous studies have attempted 
to unravel the mechanisms of drug resistance to 
traditional chemotherapeutic agents and to recently 
developed targeted, small molecule and antibody based 
drugs. Briefl y, the mechanisms of resistance can be 
roughly mapped to four categories: (1) Multi-drug 
resistance (MDR). MDR is caused by expression and/or 
induction of effl ux proteins, which are members of the 
ABC transporter superfamily involved in the transport 
of both hydrophobic and hydrophilic compounds.[42] This 
mechanism is relatively more common for cytotoxic 
drugs and payload of antibody-drug conjugates[42] than 
targeted agents; (2) Tumor initiating cells/cancer stem 
cells (TICs/CSCs). As discussed earlier, these cells 
have the capability of self-renewal and differentiation, 
remain relatively quiescent, and can tolerate higher 
level of DNA damaging agents and oxidative stress. 
These characteristics are important for TICs to survive 
chemotherapy and radiation and ignite tumor re-growth 
when the condition permits;[43-46] (3) Tumor genetic and 

epigenetic alterations. These alterations can take place 
at multiple points during tumor initiation, progression 
and treatment, and they can be preexisting mutations, 
acquired mutations, or changes in downstream genes 
and pathways. For example, resistance to EGFR 
tyrosine kinase inhibitors can be attributed to multiple 
mechanisms, such as gatekeeper mutation (T790M),[47-49] 
c-Met amplifi cation,[50] activation of alternative pathways 
such as insulin-like growth factor receptor and AXL,[48,51] 
trans-differentiation to mesenchymal cells[52] or small cell 
features;[53] and (4) Tumor microenvironment. Emerging 
data has indicated tumor microenvironment as a key 
mediator of drug resistance.[54] For example, several 
potential mechanisms of resistance to anti-angiogenic 
drugs are microenvironment-derived, including up 
regulation of alternative pro-angiogenic signals,[55,56] 
recruitment of bone marrow progenitors,[57] and increased 
pericyte coverage.[58] Another example can be found in 
pancreatic ductal adenocarcinoma, in which gemcitabine 
resistance has been attributed to ineffi cient drug delivery 
due to poorly perfused tumors.[59]

There are obvious advantages of using PDX models to 
study drug resistance mechanism and to characterize 
therapeutic agents for effi cacy. As discussed earlier, 
PDX models are heterogeneous in nature, and more 
closely refl ective of tumors in actual patients,[60] and 
a more appropriate system for understanding acquired 
and de novo drug resistance through enrichment of 
preexisting changes in subsets of cells.[61,62] A large 
collection of PDX models can best represent a broad 
patient population with various preexisting mutations 
and susceptibility to generate additional mutations, which 
cannot be achieved by other models including cell line 
xenografts. In addition, PDX models contain TICs/CSCs, 
and proper tumor stroma (albeit controversial) that can 
potentially contribute to resistance as well. Furthermore, 
it has become possible to establish PDX models with 
tumors that had already been treated and later became 
refractory. This is an important point because in clinic, 
most patients entering clinical trials have been treated 
with standard of cares previously and have relapsed with 
refractory disease. Compared to cell line xenografts, PDX 
models should better recapitulate patients with refractory 
and metastatic cancer.[63]

A number of studies have taken the advantages of PDX 
models to study drug resistance. Krumbach et al.[60] 
investigated response to cetuximab in 79 PDX models 
generated from colon, gastric, head and neck, lung 
and mammary cancer. After an in-depth analysis of 
different molecular characteristics of the tumors, they 
identifi ed c-MET activation as a key mechanism for 
drug resistance, especially in NSCLC adenocarcinomas. 
In another study: using PDX models of NSCLC, Dong 
et al.[64] identifi ed foci of resistance cells after cisplatin 
treatment as a single agent or in combination with 
vinorelbine, docetaxel, or gemcitabine. The authors 
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suggested that these drug-resistant cells were TICs-like 
and could be responsible for tumor recurrence.

Patient-derived Xenograft Models for 
Pharmacology and Biomarker Studies
Traditionally, pharmacology, biomarker and pharmacokinetics/
pharmacodynamics studies for oncology programs almost 
exclusively relied on tumor xenograft and to a much lesser 
degree, syngeneic models. With the signifi cant increase in the 
availability and affordability of PDX models offered by both 
academic institutions and contract research organizations, 
PDX models have seen increasingly their utility in routine 
research activities. A quick survey of oncology discovery 
programs published in the past 3 years shows that increasing 
number of programs use PDX models at some point during the 
preclinical discovery and translational research stages.[14,65-67] 
In addition, there is an industry-wide trend to include 
PDX model readout as a key component of the required 
data package for both internal use as well as regulatory 
submission. The history of using incorporating PDX models 
in drug discovery can be traced back to several decades ago. 
For example, one of the earliest reports involving cancer 
drugs and PDX models by Fiebig et al.[68] studied a number 
of chemotherapy drugs at their respective maximal tolerated 
doses (MTDs) in PDX models derived from 34 patients, and 
demonstrated 92% accuracy in predicting effi cacy and 97% in 
predicting no-response. Similar predictive value was seen in a 
later study by the same group.[69] However, additional studies 
suggest that the predictive value can fl uctuate due to factors 
such as tumor histology and location, stage of disease from 
which the models are derived, the quality of PDX models, 
sample size and dosing regimen.[64,70,71] In addition to selecting 
models that are histologically, molecularly and genetically 
relevant to the patients in clinical, another important factor 
for improving translatability of preclinical fi ndings is the 
drug exposure. Not surprisingly, preclinical model species, in 
most cases immunocompromised mice, can exhibit different 
tolerability and adsorption, distribution, metabolism and 
excretion property than those in human. It is commonly seen 
that drug exposure levels at MTD dose in mice are higher 
than clinically achievable levels in human.[72] Therefore, a 
compound given at mouse MTD to xenograft, allograft or 
syngeneic models may generate exaggerated effi cacy that 
over-predicts human response in the clinic. This phenomenon 
has been seen for both chemotherapy agents[12,73,74] as well 
as targeted agents such as vascular endothelial growth factor 
receptor inhibitors and PI3K inhibitors.[75] A key concept and 
practice to avoid the pitfalls of using mouse MTD dose and 
exposure as the sole basis for effi cacy prediction is to use 
CRD or clinically relevant exposure (CRE) whenever a CRD 
or CRE can be determined.

Patient-derived Xenograft Models for Mouse 
Clinical Trial
An evolving concept and practice, PDX mouse clinical 
trial, has started to yield positive results that had 
real-life impact on selected patients.[76] In this setting, 

PDX models established from the very same patients 
on trial are being treated ahead of patient therapy or 
concurrently, and results from the mouse trial is provided 
in real-time to help guide clinical management of the 
patient’s tumor. Further powered by the molecular 
characterization of the tumors, this highly personalized 
approach has the potential to revolutionize the drug 
development and patient care.[77] For example, a recent 
study by Stebbing et al.[78] reported 22 sarcoma PDX 
models were successfully established from 29 patients 
(76% take rate) and screened for drug sensitivity to a 
panel of therapeutic agents. The entire process typically 
took 3-6 months depending on individual tumor growth 
characteristics and treatment regimen. Of the 22 patients, 
6 died before data became available. Of the 16 remaining 
patients, 13 (81%) demonstrated a correlation between 
the results from their PDX mouse trial and clinical 
outcome. Similar approach has also been reported in 
advanced adenoid cystic carcinoma,[79] ovarian,[80] and 
other cancer types.[81] The current data, although limited, 
appears to support the use of PDX models to prioritize 
therapeutic agents against individual tumors. However, 
some key challenges remain before this strategy can be 
broadly implemented in clinical practice. For example, 
establishment of PDX models is still a technically 
challenging and time-consuming process, even after 
much progress has been made to improve the take rate 
and optimize the expansion scheme. In addition, the 
algorithm for the selection of agents to be tested needs 
to be further developed and refi ned. Lastly, to effectively 
demonstrate the feasibility and clinical benefi t of the 
PDX-guided treatment prioritization in the patient care 
setting, properly controlled clinical trials are needed.

Limitations of Patient-derived Xenograft Models
Although PDX models present an exciting opportunity 
for improving predictive value of preclinical and 
translational studies, and offer a number of advantages 
over conventional cell line xenograft models, just 
like any other preclinical model platforms, there are 
several limitations that one needs to be aware of. First, 
the utilization of severely immune-compromised host 
mouse strains, particularly the nonobese diabetic severe 
combined immune defi ciency gamma mice, while 
allowing higher take rate and more consistent growth of 
xenografted human tumors, is inherently inadequate in 
modeling immune responses. Although human stroma 
components including immune cells originally present in 
the tumor biopsy can be grafted together with the tumor 
tissue,[82] they normally cannot survive beyond the fi rst 
passage, and will be completely lost in the subsequent 
expansion.[83] The other stroma components including 
fi broblasts and vasculature are quickly replaced by 
murine counterparts.[83] The lack of functional immune 
system limits the utility of these models in studies 
where immune responses are required. For example, 
immunotherapy cannot be readily studied in the PDX 
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models established in immune-compromised mice. It 
is well documented and accepted that immune system 
is an important part of tumor stroma and signifi cantly 
contributes to tumor initiation, progression, metastasis 
and therapeutic response.[84,85] The introduction of mice 
with partially or completely humanized immune systems 
can potentially ameliorate this issue, but signifi cant 
technical challenges still exist.[86,87]

Second, although technical advances have gradually 
improved the tumor take, different tumor types, and 
different subtypes within the same tumor type, have 
varying rates of success. This has led to imbalanced 
representation of tumor types/subtypes that is more 
determined by take rate rather than clinical incidence 
rate. Although PDX models can avoid artifi cial selection 
in extended culture on plastic, the in vivo selection 
process exists as soon as the tumors are implanted. For 
example, high-grade, fast proliferating tumors tend to be 
easier to establish as PDX models than low-grade, slowly 
growing but progressive tumors.[88,89]

Additionally, compared to cell lines, PDX models are 
diffi cult to manipulate genetically. Most PDX models 
are established from and passaged as tumor fragments, 
and conventional transfection or transduction are not 
effi cient to genetically modify the tumors or introduce 
detection markers (such as luciferase or fl uorescent 
proteins). Therefore, PDX tumors are rarely established 
as orthotopic models, unless there is a surrogate 
biomarker that be readily used to measure tumor burden 
noninvasively.[90]

 Conclusion
Although hardly a new concept, PDX models have 
gained much attention and premium status in the past 
few years as they are becoming increasingly available 
and affordable, and are believed to offer a superior 
predictive value over conventional cell line xenograft 
models. Ample data indicated that PDX models maintain 
heterogeneity and tumor initiation ability, as well as 
molecular and genetic characteristics refl ective of human 
tumors. Emerging data indicated an improved predictive 
value of the PDX models; however, it is still early to 
conclude whether the advantage in translatability is 
applicable to large sample size and to various therapeutic 
mechanisms and modalities. The mouse clinical trial 
has the potential to accelerate and de-risk human 
clinical trials and hopefully reduce clinical attrition rates 
for novel compounds, and to prioritize therapies by 
allowing parallel testing of multiple treatment schemes 
for an individual patient. However, there are still much 
to be done to address technical challenges to make 
this approach feasible and affordable and to convince 
the medical and insurance community of the value 
this approach can offer. At the same time, one cannot 
overlook the limitations of PDX models and should take 
into consideration of their shortcomings when design and 

interpret studies. Collectively, these new developments 
emphasize the importance of employing PDX models in 
key areas of oncology drug discovery and development.
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