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Abstract
In this study, we have conducted an investigation on the structural characteristics and electronic properties of van 
der Waals heterostructures (vdWHs) composed of Gallium selenide (GaSe) and MoSi2N4. The analysis was carried 
out using first-principles methods. The findings indicate that the heterostructure exhibits stability at standard room 
temperature and possesses characteristics of an indirect bandgap semiconductor. Interestingly, we observed that 
the band edges of the heterostructure of monolayer GaSe and MoSi2N4 were able to form a type-I band alignment. 
Therefore, in the field of optoelectronic devices, GaSe/MoSi2N4 vdWHs can be widely used in light-emitting 
devices such as diodes. In addition, through the application of an external electric field and in-plane strain, the band 
edges of GaSe/MoSi2N4 vdWHs can be separated from the GaSe and MoSi2N4 layers, forming a transition from the 
type-I to type-II band alignment, which is very favorable for realizing effective electron-hole separation. Therefore, 
GaSe/MoSi2N4 vdWHs have great potential as an adjustable material in optoelectronic applications.
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INTRODUCTION
Van der Waals heterostructures[1-4] (vdWHs) are stacked structures made of atomically two-dimensional 
(2D) layered materials. Such structures are of intense interest to the scientific community because these 
structures may integrate 2D materials[5,6] with varied properties at the atomic scale, thereby offering a 
standard platform for applications in electronics and optoelectronics. Using van der Waals forces, it is 
possible to construct structures with specific functions by stacking various 2D monolayers of materials. 
Researchers are able to govern the interface and electronic characteristics of materials by modifying the 
stacking order of different materials thanks to the adaptability of this structure, which enables various 
applications[7-9]. The band alignment (When the band alignment appears below, it is denoted by the 
abbreviation b-a) of heterostructures is a crucial characteristic that can be categorized into three distinct 
types: straddling type-I, staggered type-II, and broken-gap type-III. Each specific b-a is associated with 
certain applications for electronic devices. Type-I b-a is advantageous for spatially restricting electrons and 
holes, which allows for more effective recombination to be achieved; optical device applications benefit 
from type-I b-a[10,11]. In contrast to type-I b-a, type-III b-a engineering facilitates the transition of energy 
between the conduction band and the valence band. Consequently, type-III b-a holds a unique potential for 
use in photodetectors and tunnel field effect transistors[12,13]. However, for type-II b-a, it is evident that the 
shifting of bands facilitates the separation of carriers, which is ideal for attaining efficient electron-hole 
separation and thus proves advantageous for applications involving electronic devices and 
photocatalysis[14,15]. Much research has been done on 2D layered materials and vdWHs because of these 
worthwhile applications.

Gallium selenide (GaSe) is a widely studied layered structure that has garnered significant interest in the 
fields of optoelectronics, terahertz radiation detection, and nonlinear optics[16]. The crystal structure of GaSe 
is hexagonal with the space group P-3m1. In recent times, there have been successful endeavors to extract 
high-quality single and few-layer GaSe nanosheets using different methods, including chemical and 
mechanical exfoliation, as well as vapor phase deposition or epitaxy growth[17,18]. The 2D GaSe nanosheets 
exhibit a remarkable on-off current ratio of approximately 105, together with a significantly high 
photoresponsivity of up to 2.8 A W-1. This photoresponsivity surpasses that of MoS2 and graphene[17,19]. 
Recent theoretical and experimental investigations have demonstrated that the monolayer form of GaSe 
exhibits promising characteristics as a potential photocatalyst[20,21]. Nevertheless, the significant experimental 
bandgap range of 3-3.5 eV could potentially impede the practical implementation of this material as a 
promising photocatalyst, primarily due to its limited ability to effectively utilize visible light[22,23]. Moreover, 
it has been experimentally verified that the bulk carrier mobility of GaSe is 215 cm2 V-1 s -1, and there is 
potential for a substantial increase in mobility when GaSe is reduced to a few layers[24]. The acquisition of 
single-layer GaSe represents a significant advancement in the realm of 2D materials, thereby broadening the 
scope of this material family. This development also paves the way for novel opportunities in the field of 
optoelectronic device applications[25-30].

Recently, the successful fabrication of a MoSi2N4 monolayer has been achieved by the process of chemical 
vapor deposition[31]. Using first-principles calculations, Hong et al.[31] were able to make a prediction 
regarding the electronic properties of the MoSi2N4 monolayer. Specifically, they determined that this 
monolayer possesses the characteristics of a direct bandgap semiconductor. The calculated bandgap value, 
acquired using the Perdew, Burke, and Ernzerhof (PBE)/Heyd-Scuseria-Ernzerhof (HSE06) method, was 
found to be 1.744/2.297 eV. Theoretical investigations have been conducted to examine the electrical and 
optical characteristics of the MoSi2N4 monolayer[32-34]. The investigation of contact heterostructures using 
MoSi2N4 and various 2D and 3D materials has been conducted. Examples of such heterostructures include 
MoSi2N4/graphene[35,36], MoSi2N4/MoS(Se)2

[37,38], and MoSi2N4/metals[39]. The electrical and optical properties 
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of the MoSi2N4 monolayer are significantly influenced when it comes into contact with other 2D materials. 
Cai et al.[38] conducted a study on the construction of the MoSi2N4/MoSe2 vdWH. Their findings indicate 
that the MoSi2N4/MoSe2 vdWHs exhibit a type-I b-a, resulting in improved optical absorption and carrier 
mobility when compared to the individual monolayers.

Tunable b-a and electronic properties of GaSe/MoSi2N4 vdWHs have not been studied to date. The objective 
of this investigation is to perform first-principles research on the electronic structure of GaSe/MoSi2N4 
vdWHs. In addition, we explored the potential to adjust its b-a through the application of interlayer 
distance, biaxial strain, and applied electric fields. The results show that the GaSe/MoSi2N4 vdWHs exhibit 
stability under ambient conditions and possess characteristics of an indirect bandgap semiconductor. 
Furthermore, it was observed that the band edges of the heterostructure, which consists of a monolayer of 
GaSe and MoSi2N4, exhibit type-I b-a. Through the control of biaxial strain and the action of applied electric 
field, the direction type of the band can be effectively adjusted from type-I to type-II. This adjustment 
facilitates the efficient separation of electrons and holes that are created. Our results show that the 
GaSe/MoSi2N4 vdWH has good properties as a multifunctional material and has great potential in the field 
of optoelectronics.

COMPUTATIONAL METHODS
This study presents the outcomes of our investigation into the geometric optimization, electrical structures, 
and b-a of the GaSe/MoSi2N4 vdWHs, employing first-principles calculations. The density functional theory 
framework[40] is utilized for structure optimization and property computations. These calculations are 
performed using the standard version of Vienna ab initio simulation package (VASP.5.4.4)[41], which 
employs the projector-augmented plane wave (PAW) approach[42] to account for the ion-electron 
interaction. The software program known as Visualisation for Electronic Structural Analysis (VESTA)[43] is 
widely employed for the manipulation and analysis of various forms of data pertaining to structural models, 
volumetric data encompassing electron and nuclear densities, and crystal morphologies. The electronic 
exchange-correlation functional is addressed in this study by employing the generalized gradient 
approximation (GGA)[44] as determined by PBE[45]. The energy cutoff of the plane waves is established at 
550 eV with an energy accuracy of 10-6 eV, and the k-point mesh of the Brillouin zone is set to be 8 × 8 × 1. 
The atomic locations undergo complete relaxation until the magnitude of the force acting on each atom is 
below 10-3 eV/Å. The supercell technique is commonly employed for simulating monolayers, wherein a 
vacuum separation of around ~40 Å is employed to mitigate the interaction between neighboring layers. 
Given that the GGA tends to underestimate bandgaps, we employ the HSE06 hybrid functional[46] for the 
computation of band structures. The computation of dynamic stabilities and phonon dispersion curves is 
carried out using the supercell technique, which is implemented in the Phonopy code[47]. The inclusion of 
the dipole correction was also accounted for in the calculations.

RESULTS AND DISCUSSION
Figure 1 shows the atomic structure, phonon spectrum, projected band structure and state density of 
semiconductor GaSe and MoSi2N4 monolayers. After geometric optimization, both GaSe (γ’ phase, in these 
papers as 1T phase)[48] and MoSi2N4 (1T, 2H) showed layered atomic structures with lattice constants of 
3.64 Å, 2.90 Å and 2.89 Å. As illustrated in Figure 1A-C, for the optimized GaSe geometry, it is observed that 
the Ga atom is connected to two Se atoms, while in the MoSi2N4 geometry, the Mo-N2 layer is situated in 
between the Si-N double layer. By calculating the band structure of the GaSe monolayer through HSE06 and 
PBE, it can be found in Figure 1G and J that GaSe has semiconductor characteristics and is an indirect 
bandgap semiconductor. The locations of the conduction band minimum (CBM) and valence band 
maximum (VBM) are identified to be at the M and Γ points. The PBE and HSE06 approaches both 
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Figure 1. (A-C) Shows the optimized atomic structure, phonon dispersion curve (D-F); (G-I) HSE06 projected band structure and state 
density are 1T-GaSe, 1T-MoSi2N 4, 2H-MoSi2N4; (J-L) are the PBE projected band structure and state density of 1T-GaSe, 1T-MoSi2N 4, 
2H-MoSi2N 4. The green, orange, red, blue, and silver spheres represent selenium, gallium, molybdenum, silicon, and nitrogen atoms. 
HES06: Heyd-scuseria-ernzerhof; GaSe: Gallium selenid; PBE: Perdew, burke, and ernzerhof.

anticipate the identical features of the GaSe monolayer, with a bandgap value of 2.32 eV for each calculation 
method. The contribution of the atoms in the GaSe monolayer is shown in Figure 1J. The red and green 
lines correspond to the respective contributions made by gallium and selenium atoms. It is shown that both 
VBM and CBM of GaSe monolayers are predominantly contributed by the p-orbital of Se atoms. Figure 1D 
illustrates the phonon spectrum of the monolayer GaSe. The figure illustrates that the frequency of the 2D 
GaSe monolayer is positive and there is an absence of virtual frequency, so indicating the dynamic stability 
of the material.

Additionally, the MoSi2N4 monolayer is also an indirect bandgap semiconductor, and the CBM and VBM of 
1T- MoSi2N4 and 2H- MoSi2N4 are located at the K and Γ points. In the ground state, the band structures of 
1T-MoSi2N4 and 2H-MoSi2N4 monolayers were calculated by HSE06 and PBE [Figure 1H, I, K and L]. The 
bandgap values obtained by HSE06 methods are 2.38 eV and 2.61eV, and those obtained by PBE methods 
are 1.81 eV and 2.02 eV. It is imperative to acknowledge that conventional PBE techniques frequently 
underestimate the bandgap of 2D semiconductors. To address this limitation, the HSE06 approach can be 
employed to acquire a more precise and reliable bandgap. However, the bandgap measurement of the 
MoSi2N4 monolayer in the experiment yielded a value of 1.94 eV[31], which is in greater agreement with our 
PBE calculation. Therefore, we used the PBE method for subsequent related calculations. Furthermore, we 
found that the bandgap of 1T-MoSi2N4 is closer to the experimental value compared to that of 2H-MoSi2N4. 
Meanwhile, the total energy of 1T-MoSi2N4 is lower than that of 2H-MoSi2N4. Hence, we will further 
investigate the correlated electronic properties of the vdWH formed by monolayers of 1T-MoSi2N4 and 
1T-GaSe in the following sections. The contribution of atoms in the monolayer of MoSi2N4 is shown in 
Figure 1K and L. The red and blue lines represent the contributions of molybdenum and nitrogen atoms. 
This suggests that the p-orbital of the N atom contributes most to the VBM of the MoSi2N4 monolayer, 
while the d-orbital of the Mo atom contributes most to the CBM. The phonon spectrum of the MoSi2N4 
monolayer is shown in Figure 1E and F, illustrating that the frequency of the 2D MoSi2N4 monolayer is 



Page 5 of Jiang et al. Microstructures 2025, 5, 2025009 https://dx.doi.org/10.20517/microstructures.2023.100 14

positive, indicating its dynamic stability. Additionally, there is no presence of virtual frequency, further
supporting its stability.

GaSe/MoSi2N4 vdWHs can be obtained by stacking the GaSe monolayer in the z direction on top of the
MoSi2N4 monolayer. The initial equilibrium layer spacing D is set to 3.39 Å, which is larger than the sum of
covalent radii between Se and N atoms, thus providing evidence that there is no formation of a covalent
bond between the two constituent monolayers. Due to the difference in lattice parameters between GaSe
and MoSi2N4 monolayers, we use a supercell composed of (√3 × √3) GaSe and (2 × 2) MoSi2N4. Additionally,
we consider three potential stack configurations, AA-stacking, AB-stacking and AC-stacking modes, which
correspond to Figure 2A-C. As illustrated in Figure 2, in the AA-stacking configuration, Se atoms
correspond to Mo atoms; in the AB-stacking configuration, Se atoms are in the center of Mo and Si atoms,
and in the AC-stacking configuration, Si atoms correspond to Se atoms at the center point. The calculation
results show that the energy in Figure 2C is relatively low (Eb about -7.26972 eV). Because the lattice
parameters of GaSe and MoSi2N4 monolayers are different, we use a supercell composed of (√3 × √3) GaSe
and (2 × 2) MoSi2N4. Based on m-n/m+n < 5% (m, n is the lattice constant of monolayer GaSe and MoSi2N4),
the lattice parameter of the combination of GaSe/MoSi2N4 is 6.30 Å, resulting in a lattice mismatch rate of
4.1% < 5%, which proves the rationality of the heterostructure. Furthermore, to assess the stability of the
structure, we determined the binding energy using Eb = EvdWHs - EGaSe -           , where EvdWHs, EGaSe 

and                 are the total energy of the corresponding vdWHs and GaSe and MoSi2N4 monolayer. The
binding energy of GaSe/MoSi2N4 is -2.19 eV. The binding energy of vdWHs is negative, indicating that their
energy is stable. In order to assess the mechanical stability of GaSe/MoSi2N4 vdWHs, we additionally
computed the elastic constants. The elastic constants C11, C12 and C66 = (C11 - C12)/2 of GaSe/MoSi2N4

vdWHs are calculated as 387 N/m, 90 N/m and 148 N/m. The Born-Huang criterion[49,50] suggests that the
elastic constants C11 > C12 and C66 > 0 of vdWHs demonstrate stability. We also calculate Young’s modulus
and Poisson’s ratio of Y = (C11

2 - C12
2)/C11, V = C12/C11 and other systems. The Supplementary Figure 1

describes the orientation-dependent Young’s modulus and Poisson’s ratio of vdWHs, showing that the
Young’s modulus and Poisson’s ratio of GaSe/MoSi2N4 is isotropic. The average Young’s modulus of GaSe/
MoSi2N4 vdWHs is 366 N/m and Poisson’s ratio is 0.23. The results show that the vdWHs have high in-
plane stiffness. Additionally, another key factor is the stability at high temperatures. Ab initio molecular
dynamics (AIMD) simulations were performed to investigate the thermal stability of the heterostructure.
The results of the energy fluctuations over 20 ps, along with the final snapshot, are presented in
Supplementary Figure 2. The GaSe/MoSi2N4 heterostructure maintained structural integrity and stable
energy at temperatures up to 1000 K. The well-preserved geometric structure suggests that the
GaSe/MoSi2N4 heterostructure may have practical applications even under high-temperature conditions.

Figure 3A and B Depicts the band structure of GaSe/MoSi2N4 vdWHs. The band structure calculated by PBE
and HSE06 methods shows that GaSe/MoSi2N4 vdWHs demonstrate characteristics of a semiconductor,
with the CBM situated at the K point and the VBM situated at the Γ point. This suggests that GaSe/MoSi2N4

vdWHs are an indirect bandgap semiconductor. The band shape and b-a type of GaSe/MoSi2N4 vdWHs
remain unchanged when utilizing the HSE calculation approach in contrast to the PBE method. Therefore,
the PBE method can accurately predict the electronic structure of GaSe/MoSi2N4 vdWHs. Due to
computational cost savings, we decided to use the PBE method for all subsequent calculations. In addition,
according to the band structure diagram shown in Figure 3, we find that both VBM and CBM are
contributed by the MoSi2N4 layer. Thus, GaSe/MoSi2N4 vdWHs form a type-I b-a.

In order to gain a deeper comprehension of the charge distribution within GaSe/MoSi2N4 vdWHs, the
electron density difference is computed using[51,52]: Δρ = ρvdWHs - ρGaSe - ρMoSi2N4, where ρvdWHs, ρGaSe and ρMoSi2N4

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/mic30100-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/mic30100-SupplementaryMaterials.pdf
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Figure 2. (A-C) Three different stacking forms of GaSe/MoSi2N4 vdWHs. The green, orange, red, blue, and silver spheres represent 
selenium, gallium, molybdenum, silicon, and nitrogen atoms. vdWHs: van der Waals heterostructures; GaSe: Gallium selenid; PBE: 
Perdew, burke, and ernzerhof; HES06: Heyd-scuseria-ernzerhof; CBM: Conduction band minimum; VBM: Valence band maximum.

Figure 3. (A and B) Weighted projected band structures of GaSe/MoSi2N4 vdWHs calculated by PBE and HES06. vdWHs: van der 
Waals heterostructures; PBE: Perdew, burke, and ernzerhof; HES06: Heyd-scuseria-ernzerhof.

represent the charge density of GaSe/MoSi2N4 vdWHs, a single GaSe monolayer, and MoSi2N4 monolayer, 
respectively. Charge depletion is represented by the cyan zone and charge accumulation is represented by 
the yellow region. The electron redistribution that takes place at the contact surface is clearly depicted in 
Figure 4A. More specifically, the predominant concentration of charge distribution occurs at the interface 
between the GaSe monolayer and MoSi2N4, where electrons are consumed in the Ga-Se layer and 
accumulate in the Si-N layer. Thus, The charge transfer occurs from the GaSe layer to the MoSi2N4 layer. 
The electrostatic potential of GaSe/MoSi2N4 vdWHs is shown in Figure 4B and C. The MoSi2N4 layer 
exhibits a greater potential depth compared to the GaSe layer, leading to the establishment of a built-in 
electric field at the interface. To have a better understanding of the interface’s charge redistribution, we 
further calculate the GaSe/MoSi2N4 vdWHs and the work function of the composition of the monolayer 
using:
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Figure 4. (A) In-plane average charge density difference of GaSe/MoSi2N4 vdWHs; (B and C) in-plane average electrostatic potential of 
GaSe/MoSi2N4 vdWHs. Inset represents the 3D charge density difference in the heterostructure. The yellow and cyan regions 
represent charge accumulation and depletion, respectively. vdWHs: van der Waals heterostructures; GaSe: Gallium selenide.

Φ = EVAC - EF                                                                           (1)

Here, EVAC and EF stand for vacuum energy and Fermi energy, respectively. The calculated work functions of
isolated GaSe and MoSi2N4 layers are 5.28 eV and 6.86 eV, while the work functions of GaSe/MoSi2N4

vdWHs are 6.41 eV. The work function of GaSe/MoSi2N4 vdWHs is shown in Figure 5. It is observed that
the work function of single-layer MoSi2N4 is higher than that of GaSe/MoSi2N4 vdWHs, indicating that
electrons accumulate on the MoSi2N4 side and are consumed on the GaSe side, both of which are transferred
from GaSe to MoSi2N4. The observed direction of charge transfer aligns with the findings shown in Figure 4.
The presence of the built-in electric field is attributed to the phenomenon of interfacial charge transfer.
Hence, the mobility of carriers and the injection of charges may be influenced. Besides, to establish carrier
migration, we calculate the effective mass in such vdWHs. Using VBM and CBM fitting for band edge
dispersion, we calculate the effective mass of the electron (me*) and hole (mh*) using

(2)

In this context, E(k) represents the energy dispersion,   denotes Planck’s constant, and k represents the wave
vector. The calculated electrons and holes of GaSe/MoSi2N4 vdWHs and the effective masses of the
monolayer are listed in Table 1. It can be found that the calculated electron effective mass of GaSe/MoSi2N4

vdWHs is 0.38 m0, which is still smaller than the value of GaSe and MoSi2N4 monolayer, thus indicating that
GaSe/MoSi2N4 vdWHs has a higher carrier migration mobility. Furthermore, the carrier mobility of the
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Table 1. Calculated lattice parameters (a), interlayer distance (D), bandgap (Eg), and contact type. Effective mass (m) and mobility 

(μ) along the x and y directions are obtained by PBE calculations

a (Å) D (Å) E g  
(eV) Contact types me

x/m0 mh
y/m0

μx 
(102 cm2 V-1 s-1)

    μy 
(102 cm2 V-1 s-1)

GaSe 3.64 - 2.32 - 0.43 0.75 5.32 9.17

1T-MoSi2N4 2.90 - 1.81 p-ShC 0.54 2.87 2.76 2.47

GaSe/MoSi2N4 6.30 3.40 0.44 p-ShC 0.38 5.19 3.27 4.89

Figure 5. The work functions of GaSe, MoSi2N4 monolayer and their vdWHs. vdWHs: van der Waals heterostructures; GaSe: Gallium 
selenide.

GaSe/MoSi2N4 heterostructure calculated in this study (489 cm2 V-1 s-1) is slightly higher than that of MoS2 
(410 cm2 V-1 s-1), yet it is lower than that of silicon (1,400 cm2 V-1 s-1). These findings suggest that our work 
holds significant potential for applications in the field of optoelectronics.

It is commonly recognized that controlling mechanical strain can effectively control the physical 
characteristics of 2D materials. In this study, we investigate the impact of strain engineering on 
GaSe/MoSi2N4 vdWHs by adjusting the interlayer distance, as shown in Figure 6A. Notably, interlayer 
distance in 2D-based vdWHs can be controlled using scanning tunneling microscopy[53] or vacuum thermal 
annealing[54]. We also calculated three stacking modes of GaSe/MoSi2N4 vdWHs at different interlayer 
distances in Supplementary Table 1. The results show that AC-stacking in GaSe/MoSi2N4 vdWHs has the 
lowest binding energy. Here, the strain is applied by adjusting the interlayer distance, defined as 
ΔD = D - D0, where the value of the original D is 3.4 Å and D0 is the interlayer distance after the strain. By 
increasing the interlayer distance D, the tensile strain is specified, and by reducing D, the compressive strain 
is defined. ΔD < 0 indicates compressive strain, while ΔD > 0 indicates tensile strain. As illustrated in 
Figure 6A, the bandgap of GaSe/MoSi2N4 vdWHs gradually increases as the interlayer distance gradually 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/mic30100-SupplementaryMaterials.pdf
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Figure 6. (A) GaSe/MoSi2N4 vdWH bandgap variation with interlayer distance. The illustration is a schematic model of applying strain in 
the z-direction; (B) GaSe/MoSi2N4 vdWH band structure at different interlayer distances. vdWHs: van der Waals heterostructures; 
GaSe: Gallium selenide.

rises from 2.8 Å to 4.0 Å. By studying the band structure in Figure 6B, the underlying mechanism of
GaSe/MoSi2N4 vdWHs bandgap variation under strain engineering can be described. By applying tensile
strain (i.e., as D increases), the CBM and VBM of GaSe/MoSi2N4 vdWHs barely change, indicating that the
bandgap remains unchanged, and the type-I band structure is also retained in GaSe/MoSi2N4 vdWHs.
Under compressive strain, as D (3.4 Å) decreases to 2.8 Å, VBM and CBM in the red GaSe layer shift slightly
upward, while VBM and CBM in the green MoSi2N4 layer hardly change and still maintain the band
structure of type-I. These results show that there is no change in b-a from type-I to type-II by changing the
interlayer distance.

Furthermore, the effect of in-plane strain on the electronic structure of GaSe/MoSi2N4 vdWHs is
considered. The in-plane strain is defined as:

(3)

Here, a and aS denote the lattice parameters of GaSe/MoSi2N4 vdWHs without and in-plane strain,
respectively. The bandgap change of GaSe/MoSi2N4 vdWHs is shown in Figure 7A. We found that the
bandgap of GaSe/MoSi2N4 vdWHs decreased due to the in-plane strain. The bandgap of GaSe/MoSi2N4

vdWHs is reduced to 0.24 eV when ε = +6% tensile strain is applied. By applying in-plane compression
strain, the bandgap of GaSe/MoSi2N4 vdWHs increases gradually and reaches a maximum value of 0.88 eV
at -6% in-plane compression strain. Even more intriguingly, we found that the in-plane strain includes not
only a change in the GaSe/MoSi2N4 vdWHs bandgap, but also a shift between type-I and type-II b-a. To
better understand the underlying mechanism of the above behavior, we further mapped the projected band
structure of GaSe/MoSi2N4 vdWHs under different tensile and compressive strains, as shown in Figure 7B.
With the compression strain ε = -2% to -6% in the applied plane, the CBM of the MoSi2N4 layer shifts
upward, causing it to move away from the Fermi level (EF), and the VBM position hardly changes, while the
VBM and CBM of GaSe layers are close to the EF. In this instance, GaSe/MoSi2N4 vdWHs exhibit a type-I
b-a; both VBM and CBM are contributed by the MoSi2N4 layer and have an indirect bandgap
semiconductor at the Γ, K point. Besides, the CBM of the MoSi2N4 layer moves downward towards the EF,
VBM moves downward away from the EF, and both VBM and CBM of the GaSe layer move closer to the EF

with the in-plane tensile strain ε = +2% to +4%. In this case, GaSe/MoSi2N4 vdWHs exhibit a type-I b-a; both
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Figure 7. (A) Variation of GaSe/MoSi2N4 vdWH bandgap with in-plane strain. The illustration is a schematic model of the applied in-
plane strain; (B) Projected band structure of GaSe/MoSi2N4 vdWHs under in-plane strain of ε = -6%, -4%, -2%, +2%, +4%, +6%. 
vdWHs: van der Waals heterostructures; GaSe: Gallium selenide.

VBM and CBM are contributed by the MoSi2N4 layer and have an indirect bandgap semiconductor at the K, 
Γ point. More interestingly, when ε = +4%, we find that GaSe layer CBM changes from the original M point 
to Γ point, and VBM changes from the original Γ point to between M and Γ point. Noteworthy is the fact 
that the positions of CBM and VBM in the MoSi2N4 layer almost do not change with the in-plane tensile 
strain ε reaching +6%, while the VBM in the GaSe layer moves upward to the EF and the VBM in the GaSe 
layer is higher than that in MoSi2N4 layer. The results show that there is a shift from type-I to type-II b-a in 
GaSe/MoSi2N4 vdWHs. According to the above results, in-plane strain can effectively regulate the b-a and 
electronic structure of GaSe/MoSi2N4 vdWHs, which will be conducive to the design of high-efficiency 
nanoscale devices.

The use of external vertical electric fields presents an additional efficacious approach for controlling the 
electronic structure of 2D materials and vdWHs. We explore the effects of an electric field applied 
perpendicular to the GaSe/MoSi2N4 vdWHs, as shown in Figure 8A. The direction of the electric field from 
MoSi2N4 towards the GaSe layer is defined as the positive direction (from bottom to top in the illustration). 
In Figure 8A, we find that the application of a negative electric field hardly causes a large change in the 
bandgap of GaSe/MoSi2N4 vdWHs. However, when a positive electric field is applied, we can observe that a 
decrease in the bandgap is observed as the field is intensified. When a positive electric field greater than 
+0.2 V/Å is applied, the bandgap of GaSe/MoSi2N4 vdWHs decreases to zero, resulting in a transition from 
semiconductor to metal (Supplementary Figure 3 describes the projected band structure of GaSe/MoSi2N4 
vdWHs at an electric field of +0.3 V/Å). Interestingly, we found that applying an external electric field 
included not only a change in the GaSe/MoSi2N4 vdWHs bandgap, but also a shift between type-I and 
type-II b-a. In order to better understand the underlying mechanism of the above behavior, the projected 
band structure of GaSe/MoSi2N4 vdWHs was also plotted to describe the bandgap trend, as shown in 
Figure 8B. With the application of a negative electric field of - 0.1 to - 0.2 V/Å, the position of CBM and 
VBM in the MoSi2N4 layer hardly changes, while the GaSe layer CBM moves downward towards the EF and 
VBM moves downward away from the EF. In this case, the CBM of the GaSe layer in vdWHs is above the 
CBM of MoSi2N4, and the VBM of the GaSe layer is below the VBM of MoSi2N4, so there is a type-I b-a 
(where both VBM and CBM are contributed by the MoSi2N4 layer). On the other hand, with the application 
of a positive electric field of +0.1 to +0.2 V/Å, the CBM and VBM of the MoSi2N4 layer move downward to 
the lower energy level, and the VBM and CBM of the GaSe layer move upward to the higher energy level. In 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/mic30100-SupplementaryMaterials.pdf
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Figure 8. (A) Variation of bandgap of GaSe/MoSi2N4 vdWHs with electric field. The illustration is a diagram of applying an electric field 
along the vdWHs z-direction; (B) Projected band structure of GaSe/MoSi2N4 vdWHs under different electric field intensities. vdWHs: 
van der Waals heterostructures; GaSe: Gallium selenide.

this case, both CBM and VBM of the GaSe layer in vdWHs are above MoSi2N4, so it appears as a type-II b-a 
(where CBM is contributed by MoSi2N4 layer and VBM is contributed by GaSe layer). These discoveries 
imply that the electric field is an effective regulating knob for the type of b-a between type-I and type-II.

CONCLUSIONS
In a word, we investigate the structural characteristics and electronic properties of GaSe/MoSi2N4 vdWHs by 
first-principles calculations and explore the interlayer distance, in-plane strain, adjustable electronic 
structure and band alignment under external electric fields. The results show that the heterostructure 
exhibits stability at standard room temperature and possesses characteristics of an indirect bandgap 
semiconductor. Notably, we observed that both CBM and VBM of GaSe/MoSi2N4 vdWHs are derived from 
monolayer MoSi2N4, thus forming a type-I b-a. Furthermore, by applying in-plane strain, the external 
vertical electric field can separate the band edges of GaSe/MoSi2N4 vdWHs from the GaSe and MoSi2N4 
layers, leading to a shift from type-I to type-II b-a types. Our results reveal the great potential of 
GaSe/MoSi2N4 vdWHs as a tunable material in optoelectronic applications.
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