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Abstract
Infrared and visible image fusion technology has a wide range of applications in many fields such as target detection
and tracking. Existing image fusion methods often overlook the scale hierarchical structure information of features,
with local and global features not being closely interconnected. Typically, improvements focus on the network struc-
ture and loss functions, while the intimate connection between the quality of the source images and the feature extrac-
tion network is often neglected. The aforementioned issues lead to artifacts and blurring of fused images; besides, the
detailed edge information can not be well reflected. Therefore, a method of infrared and visible image fusion based
on a generative adversarial network (GAN) with multi-level detail enhancement is proposed in this paper. Firstly,
the edge information of the input source image is enriched by the multi-level detail enhancement method, which im-
proves the image quality and makes it more conducive to the learning of feature extraction network. Secondly, the
residual-dense and multi-scale modules are designed in the generator and the connection between local and global
features is established to ensure the transmissibility and coherence of the feature information. Finally, by designing
the loss function and dual discriminator constraints to constrain the fusion image, more structure and detail infor-
mation are added in continuous confrontation. The experimental results show that the fused image contains more
detailed texture information and prominent thermal radiation targets. It also outperforms other fusion methods in
terms of average gradient (AG), spatial frequency (SF) and edge intensity (EI) metrics, with values surpassing the
sub-optimal metrics of 65.41%, 65.09% and 55.22%, respectively.
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1. INTRODUCTION
With the continuous development of information communication and image sensing technologies, various
types of image sensors are widely used across multiple industries. The image information obtained by a single
sensor has certain limitations and can only reflect certain aspects of feature information in the scene which
cannot meet application requirements. Therefore, image fusion technology has been vigorously developed.
As a branch of image fusion, infrared and visible image fusion technology is widely used in many fields such
as target recognition, target detection and tracking, intelligent monitoring, agricultural automation, remote
sensing detection [1]. It makes full use of the different imaging characteristics of infrared and visible images,
and adapts to various scenarios through information complementarity. Infrared images provide rich thermal
radiation information, prominent targets, and are not affected by weather, but they have low resolution and
unclear details. In contrast, visible images offer high resolution and rich color and texture information, but
are susceptible to bad weather [2]. By combining the advantages of both, fused images with high quality and
excellent visual effects can be obtained, which are favorable for subsequent image processing.

Traditional infrared and visible image fusion algorithms usually use multi-scale transformation [3,4] and sparse
representation methods [5,6], which have made certain progress. Meng et al. used the non-subsampled con-
tour wave multi-scale transformation method [7] to solve the problem of salient target prominence in the fused
image. However, it relies too much on manual design, making it only suitable for complex and changeable
fusion scenarios [8], which results in high time consumption and inefficiency. In recent years, with the devel-
opment and progress of deep learning technology, increasing image fusion methods based on deep learning
have been emerging. Convolutional neural networks (CNNs) were introduced to achieve multi-focus image
fusion tasks [9], and relied on decision diagram classification to significantly improve the fusion effect. Li et
al. proposed a fusion structure based on dense blocks and autoencoders (DenseFuse) [10]. Its dense network
ensures that the significant deep features of the fused image will not be lost. However, this method still re-
quires manual design of the fusion strategy and cannot achieve end-to-end infrared and visible image fusion.
Subsequently, using a multi-scale approach based on DenseFuse, the fusion of feature maps output from mul-
tiple convolutional layers has achieved good results [11]. However, less complementary information between
modalities has been extracted, and the fusion rules are still manually designed, without fusing the specific
information of infrared and visible light. Adaptive fusion transformer (AFT) model revealed the latent rela-
tionship between the deep features of visible and infrared images, thereby achieving more accurate perception
in fusion [12]. In 2019, Ma et al. applied generative adversarial networks (GANs) [13] to the task of infrared
and visible image fusion, and realized end-to-end fusion of infrared and visible images without the need for
manual design of fusion rules [14]. Subsequently, the proposed GAN-based multi-classification constrained fu-
sion method effectively balanced the feature distribution of the source image [15], but the detailed texture and
edge information of the image failed to be highlighted. A bi-discriminator conditional GAN modelnot only
maintains source image information balance, but also enables multi-resolution image fusion [16], in addition
to solving the problem of differentiating image gradients and intensities with a bi-discriminator structure [17].
Additionally, a kind of Unified Gradient and Intensity Discriminator GAN uses a dual discriminator to dif-
ferentiate between gradient and intensity to ensure that the generated image contains the desired geometric
structure and salient information [18]. In 2021, Li et al. employed a convolutional network to extract features
from each source image, which were then amplified using a meta-amplification module with an adaptable
factor based on practical requirements. Additionally, they designed residual compensation blocks that were
applied iteratively within the framework to enhance the extraction of fine details from the images [19]. In 2023,
Xu et al. proposed an improved fusion model for GANs, introducing densely connected modules in the gen-
erator and discriminator network structure to connect features between layers, improve network efficiency
and enhance the network’s ability to extract source image information [20]. Yi et al. introduced an enhanced
infrared and visible light GAN image fusion model incorporating a Dropout layer, effectively addressing the
generator’s performance degradation caused by discriminator overfitting, without increasing memory con-
sumption or training time [21]. However, existing GAN-based methods still face significant challenges due to
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information bias between infrared and visible images, often leading to unnatural visual effects. To overcome
this limitation, Yin et al. proposed a novel cross-scale pyramid attention GAN-based infrared and visible im-
age fusion method (CSPA-GAN) [22]. The model employs a single generator and dual discriminators to better
approximate the distribution of the fused image, ensuring more natural and visually appealing results.

The current fusion procedure of infrared and visible images based on deep learning mentioned is mainly
achieved by modifying the image fusion framework, configuring the fusion network architecture, and for-
mulating loss functions to restrict the fusion process.

At the same time, as the technology advances, the requirements in target recognition and detection continue
to grow. Implementing target recognition technology based on deep learning methods can effectively solve
the problems and limitations brought by traditional target recognition technology. Currently, deep learning-
based target recognition methods can be divided into two categories: two-stage recognition algorithms based
on candidate regions and single-stage recognition algorithms based on regression. Girshick et al. improved the
AlexNet network and designed the regions with CNN features (R-CNN) algorithm [23] to address the scaling
problem of candidate regions. He et al. used the spatial pyramid pooling (SPP) [24] method to design the
SPPNet CNN model. Subsequently, the Fast R-CNN algorithm proposed on this basis effectively combined
the advantages of the R-CNN algorithm and the SPPNet algorithm [25]. The two-stage recognition algorithm
based on candidate regions has high recognition accuracy, but it does not fully utilize the global information
of the image and involves redundant calculations. The two-stage classification-based recognition architecture
greatly affects the recognition speed. Therefore, researchers are gradually conducting research on single-stage
target recognition technology. Regression-based single-stage recognition algorithms include the You Only
LookOnce (YOLO) [26] series, single shotmultibox detector (SSD) [27], feature pyramid network (FPN) [28], and
RetinaNet [29]. Among them, the YOLO series algorithms have been widely studied and applied due to their
superior performance. By integrating the information of infrared and visible light images, target recognition
can be conducted based on fused images, which is conducive to achieving comprehensive and deeper analysis
and research of targets.

The existing fusion methods generally do not pay attention to the communication between network features,
resulting in artifacts, blurring and other phenomena in the fused image, and focus on improving the network
structure and loss function, ignoring the close connections between the source image quality and the feature
extraction network. To solve the above problems, this paper proposed an infrared and visible image fusion
algorithm based on a GAN under multi-level detail enhancement. Our contributions can be summarized as
follows:

• The input source image is enhanced through amulti-level detail enhancementmethod to improve its quality,
which helps the network learn more detailed edge features during training and image generation.

• Feature extraction modules such as residual-dense block and multi-scale residual block are added into the
network structure to achieve refined feature extraction and ensure the coherence and transferability of image
feature information.

• We designed a gradient and intensity information loss function based on the characteristics of the image.
Together with the discriminator, the loss function constrains the network to generate fusion images that
highlight both infrared targets and contain clear edge details.

The experimental results demonstrate that the proposed method achieves excellent fusion performance in
subjective and objective evaluations. Specifically, the fused images outperform other methods significantly in
terms of objective quality metrics, such as average gradient (AG), edge intensity (EI), and spatial frequency
(SF). These images preserve more detailed textures and edge gradient information while ensuring that the
infrared radiation targets are prominently highlighted, clear, and easily distinguishable. This demonstrates the
superior fusion capabilities of the proposed approach.
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2. RELATED THEORIES AND ANALYSIS
2.1. GANs
GANs are deep learning models proposed by Goodfellow et al. in 2014, evolving from the minimum binary
zero-sum game in free game theory [13]. Unlike traditional deep neural networks, GANs consist of two compo-
nents: generator (G) and discriminator (D).The generator receives random noise input and learns specific data
feature distribution. The discriminator takes the generated results of the generator and real samples as input,
determines whether the input data belongs to the real sample or the false sample, and feeds the judgment result
back to the generator. These two components are trained alternately. In the constant confrontation game, they
compete and drive each other to improve. During training, the parameters are continuously optimized until
the generator and discriminator become indistinguishable, reaching a Nash equilibrium state.

In essence, the generator model belongs to the great likelihood estimation under the machine learning branch,
which generates the original data distribution into the specified data by capturing the distribution of the sample
data and adopting the parameter transformation calculation method in the great likelihood estimation. The
generator model can be expressed as

x = G(z; 𝜃 (G)) (1)

where 𝑧 is the random input noise, obeying a multivariate Gaussian distribution sampling. 𝜃 (𝐺) are the gen-
erator network parameters, and the network is passed through a series of nonlinear computations to obtain
the output sample 𝑥. The essence of the discriminator is a binary classification model. It takes the generated
sample 𝑥 and real sample data as input, calculates the discriminant probability, and judges whether the sample
is true or false. The discriminator can be expressed as

y = D(x; 𝜃 (D)) (2)

where 𝜃 (𝐷) is the network parameter of the discriminator and 𝑦 is the output label, that is, the probability of
discrimination.

The ultimate goal of GAN is to realize that the generated sample is infinitely close to the real data, so that the
two are indistinguishable. The confrontation process between the two is expressed as

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉 (𝐺, 𝐷) = 𝐸𝑥∼𝑃data [log 𝐷 (𝑥)] + 𝐸𝑧∼𝑃𝑧 [log (1−𝐺 (𝑧))] (3)

where 𝑥 is the input data, 𝑃𝑑𝑎𝑡𝑎 is the real data distribution, 𝑧 is the input noise, and 𝑃𝑧 is the prior variable of
the input noise. It can be seen from Equation (3) that the purpose of the generator is to minimize the objective
function 𝑉 (𝐺, 𝐷), making it difficult for the discriminator to distinguish real samples from the generated
samples. The discriminator aims to improve the ability to distinguish between true and false samples, thereby
maximizing the objective function𝑉 (𝐺, 𝐷). The two are trained alternately to optimize their own capabilities,
and the final iteration is relatively stable.

2.2. Deep feature extraction
2.2.1. Residual dense block
As the depth of the network increases, the features of each convolutional layer have hierarchical structures
with different receptive fields, and the traditional convolutional network structure cannot fully utilize the in-
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Figure 1. The overall structure of the dense residual block. 3 X 3: filter size. Conv: Convolutional layer; Concat: establish dense connections
between the front and back layers; BN: batch normalization.

formation. In order to fully utilize the hierarchical features of all convolutional layers, Zhang et al. proposed a
new feature extraction structure, named residual dense block (RDB) [30]. The structure extracts rich local fea-
tures through convolutional layers densely connected, establishes dense connections between the front and the
back layers, and reuses features in the channel dimension. Combined with residual connections, it enhances
the information flow and ensures the transmission and coherence of feature information, effectively slowing
down the phenomenon of gradient disappearance and enabling the network to achieve better performance
with fewer parameters and calculations. The structure of the RDB module is shown in Figure 1.

The RDB module contains both dense and residual structures. Firstly, through the dense layer with N convo-
lution kernel sizes of 3 × 3, the local feature learning can be realized effectively through the jump connection
between Concat and the convolution layer in front. Then, the 1 × 1 convolution kernel is used for dimen-
sion reduction to prepare for the subsequent feature fusion. Finally, the global residual connection is used to
improve the information flow and realize the fusion of local features and residual features.

2.2.2. Multi-scale residual blocks
Inmany visual tasks, it is very important to extract multi-scale features. Gao et al. proposed a novel multi-scale
feature extraction method which is multi-scale residual block Res2Net in 2021 [31]. Its structure is shown in
Figure 2. As a variant of the residual network ResNet, Res2Net inserts more hierarchical residual connection
structures into the residual unit. Unlike the typical multi-scale improvement of general architecture, this ap-
proach combines scales based on hierarchical structures. It performs multi-scale extensions with hierarchical
and layered feature sets in a given block. This module divides the input into several equally sized groups. The
first group is passed directly through, while the remaining groups are processed by the convolution kernel and
combined with the next group. This process continues, and the processed features are finally concatenated.

As shown in Figure 2, after the first 1 × 1 convolution, it is divided into N subsets. Each subset can potentially
receive all the feature information on its left after a 3 × 3 convolution operation, increase the receptive field,
and obtain feature combinations with different quantities and sizes of receptive fields, so that the receptive field
can represent multi-scale features at a finer granularity level. Finally, N groups of features are spliced through
Concat, sent to 1 × 1 convolution, and then combined with the front residual connection to realize the fusion
of feature information at various scales.

3. FUSION METHOD
3.1. Overall network framework
The overall framework of the fusion network is shown in Figure 3, which mainly includes three parts: image
preprocessing, generator and discriminator.

First of all, the image preprocessing part mainly uses a multi-level detail enhancement method to enhance the
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Figure 2. Schematic diagram of the structure of a multi-scale residual block. 3 X 3: filter size. Conv: Convolutional layer; Concat: establish
dense connections between the front and back layers; BN: batch normalization. (𝑥𝑖 expresses the N subsets into which it is divided after
the first 1 X 1 convolution and 𝑦𝑖 expresses the N set of features obtained after 𝑥𝑖 undergoes a 3 X 3 convolution operation.)

Figure 3. The overall framework of the fusion network.

edge details and other information of infrared and visible images, so that the input source image has more
detailed information, which is beneficial to neural network processing. Secondly, Concat pairs of the regis-
tered infrared and visible images are used as the input of the generator for feature extraction and fusion image
reconstruction. And the dual discriminator form of infrared discriminator D-ir and visible light discriminator
D-vis is used to distinguish the infrared and visible images from the fusion image output by the generator,
respectively, perceiving the feature differences. Ultimately, by engaging in an adversarial game with the gen-
erator and under the constraints imposed by the loss function, we can iteratively enrich and integrate image
details to produce high-quality fused images that align with our expectations.

3.2. Multi-level detail enhancement module
In order to improve the quality of input source images and enhance the ability of neural networks to learn
details, we can use the multi-level detail enhancement module to enhance the detail edge information of input
source images. Amethod ofmulti-scale detail enhancement was proposed in literature [32], which decomposed
the image into multiple scales through Gaussian filter kernel of different sizes, and fused detail information
into the original image through a certain combination. Although this method could improve local details, it
had limitations in improving global details and enhancing the balance between them. On this basis, this paper

http://dx.doi.org/10.20517/ir.2024.30


Tian et al. Intell Robot 2024;4(4):524-43 I http://dx.doi.org/10.20517/ir.2024.30 Page 530

proposed a multi-level detail enhancement method based on guided image filtering, which uses multiple levels
to enhance image details without producing a gray saturation artifact phenomenon or excessive noise.

Guided filtering, as a nonlinear filtering technique, is widely used for edge preservation and image denoising.
Unlike conventional denoising methods, which often struggle to distinguish between image edges and noise,
guided filtering effectively preserves edgeswhile suppressing noise. This is achieved by leveraging the structural
information of a guidance image to adjust pixel weights within each region, thereby enabling image smoothing
while retaining fine edge details. These characteristics make guided filtering highly effective in tasks such as
image denoising, enhancement, and edge preservation.

In traditional guided filtering, the edge-preserving coefficient within any arbitrary window is fixed, which has a
significant impact on the output image. A coefficient value that is too small may result in noticeable noise in the
output image, whereas a value that is too large may lead to over-smoothing of the image. This study leverages
the intrinsic properties of the edge-preserving coefficient in guided filtering by setting different filter sizes
and edge-preserving coefficients to appropriate values. Through iterative and recursive filtering, this approach
generates output images at various structural levels, enabling detailed and nuanced multi-level enhancement.

Firstly, the input image is processed through guided filtering and decomposed into different levels of back-
ground images, as given in


𝐵1 = GuildFilter(𝐼, 𝐼, 𝜎, 𝜀)
𝐵2 = GuildFilter(𝐵1, 𝐵1, 𝜎, 𝜀)
𝐵3 = GuildFilter(𝐵2, 𝐵2, 𝜎, 𝜀)

(4)

where 𝐼 is the input image, and 𝐵1, 𝐵2 and 𝐵3 are background images at different levels. 𝜎 and 𝜀 determine
the filter size and edge retention coefficient, respectively. The values of ( 𝜎, 𝜀) of the corresponding back-
ground images 𝐵1, 𝐵2 and 𝐵3 are set to (3, 0.01), (9, 0.1) and (15, 0.5) respectively. The input image 𝐼 , along
with background images 𝐵1 and 𝐵2, is used as guide images, and each undergoes filtering to produce smooth
background images 𝐵1, 𝐵2 and 𝐵3.

Secondly, different layers of detail are extracted to prepare for subsequent enhancement; the detail layers are
extracted by


𝐷1 = 𝐼 − 𝐵1
𝐷2 = 𝐼 − 𝐵2
𝐷3 = 𝐼 − 𝐵3

(5)

where 𝐼 is the input image, and 𝐷1, 𝐷2 and 𝐷3 represent high-, medium- and low-level details, respectively.

Finally, by using special weighting factors of set proportions, the details at levels 𝐷1, 𝐷2, and 𝐷3, which cor-
respond to fine details, moderate details, and large-scale edge structure details, are integrated into the original
image through

𝐼∗ = (1 − 𝑤1 · 𝑠𝑎𝑡 (𝐷1)) · 𝐷1 + 𝑤2 · 𝐷2 + 𝑤3 · 𝐷3 + 𝐼 (6)
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Figure 4. The overall architecture of the generator, including the number of layers of the encoder and decoder.

Figure 5. Discriminator structure diagram.

where 𝐼∗ is the enhanced image, 𝑤1, 𝑤2 and 𝑤3 are weight coefficients, with values of 0.4, 0.25 and 0.15 through
many tests, and sat (·) represents the saturation function, defined as

𝑠𝑎𝑡 (𝑥) =


1 , 𝑥 > Δ
𝑘𝑥 , |𝑥 | ≤ Δ
−1 , 𝑥 < −Δ

, 𝑘 =
1
Δ

(7)

where Δ is the boundary threshold. As Δ approaches infinity, sat(·) is approximated as a symbolic function
sgn(·). On the one hand, the sat(·) function is used to balance the positive and negative components of fine
details 𝐷1 to prevent artifacts caused by excessive grayscale saturation; on the other hand, it can also control
the boundary threshold Δ to suppress a certain degree of noise caused by adding details, ensuring the balance
of global and local details.

3.3. Generator and discriminator
3.3.1. Generator structure
The generator structure is shown in Figure 4. The overall structure of the model can be divided into two parts:
the encoder (Encoder) and the decoder (Decoder). The encoder mainly extracts the feature information of the
image; firstly, two ordinary convolutional layers are used to extract the shallow feature, and then, the shallow
feature is sent into the RDB and the multi-scale residual block Res2Net. The RDB module adopts three dense
layers with a convolution kernel size of 3 × 3; the number of subsets N divided by the Res2Net module is
selected as 4. It achieved the extraction of multi-scale features and the fusion of deep features, ensuring the
richness of local features while also enhancing the circulation and transmission of receptive fields and feature
information. Finally, the output of the first ordinary convolutional layer is short-circuited with the output
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of the Res2Net module by using global residual connection. Through the application of three convolutional
layers with kernel sizes of 1 × 1, 3 × 3, and 1 × 1, respectively, the receptive field is enlarged and the feature
map is enhanced, facilitating the integration of local and global features. This enables the resultant image to
preserve superficial structural features while incorporating deep-seated detailed features, thereby ensuring the
continuity of feature information.

The decoder decodes and reconstructs the fused feature map, reduces the channel number of the feature map
through four convolution layers, and finally outputs the reconstructed feature fusion image.

3.3.2. Discriminator structure
The task of the discriminator itself is to effectively distinguish between real and false data (fusion data). Given
that infrared and visible light images have different structures and features, separate discriminators are de-
signed for infrared and visible light data. The contrast of the fused image can be improved by adversarial
training of the 𝐷𝑖 discriminator, and the texture details can be enriched by learning the 𝐷𝑉 discriminator.
The adversarial network containing two discriminators enables the generator to produce fused images that
not only contain rich detail information but also have significant contrast for better results.

The discriminator structure is shown in Figure 5, which consists of five convolutional layers with a convolution
kernel size of 3 × 3 and one fully connected layer. These convolutional layers use the LeakyReLU activation
function to adjust the problem of zero gradients caused by negative input. Convolutional layers 2, 3 and 4
use batch normalization to speed up network convergence. The fully connected layer FC employs the Tanh
activation function and performs a linear transformation to produce a scalar, indicating the probability of the
input being real data as opposed to fused data.

The dual discriminators adopt the same structure but the parameters are not shared. The discriminator and the
generator play an adversarial game to guide the network to continuously supplement the visible detail gradient
information and the infrared target intensity information into the fusion image. Figure 6 illustrates the specific
process of image feature extraction and fusion in the generator. Firstly, the image feature extraction operation
is carried out in the encoder, and the superimposed image is processed through two ordinary convolutional
layers to achieve shallow feature extraction, and then passed to the multi-scale feature extraction module,
which consists of RDB and ResNet modules. A global residual connection is used to fuse local and residual
features. Finally, the decoder reduces the dimensionality of the fused image features.

3.4. Loss function design
The loss function of a fusion network includes two parts: generator loss function 𝐿𝐺 and discriminator loss
function 𝐿𝐷 . 𝐿𝐺 is composed of content loss 𝐿𝑐𝑜𝑛 and counter loss 𝐿𝑎𝑑𝑣 , as give in

𝐿𝐺 = 𝐿𝑎𝑑𝑣 + 𝜆 · 𝐿𝑐𝑜𝑛 (8)

where 𝐿𝐺 is the total loss of the generator, 𝐿𝑎𝑑𝑣 is the adversarial loss, 𝐿𝑐𝑜𝑛 is the content loss, 𝜆 is the balance
parameter used to balance the two losses, and 𝜆 = 0.6 in this article. Among them, 𝐿𝑐𝑜𝑛 is the main loss
function, so that the fused image can effectively retain the effective feature information of the source image,
which is obtained as:

𝐿𝑐𝑜𝑛 = 1
𝐻𝑊

[
∥𝐺𝐹 − 𝑖∥𝑀𝑆𝐸 + 𝛼· ∥𝐺𝐹 − 𝑖∥𝑇𝑉 + 𝛽 · ∥∇𝐺𝐹 − ∇𝑣∥2

𝐹

]
+ 𝛾 · (1 − 𝑀𝑆_𝑆𝑆𝐼𝑀 (𝐺𝐹 , 𝑣)) (9)

where 𝐻𝑊 is the product of the height and width of the input image,𝐺𝐹 is the fusion image output by the gen-
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Figure 6. Flowchart of image feature extraction and fusion.

erator, 𝑣 and 𝑖 are the visible and infrared images, respectively, ∇ represents the gradient calculation, and 𝑀𝑆𝐸

represents the mean square error loss, whose purpose is to constrain the difference in intensity distribution be-
tween fusion image𝐺𝐹 and infrared image 𝑖. 𝑇𝑉 is the Total Variation norm, which is used as a regularization
loss to compensate for the image blur problem that may be caused by using 𝑀𝑆𝐸 alone. 𝐹 is the Frobenius
norm, which enhances the learning of detailed texture features by constraining the gradient information of the
fused image 𝐺𝐹 and the visible image 𝑣. 𝑀𝑆_𝑆𝑆𝐼𝑀 is the multi-scale structural similarity, which constrains
the similarity between the fused image 𝐺𝐹 and the visible image 𝑣 from multiple scale directions. 𝛼, 𝛽 and 𝛾

are the parameters of the balance loss, which are respectively taken as 0.5, 0.5 and 100 in this paper.

In the content loss formulation, as given in Equation (9), the first and second terms 𝐻
1
𝑊 [∥𝐺𝐹 − 𝑖∥𝑀𝑆𝐸 + 𝛼· ∥𝐺𝐹 − 𝑖∥𝑇𝑉 ]

address the relationship between the fused and infrared images. The purpose of 𝑀𝑆𝐸 loss is to constrain the
intensity distribution differences between the fused and infrared images, enabling the network to effectively
learn the infrared intensity distribution. However, relying solely on 𝑀𝑆𝐸 loss may result in image blurring.
To mitigate this, 𝑇𝑉 regularization is introduced as an additional term to preserve image sharpness and com-
pensate for the limitations of MSE.

The third term 1
𝐻𝑊 ·𝛽· ∥∇𝐺𝐹 − ∇𝑣∥2

𝐹 in Equation (9) enforces a constraint on the gradient information between
the fused image and the visible light image using the F-paradigm. This term aims to enhance themodel’s ability
to learn detailed texture features from the visible image, as gradient information encapsulates critical edge and
detail characteristics.

Finally, the incorporation of the 𝑀𝑆 − 𝑆𝑆𝐼𝑀 loss, based on human visual perception, enables a multi-scale
evaluation of the similarity between the fused and visible light images. By considering structural features
across multiple scales, 𝑀𝑆−𝑆𝑆𝐼𝑀 enables the model to capture fine-grained details at various levels, ensuring
that these details are effectively integrated into the fused image. This multi-faceted approach ensures a more
comprehensive representation of the structural and textural attributes in the fused output.
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𝐿𝑎𝑑𝑣 is the loss function of information interaction between the discriminator and generator, aiming to pro-
mote the fusion image to retain more useful information, guide the generator’s output, and reduce feature
information loss in the counter. The process is expressed as

𝐿𝑎𝑑𝑣 = −𝐸𝐺𝐹∼𝑃𝐺𝐹
[𝐷𝑖 (𝐺𝐹)] − 𝐸𝐺𝐹∼𝑃𝐺𝐹

[𝐷𝑣 (𝐺𝐹)] (10)

where 𝑃𝐺𝐹 is the data distribution of the fused image, 𝐷𝑖 (𝐺𝐹) and 𝐷𝑣 (𝐺𝐹) are the discrimination probability
values of the fused image 𝐺𝐹 walk by the infrared and visible light discriminators, respectively.

𝐿𝐷 is to enable the discriminator to effectively identify the source and generated images, laying the foundation
for the confrontation between the discriminator and the generator, which is obtained by

{
𝐿𝐷𝑣 = −𝐸𝑣∼𝑃𝑣 [𝐷𝑣 (𝑣)] + 𝐸𝐺𝐹∼𝑃𝐺𝐹

[𝐷𝑣 (𝐺𝐹)]
𝐿𝐷𝑖 = −𝐸𝑖∼𝑃𝑖 [𝐷𝑖 (𝑖)] + 𝐸𝐺𝐹∼𝑃𝐺𝐹

[𝐷𝑖 (𝐺𝐹)]
(11)

where 𝐷𝑣 and 𝐷𝑖 are visible light and infrared discriminators, respectively.

4. EXPERIMENT AND ANALYSIS
4.1. Experimental settings
This paper selected 45 pairs of registered and corrected infrared and visible images under different scenes from
the TNO dataset, which can be downloaded from the website https://figshare.com/articles/dataset/TNO_Ima
ge_Fusion_Dataset/1008029?file=1475454, and cropped them with a stride of 20, resulting in 37,164 pairs of
infrared and visible images with a size of 108 × 108, which were normalized into the training set. During the
training process, the Adam optimizer was used, the initial learning rate was set to 0.00016, the batch size was
set to 36, and the iterations were 1,032 times, with a total of two rounds of training. Fusion algorithm model
was built and trained under the Tensorflow framework, and the hardware platform is GeForce RTX 3090 GPU
and Interi9-10900K CPU.

The test set selected 42 groups of infrared and visible images in the TNO data set, evaluated from both sub-
jective and objective aspects. The fusion method in the paper is experimentally compared with six fusion
methods: GAN with multiclassification constraints (GanMcC) method [15], DDCGAN method [16], U2Fusion
method [33], NestFuse method [11], DIDFuse method [34], and FusionGAN method [35].

4.2. Comparative experiment and result analysis
The test set was used to conduct comparative experiments between the fusion method in the paper and other
fusion methods, and three typical scenarios in the test set were selected for subjective evaluation analysis.
Scenario 1 features dimly lit trees on both sides, making it difficult to distinguish the central figure from the
background. Scenario 2 is affected by smoke interference, where soldiers are hard to identify, and the intricate
details of interwoven background trees are challenging to discern. Scenario 3 focuses on identifying detailed
features such as wheels and rooftops in low-light conditions. This analysis highlights the performance of the
proposed method in addressing diverse and challenging visual fusion scenarios.

The experimental results of Scenario 1 are shown in Figure 7, in which the red box represents the images
of infrared target extraction, the green box represents the visible light images, and the red and green arrows
respectively indicate the enlarged details of the targets. Figure 7A and B represents the infrared and visible
images, respectively. The infrared target in Figure 7C has insufficient thermal radiation information and low
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A. Infrared image B. Visible image C. U2Fusion method

D. DIDFuse method E. FusionGAN method F. GANMcC method

G. NestFuse method H. DDCGANmethod I. The proposed method

Figure 7. Comparison of the results of the fusion experiment on seven fusion methods in scenario 1. The red box represents the magnified
image of infrared target extraction, and the green box represents the magnified image of visible light details.

contrast. The images in Figure 7D and G are clearly distinguished from the background; the details of the trees
are clear, but the overall tone is too dark, and the details of the grass only have a rough outline. As can be seen
from Figure 7E and F, the fusion effect of the GanMcC method and the FusionGAN method is not good. The
infrared character targets have a blur artifact phenomenon, and the grass of the visible light details enlarged by
the green frame is also blurry. The details of the grass in Figure 7H have obvious outlines, but the edges of the
details in the middle part are incoherent. Figure 7I shows the fusion algorithm of this paper. It not only has
high-contrast infrared character targets, but also has the most prominent visual effect. The edges of the grass
in visible light are clear, and the detailed textures are the most obvious and coherent, with strong recognition.

The experimental results of Scenario 2 are shown in Figure 8, where the infrared soldier target is effectively
distinguished from the background, but details such as the outline of the soldier and the trees are blurred.
The texture of the trees and the edge of the soldier appearance in Figure 8C and E compared with Figure 8F
are clearer, but its infrared radiation information is not retained enough, and the contrast is low, which cannot
highlight the soldier’s infrared target. The smoke outlines in Figure 8D and G produced some artifacts, and the
soldiers and the smoke could not be effectively distinguished. The smoke edges in Figure 8H are clear, but the
soldiers are also disturbed by the smoke causing blurry contours of soldiers. Themethod presented in Figure 8I
in this paper not only effectively retains the edge details of trees and smoke, but makes soldiers which are the
infrared key targets clearly visible. The fused image has high contrast and good visual effect, which effectively
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A. Infrared image B. Visible image C. U2Fusion method

D. DIDFuse method E. FusionGAN method F. GANMcC method

G. NestFuse method H. DDCGANmethod I. The proposed method

Figure 8. Comparison of the results of the fusion experiment on seven fusion methods in scenario 2. The red box represents the magnified
image of infrared target extraction, and the green box represents the magnified image of visible light details.

inhibits the interference of smoke and highlights the target, laying a good foundation for subsequent visual
tasks such as target recognition and target positioning.

The experimental results for Scene 3 are shown in Figure 9. From Figure 9E and F, it can be seen that the
fusion effect of FusionGAN and GANMCc methods is not good, and the contours of tires and roofs are not
clear. In Figure 9G, the roofs are clearer than in Figure 9E and F, but the tire contours are still fuzzy and some
artifacts are generated, which have lost a lot of details. Infrared radiation information is not retained enough to
highlight the tire target and cannot be effectively distinguished from the background [Figure 9C]. The tire can
be distinguished from the background but the edge part is blurred, and the roof part lacks details [Figure 9H].
The contrast is high, and the contours of the tire and the roof are clear, but some details are lost [Figure 9D].
The method in this paper not only effectively preserves the edge details of the tire and the roof, but also has a
high contrast and a better visual effect [Figure 9I], making it suitable for subsequent visual tasks such as target
recognition, target location, and target positioning. These improvements lay a good foundation for further
tasks.
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A. Infrared image B. Visible image C. U2Fusion method

D. DIDFuse method E. FusionGAN method F. GANMcC method

G. NestFuse method H. DDCGANmethod I. The proposed method

Figure 9. Comparison of the results of the fusion experiment on seven fusion methods in scenario 3. The red box represents the magnified
image of infrared target extraction, and the green box represents the magnified image of visible light details.

4.3. Index evaluation
Individual differences will affect the subjective evaluation results, so it is necessary to conduct objective quan-
titative data comparative analysis. We selected information entropy (EN), AG, SF, EI, standard deviation (SD)
and visual information fidelity for fusion (VIFF) as objective evaluation indicators of fusion quality. Among
them, the information EN represents the information richness of the image. AG and SF evaluate the clarity of
the detailed texture of the image. EI reflects whether the edges of the image are obviously prominent. SD of
high-contrast images is often higher, more eye-catching, and the visual effect is good. VIFF is used to evaluate
image quality using the characteristics of the human vision system. The above six evaluation indicators are all
positive indicators, and the larger the value, the better the fusion quality.

We conduct comparative experiments using the test set to obtain the objective evaluation index values of each
fusion methods, with the average value used for quantitative analysis. The results are shown in Table 1. The
horizontal coordinates of Figure 10 represent 42 image pairs of different scenes, which were selected for the
comparative experiments. The values of each index were evaluated across all scenes, and a comprehensive
analysis was subsequently conducted based on the average values presented in Table 1. In terms of information
EN, the method in this paper yields the best result, because more details are added to the image by the fusion
network, enriching its content. The three values of AG, SF and EI have all reached the highest, and have been
greatly improved compared to other fusionmethods, higher than the sub-optimal values of 65.41%, 65.09% and
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Table 1. Comparison of the values of the objective evaluation indicators for each fusion algorithm

Methods EN AG SF EI SD VIFF

GanMcC 6.782 1.600 3.744 17.575 38.451 0.373

DDcGAN 6.941 2.646 5.864 28.506 36.518 0.502

U2Fusion 6.423 3.489 8.338 35.440 25.949 0.362

NestFuse 7.047 3.848 10.047 38.281 41.874 0.431

DIDFuse 6.958 4.267 11.315 42.636 46.620 0.505

FusionGAN 6.814 1.852 5.568 21.689 39.704 0.304

Proposed 7.193 7.058 18.680 66.181 40.855 0.623

EN: Entropy; AG: average gradient; SF: spatial frequency; EI: edge intensity; SD: standard deviation; VIFF: visual information fidelity for
fusion.

Figure 10. The proposed method is used for quantitative comparison of infrared and visible image fusion with the other six different fusion
algorithms. The legend shows the mean values of the indicators for the different methods.

55.22%, respectively, indicating that the proposedmethod has obtainedmore detailed edge information, clearer
texture details, and more prominent edge transitions. In terms of SD, the proposed method performs similarly
to NestFuse, ranking second only to DIDFuse, indicating its ability to clearly distinguish the foreground from
the background and achieve higher infrared target contrast. The method in this paper attains the optimal
value in the VIFF index, aligning with the properties of the human visual system, and offering an excellent
visual experience. Figure 8 shows the line chart of the objective evaluation indicators of each fusion algorithm.
The trend observed in this chart, when combined with the results from Table 1, more intuitively and clearly

http://dx.doi.org/10.20517/ir.2024.30


Page 539 Tian et al. Intell Robot 2024;4(4):524-43 I http://dx.doi.org/10.20517/ir.2024.30

Table 2. Comparison of three sets of ablation experiments

Experiment EN AG SF EI SD VIFF

1 7.049 4.214 10.619 41.143 38.511 0.410

2 7.014 6.370 15.882 60.298 40.63 0.515

3 7.112 6.743 15.977 61.532 37.314 0.533

Proposed 7.193 7.058 18.680 66.181 40.855 0.623

Experiment 1: Fusion directly after image input. Experiment 2: Replace the RDB feature extraction module with the same number of
layers instead of ordinary convolution. Experiment 3: Replace the Res2Net feature extraction module with the same number of layers
instead of ordinary convolutions. EN: Entropy; AG: average gradient; SF: spatial frequency; EI: edge intensity; SD: standard deviation;
VIFF: visual information fidelity for fusion.

Figure 11. Schematic diagram of the results of the ablation experiment.

demonstrates the superiority of the proposed method, as evidenced by good fusion results in both overall
performance and objective data.

4.4. Ablation experiment
In order to verify the function of the multi-level detail enhancement module, RDB and Res2Net modules in
the algorithm network structure, the following three sets of ablation experiments were set up. Experiment 1:
No multi-level detail enhancement was performed after the image input, and the source image was directly
fused without preprocessing. Experiment 2: We removed the RDB feature extraction module, kept the other
modules, and replaced them with ordinary convolutions of the same number of layers. Experiment 3: Instead
of using the Res2Net feature extractionmodule, we replaced it with ordinary convolutions of the same number
of layers. In the end, we used the test set to conduct objective evaluations by comparing the indicators of
the three experimental methods, and the experimental results are shown in Table 2. Figure 11 visualizes the
experimental results, and the specific values are presented in Table 2.

It can be seen fromExperiment 1 that after usingmulti-level detail enhancement on the input image, the output
fused image has higher values of various indicators, especially in the index of AG, SF and EI representing the
edge of detail, proving that they make a lot of contributions to the retention of detail texture information. The
enhanced image is also more informative. The contrast index SD is also enhanced to some extent, indicating
that the quality of the fusion image has been greatly improved after the enhancement of multi-level details.
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Table 3. Computational quantity comparison of three sets of experiments

Experiment RDB-replaced model Res2Net-replaced model Proposed model

Params 1301252 1148740 1032932

GFlops 103.85 120.00 49.12

Params: The total number of weights and biases to be trained in the deep learning model. GFlops: The total amount of computation
required by a model during forward propagation (inference) in units of 109 floating point operations. Params and GFlops are both
important metrics for evaluating the computational effort of the model. RDB: Residual dense block.

Table 4. Comparison of convolutional layer configurations and params for RDB module between the proposed model in this paper and
RDB-replaced model

Convolutional layer Proposed model RDB-replaced model

RDB_conv1 (3, 3, 64, 32, 18432) (3, 3, 64, 96, 55296)

RDB_conv2 (3, 3, 96, 32, 27648) (3, 3, 96, 128, 110592)

RDB_conv3 (3, 3, 64, 128, 36864) (3, 3, 128, 160, 184320)

RDB_conv4 (1, 1, 64, 160, 10240) (1, 1, 160, 64, 10240)

Sum of params 93184 360448

This table exhibits the network structure and the number of parameters for the four convolutional layers within the RDB module,
denoted as (kernel height, kernel width, input channels, output channels, params). RDB: Residual dense block.

Table 5. Comparison of convolutional layer configurations and params for Res2Net module between the proposed model in this paper
and Res2Net-replaced model

Convolutional layer Proposed model Res2Net-replaced model

Res2Net_conv1 (1, 1, 64, 128, 8192) (1, 1, 64, 128, 8192)

Res2Net_conv2 (3, 3, 32, 32, 9216) (3, 3, 128, 64, 73728)

Res2Net_conv3 (3, 3, 32, 32, 9216) (3, 3, 64, 32, 18432)

Res2Net_conv4 (3, 3, 32, 32, 9216) (3, 3, 32, 64, 18432)

Res2Net_conv5 (1, 1, 128, 64, 8192) (1, 1, 64, 64, 4096)

Sum of params 44032 122880

This table exhibits the network structure and the number of parameters for the five convolutional layers within the Res2Net module,
denoted as (kernel height, kernel width, input channels, output channels, params).

The comparison results of Experiments 2 and 3 with the original algorithm show that the RDB and Res2Net
modules can effectively extract multi-scale features of the image, making the local and global features more
closely connected, which is beneficial to the final fusion effect.

4.5. Computational quantity experiment
In order to analyze the impact of the RDB and Res2Net modules on the speed of inference, we set up three
models for comparative analysis and calculate the variation in the number of parameters and GFlops, respec-
tively: The Proposed Model in the paper: Include RDB and Res2Net modules. RDB-Replaced Model: The
RDB feature extraction module is replaced by ordinary convolution corresponding to the same number of
layers. Res2Net-Replaced Model: The Res2Net feature extraction module is replaced by ordinary convolu-
tion corresponding to the same number of layers. The results are presented in Table 3. The inclusion of RDB
and Res2Net modules reduced both parameters and GFlops, improving inference speed compared to using
standard convolutions.
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The number of parameters in the model proposed was reduced by 20.6% and 10.08% relative to the two sets
of comparison experiments, respectively. Tables 4 and 5 show the results of comparing the number of input
channels to the convolutional layer, the number of output channels, and the number of output parameters per
layer for the three sets of models, respectively. The RDB module extracts rich local features through densely
connected convolutional layers and uses global residual connectivity to improve information flow; the channel
count is optimized through concatenation and 1 × 1 convolutions, as shown in Table 4, thereby reducing the
computational load of subsequent convolution compared to using ordinary convolutional layers. The core of
the Res2Net module is the use of group convolution for multi-scale expansion and thus multi-scale feature
extraction. The number of convolution kernels within each group is determined by that of input feature chan-
nels, which helps reduce the number of parameters. If a standard convolution layer was used instead of the
Res2Net module, the absence of the group convolution structure would significantly increase the number of
parameters. Specifically, after applying group convolutions, the number of parameters becomes 1/n of that of
a standard convolution, where n is the number of groups. As shown in Table 5, in the proposed model, n is
set to 4, resulting in a fourfold difference in the number of parameters.

Both the RDB and Res2Net modules significantly reduce computational complexity, with GFlops decreasing
by 52.7% and 59.07%, respectively. The RDB module minimizes redundant computations through feature
reuse and dense connections, reducing the number of channels processed in each convolution. The Res2Net
module, by using group convolutions and multi-scale feature fusion, efficiently reuses feature information,
reducing computation while enhancing model expressiveness without a large increase in parameters.

5. CONCLUSION
This paper proposes an infrared and visible light fusion method based on multi-level detail enhancement and
GANs to solve the problems of blurred artifacts, unclear detail textures and unprominent target features in
existing fusion methods. This method attaches great importance to the image preprocessing process, divides
the image into multiple levels based on guided filtering, and adds the details of each level to the source image
by combining the saturation function and weight allocation, so as to enhance the input infrared and visible
images, making it more conducive to the training and learning of the feature extraction network. Secondly,
we introduced modules such as global residual learning, dense residual blocks and multi-scale residual blocks
as the feature extraction backbone of the generator, which enables the network to learn more abundant and
comprehensive detail texture information. It enhanced the multi-scale feature extraction ability, realized the
integration of local and global features, and ensured the transmission and circulation of feature information.
Finally, we introduced the gradient calculation loss function and incorporated multi-scale structural similarity
learning to enhance intensity information, co-constraining the fused image with the discriminator to preserve
clearer gradient details and target strength characteristics.

The experimental results show that the fusion image obtained by this method achieves good fusion results
both subjectively and objectively. The objective quality indicators such as image AG, edge strength and SF are
much higher than those of other fusion methods. The fusion image contains more detailed texture and edge
gradient information, and the infrared radiation targets in the image are prominent, clear and easy to identify,
with excellent fusion performance.

This paper incorporates residual dense and multi-scale modules to introduce dense connections, enabling
each layer to directly receive the outputs of all preceding layers. This design enhances the convergence speed
and representational capacity of deep networks. However, the increased convolutional operations inevitably
lead to a higher computational complexity. To address this, lightweight design principles and optimization
strategies are adopted, effectively minimizing the impact on inference speed while preserving the advantages
of the multi-scale modules. In the future, we will further consider practical applications in engineering, where
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lightweight compression algorithm models are needed to meet hardware requirements. Meanwhile, we will
consider guiding and improving the network models through specific image processing tasks after fusion such
as recognition, detection, and tracking, so that they can be more effectively and reasonably applied.
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