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Abstract
Aim: The aim of this systematic review was to provide an overview of Machine Learning applications within 
hepatopancreaticobiliary surgery. The secondary aim was to evaluate the predictive performances of applied 
Machine Learning models.

Methods: A systematic search was conducted in PubMed, EMBASE, Cochrane, and Web of Science. Studies were 
only eligible for inclusion when they described Machine Learning in hepatopancreaticobiliary surgery. The 
Cochrane and PROBAST risk of bias tools were used to evaluate the quality of studies and included Machine 
Learning models.

Results: Out of 1821 articles, 52 studies have met the inclusion criteria. The majority of Machine Learning models 
were developed to predict the course of disease, and postoperative complications. The course of disease has been 
predicted with accuracies up to 99%, and postoperative complications with accuracies up to 89%. Most studies 
had a retrospective study design, in which external validation was absent for Machine Learning models.
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Conclusion: Machine learning models have shown promising accuracies in the prediction of short-term and long-
term surgical outcomes after hepatopancreaticobiliary surgery. External validation of Machine Learning models is 
required to facilitate the clinical introduction of Machine Learning.
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INTRODUCTION
Artificial intelligence (AI) has made major progress in healthcare recently, causing an increase in interest in 
AI algorithms within clinical settings. This may signify the start of a revolutionized digital era within the 
field of medicine[1].

Artificial intelligence has been defined as the ability of machines to demonstrate human behavior and 
intelligence[2]. As a major division of AI, Machine Learning (ML) models are able to improve by learning 
from large-scale data[3]. Decision Tree, Gradient Boosting (GBM), Random Forest, and Support Vector 
Machine algorithms (SVM) are frequently applied models of ML. A specific branch of ML is known as Deep 
Learning (DL), which includes multiple layers to recognize several features and patterns from large data[4]. 
In each layer, values are added to all extracted features. In the end, a model with the best prediction of 
outcomes is achieved based on training and validation. The accuracy is described as the predictive 
evaluation of these models on new unseen data. Neural Networks form the basis of DL models and are able 
to recognize data patterns by using processing layers. Deep Learning functions similarly; however, these 
models have more layers or depth than Neural Networks. Another group of AI includes Radiomics, which is 
able to examine various medical images for the purpose of detecting features that are associated with the 
disease or prognosis[5]. An overview of AI terminology is shown in Table 1.

In clinical practice, ML has already been used for several purposes, such as diagnosis, treatment decisions, 
and monitoring of patients[15]. These purposes are especially used in medical specialties that use imaging, 
such as radiology and pathology. Machine Learning has also been applied in general surgery to improve 
surgical skill training and predict postoperative outcomes[16]. In hepatopancreatobiliary (HPB) surgery, 
several clinical challenges are still present, as high frequencies of postoperative complications, such as organ 
failures, infections, and gastrointestinal tract bleedings, have been reported by surgeons[17]. Additionally, the 
overall prognosis is poor for malignancies in the hepatobiliary tract and pancreas. For patients with 
hepatobiliary carcinomas, 5-year survival rates of up to 20% have been reported without upfront surgery, 
whereas survival rates of 45% have been described with upfront surgery[18]. For borderline-resectable 
pancreatic carcinomas, 5-year survival rates were discovered to be close to 6% with upfront surgery, 
although survival rates of 20,5% have been found for patients that have received neoadjuvant 
chemoradiotherapy (nCRT)[19]. To overcome these clinical challenges, ML models could preoperatively 
predict disease progression, postoperative complications, and prognosis of patients undergoing HPB 
surgery. Predicting postoperative complications with ML could provide the opportunity to take 
prophylactic measures. Furthermore, surgeons could decide between upfront surgery or nCRT based on the 
predicted response of tumors to nCRT.

Although ML algorithms have shown major potential in HPB surgery, the current status and progress of 
ML within HPB surgery have not been systematically evaluated in recent literature. However, it is essential 
to bridge this gap in order to understand the predictive capabilities of ML in HPB surgery properly. 
Therefore, this systematic review aims to provide a comprehensive overview of ML applications within HPB 
surgery.
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Table 1. Definitions AI methods

General term

Machine Learning 
(ML)

Machine Learning is an umbrella term and is commonly described as computational techniques that are able to perform 
complex tasks by analyzing large-scale data[6]

Analytical approaches

Decision Tree Within Decision Tree models, data is divided into smaller nodes and branches. Each node represents a variable, and each 
branch contains a feature of the variable. Features contain two outcomes such as yes or no. Following one outcome at 
each feature will eventually form the prediction tree for the desired task. In the end, the smallest tree that optimally fits 
the data will be produced[7]

Gradient Boosting 
(GBM)

Gradient Boosting models begin with forming a model that fits the data. Afterwards, a consecutive model is constructed 
that concentrates only on inaccurately predicted aspects of data. Models are then combined to form an improved model. 
This process is repeated until a final model is established with a minimal error in prediction[8]

Random Forest In a Random Forest model, Decision Trees are present for the desired outcome. Each Decision Tree contains a different 
prediction path based on the values for the selected variables. By combining all Decision Trees, the final most accurate 
model will be built[9]

Support Vector 
Machine (SVM)

Support Vector Machines are capable of making predictions by finding the optimal border to classify variables or 
outcomes in two groups[10]

Artificial Neural 
Networks (ANNs)

Artificial Neural Networks are models in which datasets are analyzed by multiple processing layers. In each layer, features 
of each data point are extracted to recognize patterns; these features contain weighting factors within each layer. After 
repeating this training process on multiple datasets, a final model is produced for the complex task[11]

Convolutional Neural 
Networks (CNNs)

Convolutional Neural Networks are similar to ANNs, except these models do not use weights for extracted features. 
Instead, specific filters are applied to detect patterns in datasets. Additionally, connections are present to provide 
feedback in each  training process[12]

Deep Learning Deep Learning algorithms function similarly to Neural Networks; however, Deep Learning models have more layers or 
depth than Neural Networks[13]

Area of AI that could benefit from ML

Radiomics In Radiomics models, images are analyzed to detect various quantitative features. Afterwards, these features are used for 
predictions or associations of several medical outcomes[14] (editors, comment #4)

METHODS
Search strategy
Literature was retrieved and systematically reviewed in conformity with the PRISMA guidelines and 
Cochrane Handbook for Systematic Reviews of Interventions version 6.0. Databases PubMed, Embase.com, 
Clarivate Analytics/Web of Science Core Collection, and the Wiley/Cochrane Library were used to perform 
a systematic search. The timeframe within the databases was from inception to the 7th of July 2021. The 
systematic search was performed by Bektaş M and Burchell GL. The search included keywords and free text 
terms for (synonyms of) “Machine Learning” combined with (synonyms of) “digestive system surgical 
procedures”. A comprehensive overview of the search terms per database is available in the supplementary 
materials [Supplementary Tables 1-4]. The search and protocol of this review were not registered in 
PROSPERO.

Study selection
During the initial step, articles were included when they described ML within general surgery to secure 
studies with overlapping content. Subsequently, studies were only qualified if they met the following 
criteria: (1) describing ML methods within HPB surgery; (2) clinical study; and (3) conducted on adults. 
Studies were excluded when they: (1) reported on reviews, children, and study abstracts; (2) described 
regression models; and (3) were not written in English. No specific study design was preferred in the 
inclusion criteria. Two reviewers (Bektaş M, Costa Pereira J) independently performed the title and abstract 
screening in conformity with the inclusion and exclusion criteria. Studies were qualified for full-text 
screening when both reviewers agreed on inclusion. Disagreements were resolved by means of discussion 
between reviewers, resulting in an agreement.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5163-SupplementaryMaterials.pdf
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Risk of bias assessment
The methodological quality assessment of included studies was independently performed by two reviewers 
(Bektaş M, Costa Pereira J) using the ROBINS-I assessment tool[20]. This tool measures the risk of bias in the 
domains: confounding, participant selection, intervention classification, deviations from intended 
interventions, missing outcome data, measurement of outcomes, and selection of reported results. Based on 
these domains, overall risk of bias is determined for each study. Moreover, the PROBAST risk of bias tool 
was used to evaluate the quality of ML models within studies[21]. Risk of bias domains included participant 
selection, predictors, outcomes, and analysis.

Data synthesis and outcome assessment
The following data aspects were independently retrieved from each study by two reviewers (Bektaş M, Costa 
Pereira J): first author, year, country of research, number of patients, study design, surgical procedure, type 
of ML, purpose of ML, outcome measurements, and predictive performance. The categorization of studies 
was based on surgical domains, such as liver, biliary, and pancreatic surgery. Subsequently, accuracies of ML 
studies were reported within each surgical domain. For each study, the mean accuracy (ACC) and area 
under the curve (AUC) were calculated to represent the predictive performances of ML models. In addition, 
descriptive statistics were used to calculate the median and range of accuracies for every ML model.

RESULTS
The search strategy identified a total of 1821 studies after the disposal of duplicates [Figure 1]. The 1821 
studies were screened for eligibility based on the title and abstract. Subsequently, 104 studies were eligible 
for full-text assessment, resulting in the inclusion of 52 studies.

Several subclasses of ML have been used within HPB surgery. A vast majority of studies have applied Neural 
Networks models (n = 16), Radiomics (n = 13), or multiple ML methods (n = 13). Remaining studies 
involved Decision Trees (n = 7), GBM (n = 1), Random Forest (n = 1), and SVM (n = 1).

Within studies addressing liver surgery, studies predominantly involved hepatocellular carcinomas (HCC) 
(n = 21), intrahepatic cholangiocarcinomas (ICC) (n = 5), and colorectal liver metastasis (CRLM) (n = 3). 
Remaining studies perihilar cholangiocarcinomas (PHCC) (n = 1), and extrahepatic cholangiocarcinomas 
(ECC) (n = 1). Pathologies in biliary surgery included acute cholecystitis (n = 2), gallstones (n = 2), and 
cholesterolosis and polyps (n = 1). For pancreatic surgery, studies included pancreatic cancer (n = 5), 
pancreatic fistulas (n = 4), intraductal papillary mucinous neoplasms (IPMN) (n = 2), and acute pancreatitis 
(n = 1). Additionally, four studies have not specified the pathology that was treated.

The purposes of ML algorithms mostly included predicting the course of disease (n = 26), postoperative 
complications (n = 13), diagnosis (n = 4), and intraoperative complexities (n = 3). Additionally, ML was 
used to determine essential predictors (n = 5) and to predict the postoperative quality of life (n = 1).

An overview of study characteristics for liver, biliary, and pancreatic surgery is separately presented in 
Supplementary Tables 5-7, respectively. In addition, the median and range of accuracies for included ML 
models are presented in Figure 2.

Risk of bias assessment
Within the 52 included articles, 47 (90%) retrospective cohort studies have been detected. Additionally, five 
prospective cohort studies (10%) were present. Therefore, only the ROBINS-I assessment tool was used for 
the methodological quality assessment. It was discovered that most studies (92%) received a low overall bias, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202209/5163-SupplementaryMaterials.pdf
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Figure 1. Flowchart of selected studies, according to the PRISMA guidelines.

whereas 8% received a high overall bias, mainly due to the presence of selection bias. The results of this 
assessment are presented in Figure 3. Since we assume that ML models adjust for confounders and are 
performed consistently, domains such as bias due to confounding and bias in deviations from interventions 
received low risk of bias scores. However, the bias in the intervention classification domain of these studies 
received moderate risk of bias scores, because the collection of information occurred before the 
implementation of ML algorithms.

According to the PROBAST risk of bias tool, most studies received a low risk of bias score for the domains 
selection, predictors, and outcomes. However, the analysis domain, in which missing data and overfitting 
are accounted for, appeared to have a large proportion of unclear bias scores. Consequently, 30% of the 
studies received a low overall bias, whereas 33% received an unclear overall bias. A proportion of 37% is 
covered by studies with an overall high risk of bias, resulting predominantly from bias in the selection and 
outcomes domains [Figure 4].
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Figure 2. Comparison of accuracies among Machine Learning models.

Figure 3. Methodological quality assessment of the non-randomized studies, according to ROBINS-I assessment tool. Green: Low risk; 
blue: moderate risk; red: serious risk.

Figure 4. Risk of bias evaluation of Machine Learning models within studies, according to the PROBAST risk of bias tool. Green: Low 
risk; blue: unclear risk; red: high risk.
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Liver surgery
Twenty-one studies have developed ML algorithms to predict the course of disease in patients that 
underwent hepatectomy for malignancies[22-42]. ML models have shown AUCs between 0.63 and 0.99 for 
predicting the course of disease, whereas accuracies have been demonstrated to range from 73% to 99%. 
Eight studies have applied ML to predict postoperative liver function and complications in patients that 
underwent hepatectomy[43-50]. In predicting postoperative liver function and complications, ML models have 
demonstrated AUCs ranging from 0.63 to 0.89, and accuracies between 73% and 89% have also been 
reported. Four studies have used ML to determine predictors and clusters for HCC and ICC patients[51-54]. By 
using ML, the following significant predictors have been found for the survival of HCC and ICC patients: 
alpha-fetoprotein, lymphovascular invasion, tumor burden score, tumor number, tumor size, albumin-
bilirubin grade, CA 19-9 levels, and neutrophil levels. For CRLM, lymph node metastasis, metastasis size, 
and carcinoembryonic antigen (CEA) levels appeared to be the key predictors for survival[55].

Biliary surgery
Three studies have developed ML models to predict intraoperative conversions and complexities[56-58]. 
Intraoperative conversions and complexities have been predicted by ML algorithms with accuracies between 
83% and 89%. Two studies applied ML algorithms to predict gallstones and related diseases, in which ML 
models have shown AUCs from 0.85 to 0.94, along with accuracies up to 97%[59,60]. In addition, Shi et al. 
applied ML algorithms to predict the postoperative quality of life in patients with gallstones[61]. A mean 
absolute percentage error of 7.2% and 8.5% was demonstrated, in which a value lower than 10% was 
considered accurate.

Pancreatic surgery
Five studies have developed ML models to predict the course of disease in patients with pancreas 
carcinomas who received pancreatectomy procedures[62-66]. AUCs of ML models in predicting the course of 
disease have ranged from 0.61 to 0.92, and accuracies have been reported to range between 71% and 98%. 
Additionally, five studies have developed ML algorithms to predict postoperative complications after 
pancreatic surgery[67-71]. For predicting postoperative complications, ML algorithms have demonstrated 
AUCs between 0.67 and 0.85, whereas accuracies have varied from 75% to 85%. Two studies have trained 
ML models to diagnose IPMN in patients that underwent pancreatectomy, in which IPMN’s were 
diagnosed with AUCs of 0.79 and 0.98[72,73].

DISCUSSION
This review provides an overview of ML applications within HPB surgery. Several ML models have been 
applied within HPB surgery, in which Neural Networks and Radiomics have been used most frequently. 
Machine Learning has predominantly been demonstrated for predicting the course of disease, and 
postoperative complications. Neural Networks have shown the highest predictive performance based on the 
mean accuracy of 88%. The findings of this study suggest that ML algorithms have promising capacities for 
patients undergoing HPB surgery.

In predicting the course of disease for patients with HPB malignancies, accuracies of ML models have varied 
between 61% and 99%. As a comparison, regression models have predicted similar outcomes with accuracies 
up to 82%[74,75]. For years, HPB surgeons have experienced difficulties in treatment strategies for HPB 
cancer[76,77]. Multiple clinical trials are conducted to develop optimal treatment strategies to improve patient 
outcomes after surgery[78]. By using ML to predict metastasis and response to chemotherapy, HPB surgeons 
could decide to tailor surgery or chemotherapy to patients that could optimally benefit from these 
treatments.
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Machine Learning models have demonstrated accuracies ranging from 63% to 89% for predicting 
postoperative complications after HPB surgery. Although clinical risk prediction models have been 
developed to detect postoperative complications, these models have not shown significant improvements 
compared to the surgeon’s assessment[79]. In addition, conventional regression models have predicted 
postoperative complications with AUCs up to 0.74[80,81]. Due to its promising predictive performances, ML 
has illustrated the potential to surpass the surgeon’s assessment and conventional statistics. Ideally, ML 
models could facilitate the implementation of prophylactic measures and improved patient monitoring 
based on the predicted complications. This could prevent delayed hospital discharge for patients with severe 
postoperative complications.

Machine Learning has shown accuracies between 79% and 98% for the diagnosis of HPB pathologies such as 
gallstones and IPMNs. Meanwhile, logistic regressions have demonstrated accuracies between 73% and 77% 
in predicting these outcomes[82,83]. As ML seems to be superior in predictive capacities, these models could 
be used to preoperatively recognize patients with these pathologies, enabling the possibility to track the 
most important risk factors early and improve patient monitoring. In addition, intraoperative complexities 
and conversions during laparoscopic cholecystectomies have been predicted by ML models with accuracies 
up to 89%, whereas logistic regression models have shown accuracies up to 83%[84]. Recently, computer 
vision models have been developed to locate anatomic landmarks and assess the grading of operative 
complexities during laparoscopic cholecystectomies[85,86]. Predicting conversions and detecting complexities 
during operations by using AI models could support intraoperative decision-making and secure optimal 
patient safety.

For many years, conventional statistical models have been trained to predict surgical outcomes after HPB 
surgery. Most ML models in this review have shown median AUCs above 0.8, possibly indicating better 
discriminative abilities than conventional statistics for predicting surgical outcomes after HPB surgery. 
Furthermore, ML models are able to perform better predictions if the number of input variables is large, 
whereas conventional statistics function optimally with a few variables[87]. Since clinical databases are 
complex and usually contain many variables, ML would be preferred for the analysis of clinical data. 
However, clinicians have been experiencing difficulties in understanding and interpreting ML methods, 
which is also called the “black-box problem”[88]. This problem could eventually hinder the development and 
implementation of ML models.

This review has some limitations. Due to inconsistencies in applied ML frequencies, mean accuracies might 
be underrepresented for a few ML models. Additionally, some of the studies have not reported accuracies or 
AUCs for the ML algorithm; therefore, a meta-analysis could not be performed.

Since predictive accuracies above 70% indicate good discriminative abilities[89], ML algorithms within this 
review seem to have promising predictive capabilities for outcomes after HPB surgery. However, as most 
studies (85%) are missing external validation for the ML algorithms, the generalizability of these models is 
not supported. The clinical integration of ML could be dependent on this external validation. Therefore, 
future studies should focus on gaining external validation, which could be facilitated by retrieving large 
datasets from available patient databases. In addition, interdisciplinary collaborations could be essential in 
solving this “black-box problem” and support the development of efficient ML models. Data scientists and 
clinicians should share clinical data to ensure proper data arrangements, data processing, and transparency 
in methodologies. Sharing data between medical fields might improve the accuracy of ML models and 
facilitate the procurement of external validation[90].
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In conclusion, ML models have shown promising predictive capabilities for relevant clinical challenges and 
surgical outcomes in HPB surgery. The potential of ML has been demonstrated for pre-, intra-, and 
postoperative purposes. Therefore, future studies should focus on gaining external validation to facilitate the 
clinical introduction of ML.
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