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Abstract
Worldwide, spinal cord injury (SCI) affects around 500,000 people each year and results in significant morbidity. 
The primary insult to the spinal cord occurs at the time of the initial injury, which may result from a contusion, 
laceration or more rarely a transection. Secondary damage in SCI is more insidious and subacute; it is the result of 
a combination of an inflammatory response, vascular changes and ionic dysregulation. Early clinical intervention 
is vital after the acute, primary insult to ensure the best possible outcomes for these patients. Current evidence on 
the demographics and mechanisms, underlying basic science and management strategies of spinal cord injuries 
are outlined.
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INTRODUCTION
Worldwide, spinal cord injury (SCI) is a significant pathology that affects around 500,000 people each year. 
The injury itself results in significant morbidity. 

These injuries are typically of a traumatic aetiology and carry significant impairment to function and 
quality of life. 40.4% are involved in road traffic accidents, 27.9% in falls, 8% are sports injuries, 15% related 
to violence and 8.5% are due to tumours or other causes. The burden of these injuries to both the patient 



and society as a whole is significant. The financial cost for each individual with such an injury is US$3 
million with an estimated overall annual cost of $10 billion per year[1].

Primary SCI occurs at the time of initial insult to the cord, which may result from a contusion, laceration 
or more rarely a transection. Maximal neurological deficit is observed immediately after a SCI and this 
results from the loss of effective axonal transmission, which is hampered by neuronal damage, damage to 
endothelial cells, ongoing haemorrhage and shifts in ionic concentrations. 

Secondary damage in SCI is more insidious and subacute[1]. It results from the combination of an 
inflammatory response, vascular changes and ionic dysregulation. As such, timely intervention after the 
acute primary insult is vital to ensure the best possible outcomes for these patients.

The often-permanent functional impairment in the injured spinal cord is due to poor healing potential. 
This contrasts to the repair and functional recovery of other tissues such as skin and muscles. The reason 
for this is not entirely understood; however, as described below, inflammation likely plays a key role[2]. 

Obviously, this adds additional necessity for timely intervention and appropriate treatment, not least for the 
patients themselves, but for society at large. 

Current evidence on the demographics and mechanisms of SCIs, the basic science of SCIs, and management 
strategies are outlined. 

The authors aim to perform a narrative review of SCI. Basic science and pathophysiology, mechanisms, 
management strategies and current best evidence will all be presented to offer a rounded and thorough 
review of SCIs and their management, for both scientific and clinical reference. 

BASIC SCIENCE OF SPINAL CORD INJURY
The spinal cord consists of many multitudes of neurons, which are the component active cell in the central 
and peripheral nervous systems. Neurons, while there is a certain variety in morphology, contain the 
following components: cell body, dendrites, axon and axon terminals. The cell body contains the nucleus 
and contains neuronal proteins and membranes. Axons, coupled with axon terminals, function to relay 
electrical impulses known as action potentials to stimulate responses in the central nervous system. Axons 
are layered with myelin sheaths, which enable swifter transmission of action potentials. Dendrites extend 
out from the cell body, which act to receive impulses from other neuron axons. These are extremely long, 
particularly in the central nervous system, and have many complex interactions with other neurons[3].

Neuron progentior cells are progenitor cells within the CNS that result in the glial and neuronal cell types 
that populate the CNS. NPCs have no role in generating the non-neural cells that are also present in the 
CNS, such as immune system cells. NPCs are present in the developing embryo’s CNS but are also found in 
the neonatal and mature adult brain[4]. 

Astrocytes are among the number of glial cells. They are ectodermal neural cells that maintain homeostasis 
and help defend the central nervous system. They are heterogeneous in form and function and have 
adaptive plasticity that defines the functional maintenance of the CNS with growth and age. They transport 
major ions and protons, remove and catabolize neurotransmitters, and release neurotransmitter precursors 
and scavengers of reactive oxygen species[5]. 

A SCI can be divided into (1) a primary injury which has occurred as a direct result of the initial insult; and 
(2) an ensuing secondary injury which is more insidious and subacute[1]. It results from the combination of 
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an inflammatory response, vascular changes and ionic dysregulation (all explored in Figure 1). Primary SCI 
occurs from a series of direct insults. Transection, whereby the spinal cord is transected by a blunt or sharp 
force, can be complete or partial. Any ascending or descending neuronal tissue will be damaged by such an 
injury. Contusion of the spinal cord occurs after a transient physical impact. This can result in compression 
or impact related damage to the cord. The fundamental factor in contusion is that the impact is transient 
and brief. Compression is a contusion-type injury following by prolonged force application over time[6].

All primary SCIs will result in secondary damage
Inflammatory response
The spinal cord is not exposed to inflammatory processes in a healthy individual and as a result, when 
inflammation does occur, it can have devastating consequences. The spinal cord is separated from ongoing 
inflammatory cells within the body by endothelial cells, which form a physical barrier[7]. The inflammatory 
response is initiated by damage to these endothelial cells, which leads to an increase in permeability and 
intracellular oedema, both of which are key factors in recruiting pro-inflammatory cells, leading to ongoing 
secondary injury[8].

The initiation of this inflammatory response is an almost immediate consequence of SCI. The inflammatory 
response is mediated by pro-inflammatory cytokines including IL1B, IL6 and TNF-alpha, which are 
released from damaged endothelial cells[9]. TNF-alpha induces damage in acute inflammation through 
stimulating apoptosis and necrosis. It is produced by activated macrophages. IL1B increases the levels of 
TNF‐α. This results in reduced neuronal survival, exacerbating lesion size and astrogliosis, and dampening 
axonal plasticity[10]. IL6 promotes the infiltration and activation of mononuclear leucocytes while 
suppressing neutrophil infiltration[11]. 

These inflammatory cytokines are very much involved in the acute phase of the injury. It has been found 
in histochemical analysis of human patients with SCIs, IL1B, IL6 and TNF-alpha were detected in neurons 
within thirty minutes of an acute SCI. These levels declined within two days after the injury[12]. 

Other studies have shown that these cells increase in the first four days following the injury[13]. This acute 
inflammatory phase is a transient process lasting approximately ten days following SCI, and end at 3 weeks 
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Figure 1.  Primary and secondary mechanisms of spinal cord injury. Adapted from Alizadeh et al .[41] 



following injury with inflammatory cells becoming absent from CSF then to reflect the end of ongoing 
secondary damage[9]. 

Cellular role
Remyelination plays an important role in the recovery of axons after SCI. While pro-inflammatory 
cytokines mediate inflammation and cell damage in SCI, there is a parallel action of proliferation-orientated 
cells. 

Microglia are a key cellular component of the scar that develops after SCI to protect neural tissue. They 
are dynamic and proliferate extensively during the first two weeks, accumulating around the lesion. There, 
microglia move to the interface between infiltrating leukocytes and astrocytes, where they proliferate and 
form a scar[14].

Oligodendrocyte precursor cells (OPCs) regulate the inflammatory reaction after SCI. After injury, OPCs 
migrate to the injury site and rapidly proliferate. From the day of injury to day 7, the number of OPCs 
persistently increases. 

Activated astrocytes influence proliferation, differentiation, and maturation of inflammatory reactions after 
injury. Astrocytes are also involved in synaptogenesis and control the immune response. It is these factors 
that play a fundamental role in remyelination after acute SCI[15]. After trauma, astrocytes surrounding 
the lesion become reactive and become hypertrophic. They migrate centripetally to the epicentre of the 
lesion and help with the tissue repair process. These reactive astrocytes do eventually become scar-forming 

Figure 2. Treatment algorithm for acute traumatic spinal cord Injury. Adapted from Vale et al .[35]
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astrocytes and form a glial scar. Within and around the glial scar, cells deposit extracellular matrix proteins 
that affect axon growth[16]. This can result in axonal growth inhibitors and then prevent axonal regeneration. 
Glial scar formation is one of the main causes of the limited regenerative capability of the CNS[17].

Macrophage activation also plays an important cellular role in regulating neuronal damage in the injured 
spinal cord. Macrophages have the ability to promote the repair of injured tissue by regulating transitions 
through the different phases of the healing response. In the injured spinal cord, pro-inflammatory 
macrophages potentiate a prolonged inflammatory phase and remodelling is not properly initiated[18].

Vascular changes
Mechanical damage to the spinal cord results in immediate vasospasm of superficial vessels and 
intraparenchymal haemorrhage. This damage initially occurs in the highly vascularised, yet most vulnerable 
grey matter[10]. This leads to immediate mechanical damage to the grey matter microvasculature, which 
further impairs the microcirculation to the cord and impedes perfusion[19]. The impaired blood flow of 
the damaged spinal cord may then beecome further damaged by systemic responses to the injury such as 
hypotension, bradycardia and a decreased CO2, leading to further ischemic damage[13]. 

Free radical damage
Cells under stress, in pro-inflammatory states such as the acutely injured spinal cord, generate large 
quantities of free radicals. These reactive species lead to ionic dysregulation when generated in excess. 
They can overload and block normal cellular signalling pathways. Impaired electron pumps such as 
Na+/K+/ATPase causes increased intracellular calcium. This leads to apoptosis, as well as mitochondrial 
dysfunction, contributing to ongoing spinal cord damage[20,21]. Redox potentials within the cells then 
plummet and result in oxidative damage. Such oxidative damage can continue for up to five days following 
the initial injury, contributing to the pathogenesis of secondary injury. Proteins and nucleic acids are 
damaged by the free radicals from red-ox reactions, leading to further ongoing damage to the spinal 
cord[10].

MANAGEMENT STRATEGIES IN SPINAL CORD INJURY
Management strategies for acute SCIs are typically focused on negating any secondary insult, mediated by 
the vascular, inflammatory and free radical changes after the primary injury. A thorough grounding in the 
mechanisms described above is therefore essential for guiding appropriate management. 

Cardiovascular support
Cardiovascular support for acute SCIs is essential in maintaining spinal cord perfusion after a traumatic 
injury. As described, physical damage to the cord results in immediate vasospasm of the microvasculature 
of the cord. Maintaining an adequate mean arterial pressure optimises cord perfusion. In particular, 
patients with complete high cervical SCIs are likely to develop spinal shock with loss of sympathetic drive. 
This results in hypotension due to the loss of peripheral vascular tone and concomitant bradycardia[22]. 
These patients are more likely to require vasopressor support to maintain their mean arterial pressure at 
the required levels, compared to incomplete injuries and those with thoracic or lumbar levels of injury (P = 
0.001)[23].

An observational study of 91 patients demonstrated that spinal cord perfusion pressure is an independent 
predictor of neurologic recovery in acute SCI [odds ratio (OR) = 1.039, P = 0.002][24]. These study findings 
support the need for vasopressor support in acute SCI. 

High levels of evidence are not available but cohort studies have demonstrated improvement in neurologic 
outcomes in patients with high average mean arterial pressure values. A mean arterial pressure of 85-90 
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mmHg is appropriate[25-27]. The duration of vasopressor support however, does not appear to be absolutely 
supported in the literature. A systematic review of vasopressor support did mention that a duration of 
five to seven days should be considered. The choice of vasopressor though does appear to be important 
in some cohorts. A retrospective cohort analysis of 34 patients in California showed that in a subgroup of 
patients over 55 years of age, dopamine produced statistically significant increases in the complication rates 
when compared with phenylephrine [83% vs. 50% for dopamine and phenylephrine, respectively; OR with 
dopamine 5.0 (95%CI: 0.99-25.34), P = 0.044][28]. This subgroup of 34 patients also demonstrated a median 
improvement of one ASIA grade from admission to discharge, with no difference between vasopressor 
agents. 

Steroid administration
Steroids have traditionally been given in acute SCI. The hypothesis is that steroids reduce inflammation 
and prevent secondary cord injury. However, a recent meta-analysis has debunked the evidence for 
their routine use. A Cochrane review of three randomised controlled trials has shown no difference in 
neurology between treatment and placebo groups at six and twelve months post-injury[29]. Nevertheless, 
despite the lack of evidence for routine administration of steroids in acute SCI, they appear to be routinely 
administered in many institutions still. The rationale for this is varied, but the fear of medico-legal 
consequences is one such reason. In the same study, surgeons also felt that there was little risk associated 
with the routine administration of these treatments regardless, despite minimal demonstrated clinical 
benefit[30]. 

Surgical treatment
Evidence suggests that decompression within 24 h of injury carries the greatest potential improvement in 
neurologic function for patients with incomplete SCI after trauma. 

The timing of surgical decompression is a factor that plays a role in neurologic recovery. There has been 
some debate and certainly, this is a factor in the trauma patient with SCI and multiple concomitant injuries, 
particularly chest injuries. Indeed, as discussed later, there is some evidence to suggest conservative 
management will result in neurologic recovery also.

In a recent meta-analysis of nine studies, patients with traumatic SCIs who were decompressed within 24 
hours had a significant neurologic improvement rate (OR = 1.66, 95%CI: 1.19-2.31, P < 0.01), a shorter 
length of hospital stay by almost five days (P = 0.04) as well as fewer post-operative complications (OR = 
0.61, 95%CI: 0.40-0.91, P = 0.02)[31]. Surgery within 24 h for acute traumatic SCI is thus superior to delaying 
surgery for neurologic outcomes. 

In another meta-analysis performed by Ter-Wengel et al.[32], 422 patients with complete cervical traumatic 
SCI showed that improvement was more likely after early surgery [respectively, 22.6%, 95%CI: 16.6%-
28.7% and 10.4%, 95%CI: 5.6%-15.8%; OR = 2.6 (95%CI: 1.4-5.1)]. The same meta-analysis showed that 
in 636 patients with incomplete cervical traumatic SCI, there were no differences between early or late 
surgery. The authors thus suggest a shift in the treatment of patients with complete cervical traumatic SCI. 
The authors’ previous understanding of the literature was that there was equivocal evidence for recovery 
in complete traumatic cervical SCI. The findings from this study changed that previously held position, 
in favour of early surgical decompression. In incomplete cervical traumatic SCI, neurological outcome is 
similar between early and late surgery[32].

In traumatic central cord syndrome, a retrospective cohort analysis of 50 patients treated acutely (within 24 h) 
was noted to have shorter intensive care stay, overall length of stay and greater motor improvement (P = 
0.04) compared with those decompressed later. This was only noted to be the case in acute fractures or disc 
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herniations. There were no statistitically significant improvements in patients who underwent surgery for 
cervical stenosis or spondylosis[33].

Another retrospective cohort study of traumatic central cord syndrome, consisting of 126 patients, did 
not demonstrate any statistically significance difference in neurological recovery based on the timing of 
surgery. Patients in this cohort treated with surgery did have a shortened length of hospital stay[34]. 

A prospective cohort analysis of 98 patients with traumatic cervical SCI has showed that early surgical 
decompression (within 24 h) demonstrated higher rates of ASIA grade recovery post-operatively. At 
6 months post-operatively, 23% of the early surgical group had an ASIA grade improvement of at least two 
grades, compared with 8.7% of the later surgical group[35]. 

Acute traumatic conus medullaris injury in spinal trauma between levels T12 and L1 has not been shown 
to have any correlation between neurologic recovery and timing of surgery[7]. The same author performed 
another retrospective cohort analysis of patients with complete traumatic thoracic SCIs. A cohort of 
12 patients showed that in complete thoracic SCIs, two patients demonstrated some sensori-motor 
improvement, and one patient had motor functional improvement. The median time to surgery in these 
patients was 11 days, ranging from one to 36 days. In all patients with a documented mechanism of injury, 
they were all high-energy road traffic accidents, either in vehicles or on motorcycles[6]. 

However, surgical treatment in traumatic SCI, whether complete or incomplete, is controversial. 
Conservative management of traumatic SCI has been described in the literature and was utilised to a 
greater extent in the past. A retrospective cohort analysis published in 1987 reviewed the outcomes of 207 
patients with traumatic SCI; 56% of this cohort underwent spinal surgery. There was however, no statistical 
difference between the patients who underwent surgical treatment versus those managed conservatively in 
terms of length of stay or neurological recovery[36]. More recently, El Masri et al.[37] discussed the evidence 
for surgical management compared with Active Physiological Conservative Management. He concluded 
that conservative, non-surgical management in patients with incomplete SCIs will often recovery enough 
power to ambulate and suggested the need for review of the current standards of care in relation to the 
acute management of traumatic SCIs. 

The findings of these studies are certainly at odds with the approach to acute traumatic SCI in a study 
published in 2010. Fehlings et al.[38] assessed the professional opinions and clinical approaches to traumatic 
SCIs in 972 spinal surgeons. 80% of the surveyed participants would prefer to decompress within 24 h. 

Early and aggressive medical management of these patients, followed by appropriate surgical decompression 
has demonstrated, in prospective studies, improvement of at least one ASIA grade in complete SCIs at one 
year follow up in 60% of patients. 92% of patients with incomplete cervical spine injuries demonstrated 
improvement at one-year follow-up in the same study. 

CONCLUSION
SCI carries significant morbidity for affected patients and has a serious economic burden on society. 
As illustrated by evidence from both the pathophysiology of SCI and clinical outcomes, timing is the 
key variable that determines treatment outcomes. The acute inflammatory response responsible for 
demyelination and neuronal damage occurs within minutes of the injury, but peaks at four days after. The 
vascular and cellular sequelae of these acute inflammatory events, a direct response to trauma and injury, 
exacerbate the damage and the degree of injury. If clinicians can intervene with the appropriate support 
to delay, offset or reverse this catastrophic cascade of pro-inflammatory cytokines and ischaemia, patient 
outcomes will obviously be greatly improved. These interventions must be timely, given how rapidly these 
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celullar responses to injury occur. 

Appropriate supportive therapy to maintain mean arterial pressure as described is essential. These 
patients are often the victims of serious trauma events. As illustrated in the introduction, 40% of these 
patients are involved in serious road traffic accidents, and may not be suitable for surgical intervention 
due to concomitant injuries. Coagulopathy, acidosis or renal failure may all render a prolonged surgical 
intervention dangerous[39-40]. It is in these circumstances that timely and appropriate management from 
intensivists is paramount. This should, of course, be carried out in a multi-disciplinary manner, with input 
from local neurosurgical or orthopaedic services. 

Wherever possible, the prevailing standard of practice appears to guide surgeons to decompress the 
injured spinal cord within 24 h of injury, particularly in incomplete injuries. This is illustrated by adapated 
treatment algorithm in Figure 2. This has been shown to offer favourable outcomes in terms of neurologic 
recovery, compared with delaying surgical intervention. Results are less favourable for patients with 
complete cord injury. While some studies have offered equivocal results for early decompression, even in 
incomplete injuries, such as central cord syndromes, the prevailing clinician preference is to decompress as 
soon as possible.

While there has been a vogue for administering steroids acutely in these patients prior to decompression, 
they appear to add little in terms of long-term recovery and should be discouraged.

LIMITATIONS
Conclusions drawn from this narrative review are derived from a combination of retrospective and 
prospective cohort analyses, as well as questionnaire publications documenting the treatment preferences 
of spine surgeons in their treatment protocols. While some evidence cited in this text does reach Level 1, 
further investigations including randomised controlled trials and meta-analyses would benefit the evidence 
base in terms of blood pressure management, steroids and surgical decompression. 

SUMMARY OF RECOMMENDATIONS
(1) Patients with acute SCIs should have their mean arterial pressure maintained above 85-90 mmHg after 
injury for a period of several days; 
(2) Where possible, early surgical decompression within 24 h should be undertaken, particularly in 
incomplete spinal cord injury;
(3) While the timing of establishing musculoskeletal stability of traumatic spinal injuries with surgical 
decompression and fixation may not determine neurologic return, it certainly allows for earlier 
mobilisation and easier nursing. This certainly explains the shorter lengths of stay and intensive care stays 
noted in patients who undergo earlier surgery;
(4) Steroids appear to have no therapeutic value.
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