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Abstract
Increasing lines of evidence have indicated the beneficial impacts of exercise on the neurodegeneration and 
cognitive decline of Alzheimer’s disease (AD). While general mechanisms underlying the positive effects, including 
the elevated neurotrophins level, improved neurogenesis and neuroplasticity, restored angiogenesis and 
autophagy, and reduced neuroinflammation, have been well documented, the epigenetic mechanisms of exercise 
on AD, however, are still inconclusive. Exercise can regulate the expression of those AD-related genes or proteins 
through various epigenetic modulations, thereafter rescuing AD pathologies and improving cognitive deficits of AD. 
In this review, we briefly summarized recent research advances in the beneficial impacts of exercise on cognition 
and AD and discussed the underlying mechanisms from an epigenetic point of view, including DNA methylation, 
histone modifications, and non-coding RNAs. A deep understanding of how exercise epigenetically promotes 
cognitive and pathological recoveries in AD is crucial for the future discovery of precise exercise procedures or 
exercise-like remedies to treat this disease.
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INTRODUCTION
Exercise, a subset of physical activity, has been recognized as an important approach to maintaining or 
improving the health of our body including the brain. Increasing lines of evidence have supported the 
positive impacts of exercise on emotional and cognitive performance during brain aging, whereas physical 
inactivity has been considered a risk factor for the incidence and progression of various psychiatric 
disorders[1,2] and neurodegenerative diseases[3,4]. The neuroprotective effects and general benefits yielded 
from physical exercise might be due to improved neurogenesis and neuroplasticity, recovered angiogenesis 
and autophagy, increased neurotrophin secretion, and reduced neuroinflammation[5]. Moreover, recent 
studies indicate that the positive impacts of exercise on brain function may be achieved through not only 
those above-mentioned mechanisms but also an epigenetic approach. The roles of epigenetics have gained 
more and more attention considering its modulating activity to alter chromatin and gene transcription so as 
to influence brain function. While the benefits of exercise to improve cognition and combat 
neurodegeneration, including Alzheimer’s disease (AD), have been comprehensively summarized and 
discussed in previously published reviews[6-10], very limited literature has focused on the epigenetic 
mechanisms underlying the effects of exercise against AD-related phenotypes and pathologies. In this 
review, we briefly summarized research advances in the benefits of exercise on brain health and cognition 
and discussed potential mechanisms underlying the benefits of exercise on AD from an epigenetic point of 
view.

EPIGENETIC ALTERATIONS IN ALZHEIMER’S DISEASE
Epigenetics
The term epigenetics is derived from the Greek word and mean over or above the genome. In biology, 
epigenetics was coined in 1942 by Conrad H. Waddington to define the process of how environmental 
factors regulate gene expression without changing DNA sequence. Epigenetic modifications are essential for 
many biological processes, especially during early life development and specialization, and may be 
maintained through cell divisions or inherited through generations. On the contrary, improper epigenetic 
modulations can result in pathological consequences and are involved in many human diseases. Epigenetic 
processes are thought to influence gene expression chiefly at the transcriptional and post-transcriptional 
levels. The common epigenetic modifications include DNA methylation, histone modifications, and non-
coding RNAs (ncRNAs) regulation. DNA methylation normally associates with gene silencing when the 
methylation occurs in cytosine-phosphate-guanine (CpG) islands of promoter sequences. Histone 
modifications lead to the open euchromatin state, which facilitates gene expression, or the closed 
heterochromatin state, which suppresses gene transcription. In addition, ncRNAs have also been shown to 
play a key role in the regulation of gene expression.

DNA methylation
DNA methylation is a major epigenetic modification consisting of the covalent addition of a methyl group, 
transferred from S-adenosylmethionine to cytosine residue within CpG and non-CpG dinucleotide sites, 
leading to the formation of 5-methyl cytosine (5mC). DNA methylation is catalyzed by a family of DNA 
methyltransferases (DNMTs)[11], resulting in methylation of the DNA and the subsequent alterations of gene 
expression[12]. There are five members in the family of DNMTs, including DNMT1, DNMT2, DNMT3A, 
DNMT3B, and DNMT3L[13]. While DNMT1, DNMT3A and DNMT3B are canonical members of DNMTs 
catalyzing the addition of methylation groups to genomic DNA bases, DNMT2 and DNMT3L are non-
canonical family members with relatively low catalytic DNMT activity[13]. However, DNMT3L binds to 
DNMT3A or DNMT3B to form heterodimers which promote the catalytic activity of DNMT3A and 
DNMT3B[13].
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Oppositely, the level of DNA methylation can be downregulated by DNMTs inhibitors or active removal of 
5mC. Ten-eleven translocation (TET) proteins catalyze the conversion of  5mC into 
5-hydroxymethylcytosine, then 5-formylcytosine, and finally 5-carboxylcytosine (5caC)[14-17]. The 
subsequent decarboxylation of 5caC leads to the active DNA demethylation pathway and promotes gene 
expression.

Histone modifications
Chromatin structure and gene accessibility to transcriptional machinery is regulated by modifications to 
histone tails. The N-terminal tails of histone protein in nucleosomes can be epigenetically modified through 
phosphorylation, ubiquitination, sumoylation, acetylation and methylation. All these epigenetic 
modifications modulate the chromatin structure and function to control the transcription and translation of 
specific genes.

Among all types of histone modifications, the histone acetylation at the ε-amino group of lysine residues in 
H3 and H4 tails is most consistently associated with the promotion of transcription, whereas the 
deacetylation of histones correlates with CpG methylation and chromatin inactivation. Compared to 
acetylation, the impact of histone methylation on transcription is much more complicated. The methylation 
in the histone N-terminal tail can either promote or repress specific gene expression, depending on the 
amino acid residue being modified and also on the type of modifications (monomethylated, dimethylated, 
or trimethylated). For example, the methylation of histone H3 at different amino acid residues leads to 
contradictory regulation. The methylations on lysine 4 and lysine 36 are associated with transcriptional 
activation, whereas those on lysine 9 and lysine 27 are associated with transcriptional repression[18].

ncRNAs regulation
ncRNAs are RNA molecules that are transcribed from genomic DNA but do not encode proteins. ncRNAs 
play essential roles in the epigenetics regulation of gene expression in addition to their roles at the 
transcriptional and post-transcriptional levels. Interestingly, ncRNAs are particularly abundant in the 
central nervous system and the altered ncRNAs profile has been closely correlated with brain aging and 
neurodegeneration[19,20]. ncRNAs can be categorized into small ncRNAs (sncRNA, < 200 nucleotides) and 
long ncRNAs (lncRNA, > 200 nucleotides). sncRNAs, including microRNAs (miRNAs) and piwi-
interacting RNAs (piRNAs), modify chromatin structure and silence transcription by guiding Argonaute-
containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of 
histone methyltransferases and DNMTs. In contrast, lncRNAs control chromatin structure mainly via 
interacting with nucleosome remodeling factors as well as chromatin-modifying enzymes.

Epigenetic modifications in cognition
In the brain, increasing lines of evidence, either from animal models or human subjects, have implied the 
involvement of epigenetic modifications in the biological processing of cognition, especially memory 
formation and consolidation.

DNA methylation and cognition
While the involvement of DNA modifications in memory storage was first proposed in 1969, early studies 
have further revealed changes in DNA methylation of genes in the hippocampus during learning and 
memory. Specifically, DNMTs expression is upregulated in the hippocampus following contextual fear 
conditioning and DNMT is required for the consolidation and reconsolidation of memory-associated 
neural plasticity[21,22]. Moreover, inhibiting DNMTs expression disrupts contextual fear memory formation, 
blocks memory maintenance, or improves short-term object pattern separation memory, via modifying the 
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methylation of specific memory-related genes including the brain-derived neurotrophic factor (BDNF), 
Protein phosphatase 1 and Reelin[23-27].

Notably, while experimental evidence has confirmed the close relationship between DNA methylation or its 
catalytic enzymes with cognition, the global level of DNA methylation is failed to be correlated with 
cognitive performance in either healthy older adults or 4 years old children[28-29]. This conflict may highlight 
a possible involvement of other factors in epigenetic modulations of cognition, especially under pathological 
conditions such as brain aging and neurodegeneration.

Histone modifications and cognition
Besides DNA methylation, increasing lines of evidence have also revealed important roles of histone 
modifications such as methylation, acetylation, ubiquitination, or phosphorylation in neuronal plasticity 
and memory processing[30-33].

Previous studies investigated the contribution of histone methylation to memory formation. Gupta et al 
found that trimethylation of histone H3 at lysine 4 (H3K4me3), an active mark for transcription, and 
dimethylation of histone H3 at lysine 9 (H3K9), a silencing mark for transcription, was upregulated in the 
hippocampus of rats subjected to contextual fear conditioning. In addition, mice deficient in the H3K4-
specific histone methyltransferase displayed impaired contextual fear conditioning, suggesting the 
involvement of histone methylation in long-term memory consolidation[34], which was further supported by 
other studies[35-37]. Despite the hippocampus, H3K9-mediated transcriptional repression has been found to 
be required for fear-related memory in other brain regions, such as the entorhinal cortex and amygdala[38,39].

Histone acetylation is also associated with memory and cognition[40,41]. H3 acetylation is rapid and reversible, 
being controlled by histone acetyltransferases (HATs) and deacetylases (HDACs). HATs activity deficiency 
leads to impaired learning and memory performance in mice[42,43]. In contrast to HATs, HDACs seem to 
regulate cognition in an inconsistent way. For Class I HDACs, HDAC1 normally plays a role in memory 
extinction, whereas HDAC2 and HDAC3 negatively regulate learning and memory[44]. As for the class II 
HDACs, HDAC4 deficiency was found to be correlated to improved memory in C. elegans[45], while 
HDAC4 deletion induced memory impairment in mice [46-47]. Moreover, the lack of HDAC5 in mice disrupts 
the memory process at 10 months of age but not 2 months[48].

Histone phosphorylation is another epigenetic modification regulating cognitive function. Gräff et al. found 
a rapid H3S10 phosphorylation of histone after the object memory test[49], which was consistent with 
previous reports showing an increased histone phosphorylation shortly after fear conditioning[50]. Moreover, 
germline knockout of mitogen-and stress-activated protein kinase 1 (MSK1), a key modulator of histone 
phosphorylation, impairs long-term spatial and contextual fear memory formation, leaving cued fear 
memory intact[51]. In addition to MSK1, IκB kinase-α also regulates histone phosphorylation[52] and appears 
to be involved in the reconsolidation of conditioned fear memories[53].

Moreover, although rarely investigated, recent evidence also suggests a potential contribution of histone 
ubiquitination in memory formation. Previous studies indicated that the contextual fear conditioning 
paradigm increased global and gene-specific histone H2B lysine 120 mono-ubiquitination (H2BubiK120) 
levels in rat hippocampus. Loss of H2BubiK120 impaired LTP and memory formation, which could not be 
rescued by upregulation of H3K4me3[54].
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Notably, various epigenetic modifications involved in cognition usually co-exist with each other rather than 
work independently. For example, the acetylation of H3K14 works together with the phosphorylation of 
serine 10 and the trimethylation of H3K36, and H3 acetylation co-occurs with DNA methylation, working 
together to regulate the memory procecss[32,47,55-58]. It may be worth investigating how a cross-talk or up/
down-stream regulation network functions among these co-occurring epigenetic modifications, thereafter, 
to deepen our current knowledge in the epigenetic regulation of cognition.

ncRNAs regulation in cognition
ncRNAs and their associated functional networks have been implicated in regulating complicated 
neurobiological processes including cognition and behavior[59-61]. An extensive body of evidence has 
demonstrated the clear correlations between miRNAs and neuronal activity. Neuronal activity regulates the 
expression and turnover of neural miRNAs, which in turn permits local translation of mRNAs encoding 
synaptic proteins at dendritic spines and postsynaptic densities necessary for synaptic function. For 
example, a specific group of miRNAs, including miR-132, is increased in response to neuronal activity and 
may ultimately promote the CREB/BDNF signaling-mediated elevation of dendritic spine formation and 
maturation[62]. However, in another study, miR-132 overexpression decreases MeCP2 expression and 
impairs cognitive performance in mice. In addition, the brain-specific miR-134 depressed CREB and BDNF 
expression, thereby impairing synaptic plasticity and recognition performance[63]. Moreover, miR-138-5p, 
another brain-enriched miRNA, can serve as an important regulator of short-term memory and inhibitory 
synaptic transmission in the mouse hippocampus[64]. piRNA, another subtype of sncRNA, induces endured 
epigenetic changes, which can be inherited across many generations and underlie mechanisms of activity-
dependent, adaptive memory storage[65]. For example, aca-piR-F in Aplysia increases piwi/piRNA-
dependent methylation at the CREB2 promoter and suppresses CREB2 expression, leading to enhanced 
long-term synaptic facilitation[66]. Another study found that selective deficiency of PIWI proteins in mice 
hippocampus results in enhanced contextual fear memory, further supporting the involvement of piRNAs 
in the regulation of memory[67].

In contrast to those above-mentioned sncRNAs, lncRNA profiles also appear to be correlated with 
cognition. Intriguingly, although lncRNAs can be found throughout the body, an estimated 40% expresses 
specifically in the brain, suggesting brain-specific roles for lncRNAs[68]. With advances in high throughput 
sequencing technologies and functional profiling methods, lncRNAs have been functionally and 
mechanistically correlated with neurobiological processes responsible for cognition. Previous studies have 
shown that nuclear lncRNAs may play important roles in the regulation of genes in charge of regulating 
synaptic plasticity and memory. For example, RNAseq analysis demonstrated an activity-dependent 
regulation of the lncRNA Gomafu in the medial prefrontal cortex (mPFC) after cued fear conditioning. 
Knockdown of Gomafu in the mPFC impaired the acquisition of fear responses in cued fear 
conditioning[69]. Wen et al. found that the down-regulation of lncRNA ANRIL in hippocampal pyramidal 
neurons ameliorated learning and memory deficits in diabetic rats via the NF-kB signaling pathway[70]. In 
contrast, NEAT1, a highly abundant nuclear architectural lncRNA, mediates neuronal histone methylation 
and age-associated memory impairment[71]. In addition to nuclear lncRNAs, cytoplasmic lncRNAs have also 
been implicated to be involved in synaptic plasticity changes in memory. For instance, lncRNA Durga has 
been demonstrated to be an important regulator for modulating dendritic morphology and kalirin 
expression in zebrafish[72].

All these findings provide compelling evidence to support the pivotal roles of ncRNAs in cognition. Further 
studies are still required to elucidate the consequences of precise spatio-temporal depletion or 
overexpression of candidate ncRNAs. The yielded data will not only help expand our current knowledge 
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about the exact epigenetic modulating network in cognition but also shed insight into future therapy of 
diseases with impaired cognition, such as AD.

Epigenetic alterations in Alzheimer’s disease
Impressive achievements have been made in understanding the possible mechanisms for AD pathogenesis 
and progression. It is well-accepted that AD is a multifaceted disease mediated by interactions between 
genetic and environmental factors. Currently, most of our knowledge about AD is based on fundamental 
research works using transgenic animal models carrying artificial genetic backgrounds, which only partially 
reflect the genetic aspect of this complicated disease. This limitation facilitates our investigations to detect 
other possible mechanisms to fully understand AD.

Although genetic factors appear to play pivotal roles in the etiology and pathogenesis of early-onset AD[73], 
epigenetic modifications have gained more attention, especially for late-onset AD[74-77]. More than 20 
epigenetic mechanisms have been identified to be correlated to AD, most of which involve DNA 
methylation, histone modifications [partially summarized in Table 1], or modifications of mRNA-related 
processes, including ncRNA and miRNA. Various aversive environmental AD risk factors can induce 
epigenetic modifications of key genes and pathways related to AD and contribute to AD onset. Several 
factors that have been associated with AD, such as diabetes mellitus, high blood pressure, obesity, diet, 
excessive sedentary lifestyle, smoking, and even a low educational level, are capable of inducing epigenetic 
changes. In contrast, a good lifestyle including proper physical exercise, sufficient sleep, vigorous emotional 
status, proper diet or nutrient supplement and social interactions is currently considered to prevent the 
pathogenesis of disease, delay the progression, or reduce the severity of AD. Among these daily life factors, 
physical exercise has been reported as one of the most accessible and feasible approaches.

DNA methylation in Alzheimer’s disease
Although the global DNA methylation pattern is failed to be correlated with cognitive performance in 
healthy human subjects, an altered DNA methylation has been observed in AD brain[103]. Moreover, DNA 
methylation alterations have also been identified in candidate genes that were closely correlated with AD 
pathophysiology. For example, in AD, the expression of PSEN1, BACE1 and APP genes, all involved in Aβ 
production and AD pathology, are promoted by hypomethylation of these gene promoters[75,104]. In addition, 
hyper-methylation has been associated with a higher presence of the APOE ε4 allele, the strongest genetic 
risk factor for late-onset AD[105]. As for the neurofibrillary tangles formed by aggregates of 
hyperphosphorylated tau protein, another pathological hallmark of AD, methylations-mediated epigenetic 
modulations have also been observed. Hypomethylation of glycogen synthase kinase 3β (GSK3β) promoter 
results in the overexpression of GSK3β, leading to tau hyperphosphorylation. In contrast, the 
hypomethylation of protein phosphatase 2A (PP2A) results in reduced activity of PP2A, thus cannot 
properly dephosphorylate tau, leading to tau hyperphosphorylation[86].

Besides those above-mentioned well-accepted AD risk genes, De Jager et al. also found a close correlation 
between AD pathology and DNA methylation, especially in the regions of ATP-binding cassette A7 and 
bridging integrator 1 genes, both of which harbor AD susceptibility alleles[106]. Interestingly, the methylation 
changes appeared in the early stage of the disease, as evidenced by the fact that these changes appeared in 
patients with characteristic amyloid pathology, even if they had not yet developed cognitive impairment. In 
another study, researchers performed a cross-tissue analysis of methylomic profile using AD brain and 
blood samples from different regions in four independent cohorts. They identified a differentially 
methylated region in the ankyrin 1 gene that was associated with neuropathology in the entorhinal cortex, a 
primary site of AD manifestation[107].
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Table 1. Epigenetic alterations in the brain of Alzheimer’s disease

Epigenetic alterations Target genes (proteins) Animal models or human subjects References

DNA methylation HOXA3 and ANK1 Postmortem human brain tissue in AD patients [78]

IL6 and SIAH1 Postmortem human brain tissue and blood samples in AD 
patients.

[79]

ADAM10 Whole blood DNA from AD patients [80]

APP Human brain tissues of AD patients [81,82]

BACE1 Prefrontal cortex neurons of AD patients [83]

ApoE4 and PIN1 Human brain tissues of AD patients [84,85]

GSK3β and PP2A TgCRND8 mice [86]

ANK1 and WNT5B Entorhinal cortex of the brain from AD patients [87]

RIN3, CTSG, SPEG and UBE2L3 Peripheral blood samples from patients with MCI [88]

BRCA1 and AURKC Postmortem brains of AD patients [89]

ANK1 Postmortem brains of AD patients [90,91]

HOXA3, GSTP1, CXXC1-3 and 
BIN1

Post-mortem PFC of AD patients (LOAD) [92]

TNF-α Cortex samples from 4 healthy subjects and 4 AD [93]

HOXA brain tissues from AD patients [94]

PSD95 APP/PS1 mice [95]

PM20D1 APP/PS1 mice [96]

Histone acetylation BACE1, 3xTg-AD mice brain and PBMC from AD patients [97]

BACE1 and PS1 APP overexpressed N2a cells [98]

PS1 and PS2 Swiss albino mice [99]

APP entorhinal cortex samples from AD cases [100]

DNA methylation and histone 
acetylation

BIN1 Human cortical brain tissue [101]

Txnip 3xTg-AD mice [102]

The DNA methylation status in the hippocampus is further determined, considering its pivotal role in 
cognition. Chouliaras et al. found that, compared with controls, AD patients showed a reduced 5mC level in 
hippocampus, which was negatively correlated to both amyloid plaque and tangle in the hippocampus[108]. 
More specifically, the decreased 5mC was found in both neuronal and glial cells in the CA1 region of 
hippocampus, whereas only glial cells in the CA3. Moreover, global DNA hypomethylation has been 
reported to be accompanied by decreased DNMT1 and DNMT3A expression in the hippocampus of 
postmortem AD samples[109].

DNA methylation alterations have also been observed in the frontal cortex of AD brain, but the findings are 
somehow inconsistent. For instance, DNA hypomethylation of CpG sites in exon promoter region was 
observed in the superior frontal gyrus of prefrontal cortex in AD[110]. In contrast, DNA methylation levels 
were increased in the medial frontal gyrus and were positively correlated with AD pathology[111]. The 
complexity of the DNA methylation changes in the AD brain was investigated by genome-wide methylation 
analysis[112]. The results revealed bidirectional DNA methylation alterations in a gene-specific manner; that 
is, hypermethylated genes were largely related to the regulation of transcription and gene expression, while 
genes with hypomethylation levels of CpG sites in promoter region were largely related to protein 
metabolism and membrane transport[112].

Considering the multifaceted nature of AD pathogenesis under complex interplays between environmental 
and genetic factors, this disease is regulated by a complicated and precisely controlled spatiotemporal gene 
expression network, which is in turn affected by epigenetic mechanisms including DNA methylation. 
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Although the migration of AD pathologies is temporally and regionally specific according to Brrak staging, 
it is worth investigating the spatio-temporal profiles of these epigenetic changes, in order to clarify the exact 
epigenetic modulating network in AD. To reach this goal, multi-omics studies involving spatial omics are a 
promising direction in the future[113,114].

Histone modifications in Alzheimer’s disease
Histone modifications are also important regulatory pathways in the development and progression of AD. 
Previous studies have revealed a close relationship between AD and histone acetylation. For example, 
acetylation of H4 was decreased in APP/PS1 mouse hippocampus. Administration of the HDAC inhibitors 
rescued the deficit in H4 acetylation and improved cognitive function in AD animal models[115,116]. In 
addition, HDAC6 inhibitor also blocked the Aβ-induced impairment of mitochondria transport in 
hippocampal neurons[117], inhibited HDAC6-dependent tubulin deacetylation in the mouse hippocampus, 
restored impaired axonal transport and novel object recognition in the P301S tau transgenic mouse, and 
decreased RIPA-insoluble tau accumulation[118]. However, similar to DNA methylation, bidirectional 
changes in histone acetylation in AD can also be observed. For example, while studies found increased 
activity of HDAC2 in the brains of patients with AD[119], another study observed downregulated histone 
marks in quantitative states of H3K18/K23 acetylation[120].

Histone methylation is another best-studied histone modification. In contrast to histone acetylation, 
although histone methylation has been implicated with cognition[32], the roles of histone methylation in AD 
are still rarely investigated. One clinical study identified methylation of H2B K108 and H4R55 in the frontal 
cortex of AD patients[121]. In addition, a postmortem study of AD brain reported an elevated level of 
H3K9me2 protein in the occipital cortex compared to non-demented and age-matched controls[122]. Much 
more recently, Persico et al. found a lower H3K4me3 and higher H3K27me3 level in the entorhinal cortex of 
patients with AD, compared with age-matched control subjects[123]. Consistent with these clinical findings, 
histone modifications have also been identified in AD animal models. For instance, significant elevation of 
H3K9me2 and Emt1 (G9a) and Emt2 (GLP) in the prefrontal cortex and hippocampus from the aged AD 
mouse model are accompanied by reduced glutamate receptor transcription and AD-like cognitive 
deficits[124]. Moreover, a loss of nuclear H3K4me3 in the hippocampus was found in the 3xTg AD mouse 
model, while an increase in H3K4me3 and Kmt2a was found in P301S transgenic Tau mice (line PS19)[125]. 
These epigenetic findings from either clinical or animal studies provide robust experimental evidence to 
support the involvement of histone methylation in AD. Restoring the homeostasis of histone methylation 
may be a potential therapeutic strategy to treat AD.

ncRNAs alterations in Alzheimer’s disease
ncRNAs are essential for the proper maintenance of cognitive function and have been represented as 
important epigenetic mechanisms associated with AD pathogenesis[126-128]. Their expression occurs in a 
variety of genomic regions important for APP processing, Aβ production, tau pathology, and 
neurodegeneration. Their regulatory functions are thought to depend on brain development and cell 
differentiation, as well as on various environmental factors related to AD[129-131].

miRNAs are endogenous sncRNAs regulating gene expression by inhibiting the transcription or inducing 
degradation of mRNA. Impairment of miRNA-epigenetic regulatory pathway can disrupt chromatin 
function and consequently lead to neurodegeneration[132-134]. For example, miR-221, miR-144 and miR-374 
levels were decreased in the brains of AD patients compared to healthy controls, and the circulating miR-
137, miR-181c, miR-9 and miR-29a/b levels in AD were lower than control subjects[135-137]. Jain et al. also 
found a high expression of miR-27a-3p, miR-30a-5p and miR-34c in the cerebral spinal fluid of AD[138].



Page 9 of Li. Ageing Neur Dis 2023;3:6 https://dx.doi.org/10.20517/and.2022.37 25

As for the regulating mechanisms, meta-analysis indicated that miR-129 is able to regulate synaptic 
plasticity and is present at low levels in brain regions of AD patients[139-140]. In addition, miRNAs also exert a 
wide range of modulation on APP processing and subsequent Aβ production. For example, miR-346 
specifically targets the APP mRNA 5’-UTR to promote APP translation and Aβ production[141]. On the 
contrary, miR-455-3p regulates APP processing and protects against mutant APP-induced mitochondrial 
dysfunction and synaptic abnormalities in AD[142]. Moreover, miR-425, a neuronal-specific regulator is 
decreased in AD brain and promotes the amyloidogenic processing of APP, neuroinflammation, neuron 
loss, and cognitive impairment. In contrast, miR-425 supplementation ameliorated amyloid plaque-
associated pathological changes and memory deficits[143].

Similar to miRNAs, piRNAs can also exhibit a different expression pattern in AD brain. For example, Qiu 
et al. identified 103 nominally differentially expressed piRNA from a total of 9,453 piRNAs in brains of AD 
patients compared with those of control subjects. The expression quantitative trait locus analysis further 
indicated that most of the 103 AD-related piRNAs were correlated with the genome-wide significant risk 
SNPs[144]. In another study, Jain et al. identified three piRNAs in the cerebral spinal fluid of AD patients, 
with a decreased expression level of piR-019324 but increased expression levels of piR-019949 and piR-
020364. Interestingly, these piRNA alterations could predict conversion from MCI to AD with an AUC of 
0.86. Moreover, the combined analysis of the piRNA profile with phosphorylated tau and Aβ42/40 ratio 
measurement was able to predict conversion from MCI to AD with a much higher AUC of 0.96[138].

Notably, epigenetic inheritance concerns the mechanisms that ensure the transmission of epigenetic marks 
from mother to daughter cells. Chromatin modifications and nuclear organization are candidates for 
epigenetic marks-whether they fulfill the criterion of heritability and what mechanisms ensure their 
propagation is an area of intensive research. The passage of the replication fork challenges genetic and 
epigenetic information. Depending on the nature of the epigenetic mark, its inheritance can be ensured in a 
replication-coupled manner or promptly that is separated from the disruptive event.

IMPACTS OF EXERCISE ON ALZHEIMER’S DISEASE
Cognitive decline induced by brain aging or various pathological conditions can be ameliorated by 
environmental enrichment (EE) exposure, a complex combination of multiple social, cognitive and physical 
stimulations[145,146]. EE improves behavior, cognition, and brain function in young senescence-accelerated-
prone mice[147]. EE also restores age-related cognitive impairment in mice through transcriptomic 
mechanisms[148]. Chronic EE exposure relieves cognitive decline and synaptic function induced by prenatal 
inflammation in aged CD-1 mice[149]. More specifically for AD, EE exposure counteracts Alzheimer's 
neurovascular dysfunction in TgCRND8 mice[150]. Moreover, EE also prevents synaptic dysfunction induced 
by Aβ oligomer through miRNA-132 and hdac3 signaling pathways[151]. In humans, clinical trials indicated 
that enriched gardens improve the cognition and independence of nursing home residents with 
dementia[152]. Among all factors involved in EE, physical exercise may be the most interesting one and plays 
an important role in restoring impaired cognition and ameliorating the pathological progression of AD. In 
this section, we focus on physical exercise to discuss the beneficial impacts of exercise on cognition and AD 
pathologies.

Beneficial impacts of exercise on brain health and cognition
The benefits of physical exercise on brain health and cognitive function have also been separately 
investigated in both rodent and human subjects. The benefits might base on various mechanisms on 
anatomic, cellular and molecular levels. For example, voluntary wheel running reduced the anxiety level of 
mice, which was associated with changes in the brain fatty acid profile[153]. Treadmill training rescues anxiety 
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and cognitive decline induced by chronic sleep deprivation in mice[154]. Choi et al. found that exercise 
provided cognitive benefits to 5 × FAD mouse model of AD by the induction of adult hippocampal 
neurogenesis and BDNF level[155]. Interestingly, administration of plasma from exercised mice transferred 
the effects of exercise on adult neurogenesis and cognition to sedentary aged mice[156]. In human subjects, 12 
weeks of simultaneous exercise and cognitive training in visual reality elicit positive changes in brain 
volume, vascular resistance, memory, and executive function in cognitively normal older adults[157]. In 
addition, one clinical trial found that vigorous aerobic exercise training may improve specific aspects of 
cognitive function in individuals with traumatic brain injury[158].

Benefits of exercise on AD pathologies
Studies in humans and animal models suggest that exercise has protective effects against AD, but the 
underlying mechanisms still require further investigation. Previous studies have found that exercise can 
stimulate neurogenesis and ameliorate cognitive deficits in AD mouse models through FNDC5/irisin/BDNF 
signaling[155,159-162]. More interestingly, this pathway has also been involved in neuroprotection by regulating 
neuroinflammation, improving brain metabolism, and modulating APP processing[163-168], which may also 
contribute to the benefits of exercise on AD to rescue AD pathologies.

Previous studies have also documented other molecular signaling pathways through which exercise 
specifically rescues or prevents amyloid or tau pathologies in AD[169-173]. Glycogen synthase kinase-3 (GSK-3) 
has been confirmed as a key regulator of tau hyperphosphorylation and APP processing, promoting the 
progression of tauopathy and pathological Aβ aggregation in AD. One previous study found that 5 months 
of treadmill exercise inhibited GSK-3-dependent signaling, leading to decreased PS1 expression and APP 
phosphorylation, thereafter dramatically reduced Aβ production and tau phosphorylation in APP/PS1 
mice[174]. In other studies, exercise activated PI3K/AKT, the upstream signaling of GSK-3, and inhibited 
GSK-3, thus mitigating the pathological changes of AD[175,176].

Recently, peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1-α), a transcription coactivator 
and the upstream signaling molecule of the FNDC5/irisin/BDNF pathway, has been reported to be activated 
by regular physical exercise and involved in the exercise-rescued cognitive deficits in AD[161]. Exercise 
epigenetically regulates PGC1α level through modulating methylation of the-260 nt in the PGC1α promoter. 
PGC-1α is closely associated with mitochondrial function and metabolism and is involved in various 
diseases including obesity, diabetes mellitus, cardiovascular disease, and neurological disorders. PGC-1α 
regulates the expression of mitochondrial antioxidant genes, and prevents oxidative stress and 
mitochondrial dysfunction. Abnormal PGC-1α function disrupts redox homeostasis and exacerbates 
inflammation, which results in neurodegeneration. During inflammation, the declined PGC-1α level leads 
to decreased mitochondrial antioxidant gene expression, induces oxidative stress, and promotes NF-κB 
activation. PGC-1α acts as an essential node connecting metabolic regulation, redox control, inflammation, 
and neuroprotection[177,178]. Interestingly, the benefits of PGC1-α stimulation on AD pathology can be 
attributed to its modulating activity on APP processing, especially β-site amyloid precursor protein cleaving 
enzyme-1 (BACE1), thus resulting in a decreased Aβ production and thereafter reduced pathological Aβ 
aggregation[179,180].

Notably, PGC1-α is also the substrate of Sirtuin-1 (SIRT1), an important protein controlling histone 
acetylation. Activation of SIRT1 signaling pathway, induced either pharmacologically (such as osmotin and 
resveratrol) or non-pharmacologically (photobiomodulation therapy), can rescue neurodegeneration via 
upregulating a disintegrin and metalloproteinase 10 (ADAM10) and down-regulating BACE1 activity[181-183]. 
Interestingly, exercise has been reported to recover the downregulated SIRT1 in 3xTg AD mice[184]. 
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Moreover, Koo et al. showed that treadmill exercise promoted SIRT1 expression level, which subsequently 
caused the activation of ADAM10 by increasing the retinoic acid receptor-β and inhibiting Rho-associated 
kinase 1[185].

EPIGENETIC MECHANISMS FOR EXERCISE AGAINST ALZHEIMER’S PATHOLOGY
As mentioned above, increasing lines of evidence have indicated that exercise has positive impacts on brain 
health and cognitive function. However, the exact epigenetic mechanisms responsible are largely unknown. 
In this context, more and more studies have examined the epigenetic impacts of exercise on brain function 
under either physiological or pathological conditions [partially summarized in Table 2]. Although the 
experimental data that link exercise and epigenetics modulation in AD are still limited, these findings may 
open new avenues helping discover new targets and design innovative therapeutic strategies against AD. In 
this section, we mainly discussed the epigenetic mechanisms of exercise on AD.

Exercise-induced epigenetic alterations
Emerging experimental and clinical evidence from animals and humans has indicated that exercise can 
induce epigenetic alterations, which may contribute to its beneficial impacts on health. For instance, acute 
exercise in human subjects induced a global DNA hypomethylation, which leads to an increased expression 
of key metabolic and regulatory genes, including PGC-1α, peroxisome proliferator-activated receptor δ 
(PPAR-δ), mitochondrial transcription factor A (TFAM), and myocyte enhancer factor 2 (MEF2), in an 
exercise intensities-dependent manner[211]. In addition, short-term exercise also results in decreased 
methylation of the PGC-1α promoter in human skeletal muscle and induces a dramatic increase in PGC-1α 
gene expression together with postexercise alterations of lipid metabolism[212]. Although the exact molecular 
mechanisms of how exercise induces epigenetic modifications are still far from being clearly elucidated, one 
recent study has suggested a possible involvement of calcium signaling[211]. No clear correlations have been 
observed between gene expression and DNA methylation, suggesting the possible involvement of other 
epigenetic mechanisms in exercise-modulated gene expression. There is also no conclusive relationship 
between global DNA methylation patterns and AD pathologies. Therefore, attention has been shifted to the 
effect of gene-specific methylation on the risk of AD.

Besides DNA methylation, exercise also induces histone modifications. A previous study reported that 
exercise increases histone 3 (H3) serine phosphorylation in the skeletal muscle of both untrained and 
trained subjects[213]. In animal studies, swimming exercise in rats increased H3 K9/14 acetylation, a histone 
mark associated with transcriptional activation, at the glucose transporter type 4 (Glut4) promoter in the 
triceps muscle[214]. Consistent with the histone modifications observed in muscles, a number of studies have 
also found histone modifications in various brain regions in response to exercise. For instance, forced 
swimming training promotes H3 K14 acetylation and serine 10 phosphorylation in the dentate gyrus of 
rodents in a time-dependent manner[215]. Moreover, voluntary exercise increases H3 acetylation at the BDNF 
promoter in the hippocampus of rats[216].

Exercise, epigenetic modulation on BDNF, and Alzheimer’s disease
More and more robust experimental evidence supports the positive impacts of physical exercise on 
psychiatric and neurological disorders, and epigenetic regulation of the BDNF gene has been recognized as 
an important biological mechanism by which exercise ameliorates neurological disorders[217,218], including 
AD. For example, peripheral levels of BDNF have been associated with cognitive function and hippocampal 
size in human subjects after exercise training[219,220]. Consistently, animal studies have also suggested the 
involvement of BDNF in the exercise-modulated expression of energy metabolism- and neurocognitive 
plasticity-related proteins in the hippocampus[221-222]. Specifically for AD, recent studies have identified the 
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Table 2. Exercise-related epigenetic changes in the brain

Exercise Animals Brain region Epigenetic changes Reference

Running wheel Rats Dentate gyrus ↑ histone H3 phospho-acetylation [189]

Treadmill exercise Rats Hippocampus ↓ HDAC activity; ↑ HAT activity; ↑ HAT/HDAC balance [190]

Running wheel Rats Hippocampus ↓ DNA demethylation at Bdnf promoter IV; ↑ pMeCP2 levels; ↑ 
histone H3 acetylation; ↓ HDAC5 expression

[186]

Treadmill exercise Rats Hippocampus Adult rats: ↓ DNMT1 and DNMT3b; ↓ H3K9 methylation 
Aged rats: ↑ H3K9 methylation

[191]

Running wheel Mice Hippocampus ↑ histone H4K8 acetylation at Bdnf promoters I and IV [187]

Running wheel Mice Hippocampus and 
cerebellum

↑ histone H3 acetylation in both regions; 
Cerebellum: ↑ HDAC2 and ↓ MeCP2, HDAC8 and DNMT1; 
Hippocampus: ↓ HDAC5, HDAC7, HDAC 8, DNMT1, DNMT3a, 
DNMT3b

[192]

Treadmill exercise Rats Hippocampus ↑ histone H4 acetylation in aged rats [193]

Treadmill exercise Rats Hippocampus Exercise normalized stress-induced changes in histone H3 
acetylation, HDAC5 and MeCP2

[194]

Treadmill exercise Rats Frontal cortex ↑ HAT activity; ↓ HDAC activity [195]

Running wheel Mice Hippocampus ↑ miR-28a-5p, miR-98a-5p, miR-148b-3p, miR-7a-5p and miR-15b-
5p; ↓ miR-105, and miR-133b-3p

[196]

Running wheel Mice Hippocampus ↑ 20 miRNAs and ↓ 12 miRNAs [197]

Running wheel Mice Hippocampus Exercise restored traumatic brain injury (TBI)-induced changes in 
miR-21

[198]

Running wheel Mice Hippocampus Exercise attenuated the increased expression of miR-124 in a stress 
model

[199]

Running wheel Mice Hippocampus ↑ histone H3 acetylation at Bdnf promoters I, II, III, IV, VI and VII; ↓ 
HDAC5 expression in stressed mice

[200]

Swimming exercise Mice Hippocampus ↑ H3K9, H3K14, H4K5, H4K8 and H4K12 acetylation; ↑ CBP 
expression

[201]

Running wheel Mice Basolateral 
amygdala

Exercise prevented the reduction in G9a histone methyltransferase 
expression induced by chronic stress; ↑ histone H3K9 dimethylation 
at oxytocin and vasopressin gene promoters

[202]

Running wheel Mice Hippocampus ↓ HDAC2 and HDAC3 expression; ↓ HDAC2 and HDAC3 occupancy 
at Bdnf promoters

[188]

Treadmill exercise Mice hippocampus ↑ HAT and HDAC activities [203]

Running wheel Rats Hippocampus and 
frontal cortex

DNA hypomethylation; ↑ Tet1 and ↓ Dnmt3b expression [204]

Treadmill exercise Mice Hippocampus ↑ BDNF expression; ↓ HDAC activity, ↑ HAT/HDAC) [205]

Aerobic, acrobatic, 
resistance, or combined 
exercise modalities

Rats Hippocampus Aerobic and resistance modalities attenuated age-induced effects on 
hippocampal Bdnf promoter H3K4me3. Exercise modalities modify 
H3K9ac or H3K4me3 at the cFos promoter

[206]

Forced running wheel Mice Hippocampus Rescue the radiation-induced decrease of 5 hmC and BDNF 
expression

[207]

Treadmill exercise Rats Motor cortex ↑ 5mC and 5hmC; ↑ Tet1, Tet2, and Tet3 expression [208]

Treadmill exercise Mice Motor cortex ↑ HDAC activity and acetylation level of histone H4 and H3 [209]

Treadmill exercise Mice Hippocampus and 
hypothalamus

↑ level of N6-methyladenosine (m6A) [210]

involvement of BDNF signaling in AD pathogenesis and the cognitive benefits of exercise on AD. Choi 
found that exercise provided cognitive benefit to 5 × FAD model mice of AD by inducing adult 
hippocampal neurogenesis and elevating BDNF levels[155]. In addition, chronic aerobic exercise can 
ameliorate Aβ-induced AD-like phenotype in rats through BDNF signaling[223].

As for the mechanisms involved in the BDNF-mediated benefits of exercise on AD, previous studies have 
indicated that exercise can modulate the activities of α-secretase and BACE1 through BDNF-mediated 
mechanisms, thereafter regulate APP processing and reduce Aβ production[224,225]. Moreover, exercise-
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induced epigenetic modifications of the BDNF gene, such as acetylation and methylation, have also been 
reported to play important roles[186-188]. For example, thirty days of voluntary running wheel training in mice 
induced hippocampal HDAC2 reduction, accompanied by the decreased interaction between HDAC2 and 
BDNF promoter I, leading to an increased BDNF expression[188]. Interestingly, the increased BDNF can 
further promote nitrosylation of HDAC2, resulting in increased histone acetylation in those BDNF target 
genes[226]. Despite the exercise-induced BDNF gene acetylation, Gomez-Pinilla et al. found that 7 days of 
running wheel exercise in rats reduced the level of DNA methylation in BDNF promoter IV in the 
hippocampus, accompanied by an elevated methyl-CpG-binding protein 2 (MeCP2) and increased BDNF 
mRNA and protein levels[186]. The elevated BDNF expression and cognitive improvement induced by 
exercise can be attenuated by the inhibition of Calcium-calmodulin-dependent protein kinase II[227,228].

Much more interestingly, BDNF transcription has been reported to be regulated by SIRT1-dependent 
deacetylation of MeCP2[229]. As mentioned above, SIRT1, beyond its complicated impacts on aging, stress 
tolerance, and metabolism, exerts key regulating activity on synaptic plasticity and memory formation. 
SIRT1-dependent deacetylation of MeCP2 permits its release from the methylated CpG site located in 
BDNF promoter IV and results in an increased BDNF transcription[229]. Moreover, SIRT1Δex4 mice exhibit 
significantly higher recruitment of MeCP2 on BDNF promoter IV, which was associated with decreased 
BDNF expression in hippocampus[229]. Consistent with these findings, treadmill running exercise in rats was 
found to increase SIRT1 activity in the hippocampus, together with increased BDNF and decreased 
apoptotic index[230]. In addition, treadmill running in ICR mice can also elevate SIRT1 and PGC1-α 
expression levels in various brain regions including cortex, hippocampus, hypothalamus, and midbrain, 
and[231]. Furthermore, the suppressed SIRT1 in the cerebral cortex of 3xTgAD mice was attenuated by 
treadmill exercise training[184].

As mentioned above, the exercise-modulated SIRT1 impacts the function of not only BDNF but also other 
enzymes involved in APP metabolism, including ADAM10 and BACE1, through epigenetic mechanisms. 
Activation of SIRT1 induces PGC-1α deacetylation, leading to the decreased BACE1 transcription and 
consequently reduction of Aβ production. SIRT1 also deacetylates and coactivates the retinoic acid receptor 
β, a known regulator of ADAM10 transcription, to promote the ADAM10-mediated non-amyloidogenic 
processing of APP[232]. Moreover, SIRT1 activation suppresses tau acetylation on K174 and reduces 
pathological tau propagation in the mouse models of tauopathy[233]. Taken together, exercise-induced SIRT1 
activation may promote neurogeneration and plasticity and suppress the progression of AD pathologies 
through epigenetic modifications on targeted genes.

Exercise, microRNA and Alzheimer’s disease
miRNAs are important epigenetic modulating molecules involved in the beneficial impacts of exercise on 
AD. For example, miR-29 has been reported to be decreased in either AD patients[137] or transgenic AD 
model mice[234], and correlated with increased BACE1 levels. Progressive weighted wheel running in 3xTg-
AD mice significantly increased this declined miR-29 level in the hippocampus and consequently reduced 
BACE1 level and Aβ burden[234]. Moreover, miR-34a has been reported to be upregulated in APP/PS1 
transgenic mice[235,236]. Overexpression of miR-34a depresses ADAM10 expression and induces rapid 
cognitive impairment and AD-like pathologies[237], whereas knockout of miR-34a has been reported to 
modulate APP processing via inhibiting γ-secretase thereafter rescues cognitive deficits of APP/PS1 
mice[238]. Interestingly, treadmill training can elevate miR-34a levels in mouse hippocampus[238]. Consistently, 
Kou et al. also found that swimming can attenuate autophagy dysfunction and abnormal mitochondrial 
dynamics via downregulating miR-34a, thus improving pathologies in aging-related diseases including 
AD[239]. Worth noting, miR-34a also targets and inhibits SIRT1[240,241], which is also involved in the exercise-
induced AD improvements via PGC1-α/FNDC5/irisin/BDNF signaling, as described above.
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MiR-132, another sncRNA with pivotal activity in neuronal development, structure and function, has been 
reported to regulate dendritic spine formation and maturation, so as to be involved in learning and 
memory. However, the modulating activity of miR-132 on cognition is controversial, because this effect is 
very dependent on its levels under physiological or pathological conditions. Lower[242] or higher[243] levels of 
miR-132 may be detrimental to cognition, while only moderate levels are beneficial[244]. It has been reported 
that acute intermittent exercise rapidly elevates circulating levels of miR-132 in healthy males[245]. In 
contrast, voluntary running wheel training can suppress the elevated hippocampal miR-132 level and 
ameliorate cognitive impairment in SAMP8 mice[246]. Consistently, swimming exercise reduced the 
increased miR-132 level in an ovariectomized rat model[247]. In addition, despite the direct modulating 
effects of miR-132 on cognition, previous studies have found an inhibiting effect of miR-132 on GSK-3β 
expression, leading to an ameliorated tau phosphorylation in hyperglycemia or chronic cerebral 
hypoperfusion animal model[248,249]. Moreover, miR-132-3p alleviates impairments of learning and memory 
abilities in AD-like homocysteine rat models by modulating the HNRNPU/BACE1 axis[250]. miR-132/212 
deficiency led to cognitive impairment and tau hyperphosphorylation and aggregation in miR-132/212 
knockout mice[251], promoting Aβ production and plaque formation in 3xTg AD mice[252]. These findings 
suggested that miR-132 is correlated with Aβ/tau pathologies of AD, which may provide further evidence 
supporting the positive impacts of exercise on AD through miR-132-related epigenetic mechanisms. 
Interestingly, the ameliorating effects of miR-132 on AD pathologies are also correlated with exercise-
related SIRT1 signaling, suggesting a crosslink role of SIRT1 in miRNAs-mediated regulating effects against 
AD pathologies.

A previous study found that exercise reduces miR-146a level and increases miR-223 level in circulation in 
young healthy males[253]. As an NF-κB-sensitive miRNA, miR-146a has been reported to be elevated in AD 
and be closely associated with the proinflammatory state of AD[254-256]. This miRNA is correlated with the 
severity of AD[257] and involved in the progression of MCI to AD[258]. miR-223 is also a downstream molecule 
of NF-κB and is correlated with Nod-like receptor protein 3 inflammasome activation in AD[259,260]. miR-223 
is downregulated in AD, either in serum of AD patients[261] or in AD cell models[262]. In turn, the lack of miR-
223 leads to hippocampal-dependent contextual memory deficits and neuronal cell death[263].

CONCLUSION
Exercise plays important roles in brain health and cognition through various mechanisms, including 
elevated neurotrophins level, improved neurogenesis and neuroplasticity, restored angiogenesis and 
autophagy, and reduced neuroinflammation. In addition, exercise is also a vitally instrumental and daily-life 
remedy for reducing the susceptibility of brain to a wide range of neurological and neurodegenerative 
conditions, including AD. Recently, accumulating scientific evidence demonstrated the capacity of exercise 
to modulate genes and their protein products in the form of epigenomic manifestations. This promising 
impact of epigenetic mechanisms to regulate neuronal survival and plasticity has fundamental values to 
control or rescue pathological changes of AD [Figure 1].

Following much deeper investigations in the future to reveal the exact spatial-temporal epigenetic 
modulating network by which exercise influences the expression or functions of AD-related genes and 
protein products, it will be clearer that epigenetic modifications by either pharmacological or 
non-pharmacological remedies are promising instruments for transducing the effects of exercise on brain 
structure and function. Multi-omics studies may provide arenas to reach this goal. Moreover, it is worth 
noting that exercise-induced epigenetic modifications in the brain may be the responses of both peripheral 
and CNS origin. It is possible that the endocrine functions of skeletal muscle during exercise that link 
muscle contraction with adaptive metabolism responses to exercise could also mediate exercise 
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Figure 1. Exercise ameliorates Alzheimer’s pathologies and cognition decline through epigenetic mechanisms. DNA and histone 
modifications and non-coding RNA profile alterations induced by various adverse environmental factors may result in elevated Aβ 
production, tau phosphorylation, neuroinflammation and neurodegeneration, and consequently participates in the cognitive decline and 
the pathogenesis of Alzheimer’s disease. In contrast, regular physical exercise can ameliorate these negative impacts caused by an 
aversive environment also through epigenetic mechanisms, thereafter directly or indirectly improving cognitive function and rescuing 
Alzheimer’s pathologies.

transcriptional response in the brain. Therefore, it is also encouraged to further explore the possible 
migration of exercise-induced peripheral alterations, such as in the liver or muscles, to the brain, through 
immerging the liver-brain axis or muscle-brain axis[264,265]. The outcomes of these studies may promote a 
rapid shift from basic and clinical neuroscience to clinical practice, therefore benefiting the clinical 
theranostics of AD.
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