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Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing in global prevalence and becoming 
a leading indication for liver transplantation (LT). The management of MASLD has been well-studied in the pre-LT 
setting, and we are entering into a golden era of pharmacologic options designed to resolve steatohepatitis and 
reverse fibrosis. However, the implications of MASLD on organ allocation, risk of post-LT recurrence, and optimal 
post-LT management remain topics of ongoing investigation. One such unique challenge is the growing necessity 
to use steatotic organs to address the shortage of available organs for all waitlisted patients, while ensuring 
acceptable outcomes through careful case selection. Additionally, how best to screen, diagnose, and manage post-
LT graft steatosis remains an ongoing topic of debate, given the high rates of recurrence or de novo occurrence in 
patients transplanted for non-MASLD-related etiologies of liver disease. This comprehensive review explores the 
impact of MASLD across the disease continuum, given it is a chronic illness with a complex pathophysiology and is 
influenced by other comorbidities and certain medications.
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INTRODUCTION
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more inflammatory and sinister 
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form metabolic dysfunction-associated steatohepatitis (MASH) are increasingly common etiologies of liver 
disease worldwide[1]. First reported in 1980[2], the diseases were originally termed non-alcoholic fatty liver 
disease (NAFLD) and non-alcoholic steatohepatitis (NASH). While previously a diagnosis of exclusion, its 
complex pathophysiology and association with the metabolic syndrome [MetS, including obesity, diabetes, 
hypertension, and/or hyperlipidemia (HLD)] have prompted a shift in nomenclature that more aptly 
describes the disease and is less stigmatizing to patients[3,4].

While an extensive discussion of biochemical processes underlying MASLD is beyond the scope of this 
review, the disease is an important example of ectopic fat deposition related to excessive free fatty acids 
(FFA). These FFAs can be metabolized to lipotoxic products, which create oxidative and inflammatory 
stress in hepatocytes, leading to steatohepatitis, fibrogenesis, and DNA damage with potential 
carcinogenesis. Ultimately, patients are at risk of developing cirrhosis and sequelae of portal hypertension, 
as well as hepatocellular carcinoma (HCC). Liver transplantation (LT) may become necessary for many 
patients and MASH has become a leading indication[5], particularly with declining rates of hepatitis C[6].

Given its commonality, clinicians should understand the management and implications of MASLD both 
pre- and post-transplantation. This review provides a comprehensive framework to highlight current 
challenges and future opportunities to optimize patient care throughout the disease lifecycle.

PREVENTION OF FIBROSIS IN PRE-TRANSPLANT MASLD
Fibrosis and its prognostic implications
Fibrosis is the principal driver of adverse outcomes in MASLD[7,8]. In particular, patients with MASH and at 
least stage 2 fibrosis are referred to as the “at-risk” group, given they develop higher rates of liver-related 
morbidity and mortality[8,9]. Rates of fibrosis progression are variable and influenced by underlying genetic 
factors and comorbid disease control. Prior meta-analysis has shown that MASH progressed one stage per 7 
years, while MASLD progressed only one stage per 14 years[10]. However, a more recent Swedish cohort 
using paired biopsies showed that over a median of 3.4 years, 30.4% of patients had progression of 
disease[11]. Concerningly, there is a subset of approximately 20% of MASLD patients who rapidly progress 
from an absence of fibrosis to advanced fibrosis within 5-6 years or develop cirrhosis from bridging fibrosis 
within a year[10,12]. While identification of this subset of patients is paramount, predictive tools have 
remained elusive. However, a recent study utilizing machine learning built a model with commonly 
available clinical data to predict patients at risk for fast progression[13]. Whether this can be commercially 
deployed to improve clinician identification and management of these high-risk patients remains unclear at 
this time.

Key points:
· Patients with MASH and ≥ F2s are “at risk” for liver-related morbidity and mortality

· Progression of fibrosis is variable; identifying rapid progressors is an unmet need

Non-pharmaceutical therapeutic options
An initial absence of effective pharmaceutical options for MASLD led to an emphasis on weight loss, 
physical activity, and optimization of risk factors to improve outcomes [Figure 1]. Patients with MASLD 
benefit from even small amounts of weight loss. Steatosis improves with a 3%-5% weight reduction, but at 
least 10% weight loss is generally required to improve steatohepatitis and fibrosis[14-17]. Even with lifestyle 
modification or dietary interventions, achieving these goals remains a challenge as only about 1/3 of patients 
achieve ≥ 5% weight loss[18]. Furthermore, maintenance of weight loss is difficult for some patients, as 21% of 
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Figure 1. Multifactorial treatment of pre-transplant MASLD. Increased physical activity and optimization of both diet and medical 
comorbidities are universally recommended. Patients with non-lean MASLD should aim for at least 5%-10% weight loss. 
Pharmacologic therapeutic options are continuing to expand with the recent approval of a MASH-specific option (resmetirom). 
Endoscopic bariatric therapies and bariatric surgery represent invasive but effective modalities to achieve significant weight loss and 
improve metabolic comorbidities. MASLD: Metabolic dysfunction-associated steatotic liver disease; MASH: metabolic dysfunction-
associated steatohepatitis.

patients regain the weight up to nearly 3 years later[18]. Physical exercise is also recommended as a 
therapeutic modality for MASLD, with at least moderate intensity exercise being shown efficacious in 
preventing its occurrence or reducing hepatic fat[19,20]. However, higher-intensity exercise may be necessary 
to reduce fibrosis[21]. For patients with impaired cardiorespiratory fitness, significant arthritis, or orthopedic 
limitations, resistance exercise has been shown to be similarly effective at reducing hepatic steatosis as 
aerobic exercise[22].

In the clinic, patients often ask about optimal dietary composition to help achieve weight loss and improve 
liver health in MASLD. As detailed in Table 1, certain foods have been studied explicitly in association with 
MASLD. Overall, black coffee and nuts have beneficial effects, whereas excessive red meat, fructose-
containing products, and processed foods are harmful[23-35]. A Mediterranean-style diet encompasses many 
of these principles, promoting a predominantly plant-based diet (with fish as an additional source of 
protein), including fruits and vegetables, whole grains, and unsaturated fats. Following a Mediterranean diet 
has been shown to improve MASLD-related steatosis and fibrosis as well as decrease risks of HCC and liver-
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Table 1. Dietary therapy for MASLD

Food/Diet Benefits Risks/Caveats Societal 
concordance? References

Coffee Lowers the risk of MASLD, 
fibrosis/cirrhosis, HCC

Unknown effects of milk (cow or non-dairy 
variants), creamers (natural or artificially 
sweetened)

Yes [23-28,34]

Nuts Lower the risk of MASLD - Not addressed [29-31]

Red meat - Increased risk of MASLD, increased risk of liver 
cancer and liver-related mortality, development of 
insulin resistance

Only addressed by 
EASL guidelines

[32,34]

Fructose-containing 
beverages and foods

- Increased risk of MASLD, fibrosis Yes [33,34]

Processed foods - Increased risk of MASLD Yes* [34,35]

Alcohol None† Recent studies suggest increased fibrosis and 
progression to advanced liver disease

Yes‡ [34,35,38-46]

*Not addressed by AASLD or ESPEN; †Recent evidence suggests no safe amount as there is a dose-dependent increase in fibrosis and at-risk 
MASH; ‡No safe amount is recommended. ESPEN and APASL espouse abstinence in all patients, whereas AASLD and EASL have the strongest 
recommendation in patients with baseline moderate to heavy use and in those with at least significant fibrosis. MASLD: Metabolic dysfunction-
associated steatotic liver disease; MASH: metabolic dysfunction-associated steatohepatitis; HCC: hepatocellular carcinoma; EASL: European 
Association for the Study of the Liver; AASLD: American Association for the Study of Liver Diseases; ESPEN: European Society for Clinical 
Nutrition and Metabolism; APASL: Asian Pacific Association for the Study of the Liver.

related death[36]. A drawback, though, is that there is significant socioeconomic variability with access to and 
affordability of fresh and healthy foods[37]. To counter this, providers should partner with nutrition experts 
to help patients find local sources and cost-conscious shopping lists and recipes to promote dietary 
adherence. Popular commercialized diets such as high-protein diets, high-carbohydrate/low-fat diets, low-
carbohydrate/high-fat diets, and intermittent calorie restriction have shown short-term success in limited 
studies in MASLD patients[36]. However, their long-term liver-related benefits, safety, and sustainability 
remain unproven, and thus, they are not currently recommended in clinical guidelines.

The effects of light to moderate alcohol use in MASLD have been debated over time[38-45]. Recent evidence, 
though, including a large international study, suggests any amount of alcohol is harmful and is associated 
with worsened fibrosis and progression to advanced liver disease[46]. Multiple societal guidelines generally 
advise against alcohol use in all patients with MASLD, but with particular emphasis on those with moderate 
to heavy use and/or significant fibrosis (defined as Stage 2 or higher)[34,35,47,48].

Key points:
· Weight loss of at least 3%-5% is beneficial but challenging for many patients to achieve and maintain

· Patients should be encouraged to minimize consumption of processed and fructose-containing foods

· A diet low in carbohydrates and saturated fats, with intake of fiber and unsaturated fats, should be 
instituted with dietician assistance to ensure practical implementation

Pharmaceutical therapeutic options
Initial options for MASLD were limited and several novel agents studied in clinical trials over the past 
decade produced disappointing results. However, multiple off-label therapies have literature to support their 
use in MASLD/MASH and are included in various societal guideline recommendations [Table 2]. An over-
the-counter option is vitamin E, which is supported by data from a randomized controlled trial (RCT; 
PIVENS trial) suggesting that 800 international units daily in non-diabetic patients improved steatosis, 
inflammation, and hepatic ballooning, as well as induced MASH resolution in an additional 15% of patients 



Page 5 of Wentworth. Metab Target Organ Damage 2024;4:51 https://dx.doi.org/10.20517/mtod.2024.45 24

Table 2. Assessment of pharmacologic therapy for MASLD

Agent Mechanism of 
action Pros Cons Societal 

endorsement?

FDA 
approved*

?
References

Vitamin E Antioxidant Improves steatosis, 
inflammation, MASH 
resolution rate vs. placebo 
Reduces risk of death or 
transplant and hepatic 
decompensation in ≥ F3 MASH 
Cheap, OTC

RCT excluded patients 
with diabetes 
Long-term outcome study 
was single-center and 
retrospective 
Lack of antifibrotic effect 
Possible increase in 
mortality, hemorrhagic 
stroke, prostate cancer

Yes: ESPEN 
Equivocal: AASLD, 
APASL, EASL

No [49-53]

Metformin Insulin sensitizer, 
decreased hepatic 
glucose production

Possible benefit in patients 
with T2DM and MASLD - 
reducing HCC risk and 
prolonging HCC survival

Does not improve 
histology

Yes: APASL  
(T2DM, MASLD, 
and HCC) 
No: AASLD, EASL

No [54,55]

Pioglitazone PPARγ agonist Improves histology and insulin 
resistance 
Possible antifibrotic effect 
CV risk reduction

Unfavorable side effects - 
weight gain, edema, 
osteoporosis, heart failure 
exacerbation

Yes: AASLD 
(T2DM) 
Equivocal: EASL

No [49,56-58]

Liraglutide GLP-1 receptor 
agonist

Improves steatosis, insulin 
sensitivity, weight loss 
CV risk reduction 
Slows renal disease

GI side effects, gallstones, 
pancreatitis 
Lack of antifibrotic effect

Not explicitly 
addressed

No [59]

Semaglutide GLP-1 receptor 
agonist

Improves steatosis, 
inflammation, insulin 
sensitivity, weight loss, 
increases MASH resolution 
CV risk reduction 
Slows renal disease

GI side effects, gallstones, 
pancreatitis 
Unconfirmed antifibrotic 
effect†

Yes: AASLD 
(T2DM, obesity)

No [60-64,66]

Tirzepatide GLP-1 receptor 
agonist + GIP 
receptor agonist

Improves steatosis, insulin 
sensitivity, weight loss

GI side effects, gallstones, 
pancreatitis

Not explicitly 
addressed

No [65]

Resmetirom β-selective thyroid 
hormone receptor 
agonist

Increased MASH resolution, 
antifibrotic effect 
Improves LDL levels

GI side effects 
Less clinical experience, 
expensive

Not explicitly 
addressed

Yes [68]

*Approved indication specifically for patients with MASLD/MASH; †Await published data from ESSENCE phase 3 trial. CV: Cardiovascular; F3: 
stage 3 fibrosis; GLP-1: glucose-like peptide-1; GI: gastrointestinal; GIP: glucose-dependent insulinotropic polypeptide; HCC: hepatocellular 
carcinoma; LDL: low-density lipoprotein; OTC: over-the-counter; PPAR: peroxisome proliferator-activated receptor; T2DM: type 2 diabetes 
mellitus; MASLD: metabolic dysfunction-associated steatotic liver disease; FDA: Food and Drug Administration; RCT: randomized controlled trial; 
EASL: European Association for the Study of the Liver; MASH: metabolic dysfunction-associated steatohepatitis; AASLD: American Association 
for the Study of Liver Diseases; ESPEN: European Society for Clinical Nutrition and Metabolism; APASL: Asian Pacific Association for the Study of 
the Liver.

compared to placebo[49]. Additionally, a retrospective, single-center study demonstrated a long-term 
reduction in the risk of death or transplant and hepatic decompensation in patients with MASH and 
advanced fibrosis or cirrhosis[50]. Given no proven antifibrotic effect and some long-term safety concerns 
regarding increased mortality, hemorrhagic stroke, and prostate cancers in males[51-53], it is important to 
counsel patients on the risks and benefits of vitamin E.

Insulin sensitizers are commonly utilized in patients with MASLD. Metformin is a first-line oral diabetic 
agent, but it lacks efficacy in improving hepatic histology. However, it may provide a survival benefit, 
reduce decompensating events, and prevent HCC in certain patients[54,55]. In contrast, the thiazolidinedione 
pioglitazone has demonstrated benefits in improving MASH histology and insulin resistance, as well as 
possibly fibrosis, but its use is limited by unfavorable side effects[49,56-58].
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Glucagon-like peptide 1 receptor agonists (GLP1-RAs) are increasingly popular agents for patients with 
metabolic disease, given their glycemic benefits, induction of weight loss, and improvements in 
cardiovascular outcomes. Though not presently approved by the Food and Drug Administration (FDA) for 
MASLD and MASH, there is growing clinical experience and outcome data to support their efficacy in non-
cirrhotic patients. Liraglutide was shown in a RCT with MASH to induce a 30% absolute improvement in 
the rate of MASH resolution, with improvement in some metabolic parameters, including weight loss and 
hemoglobin A1c[59]. Compared to liraglutide, the GLP1-RA agonist semaglutide has more potent metabolic 
effects in patients with obesity and type 2 diabetes mellitus (T2DM)[60,61], and also has been studied in 
patients with MASH. Semaglutide improves steatosis, induces weight loss (up to 12.5%), and appears to 
induce MASH resolution at rates far superior to placebo. However, its antifibrotic and antilipidemic effects 
have previously been reported to be modest[62,63]. A confirmatory Phase 3 trial (ESSENCE) is investigating 
the effect of semaglutide 2.4 mg once weekly (vs. placebo) in patients with “at-risk” MASH[64]. While final 
results are unpublished, preliminary data for semaglutide appear favorable with regard to reduction in 
MASH and fibrosis and submission for FDA approval is anticipated in 2025. Finally, the newer agent 
tirzepatide, which is a combination GLP1-RA and glucose-dependent insulinotropic polypeptide (GIP) 
agonist, was recently shown in a phase 2 RCT to improve MASH resolution rates compared to placebo and 
was generally well tolerated without significant discontinuation rates[65]. Tirzepatide also appeared to have 
some antifibrotic effect, although the study was not powered to formally assess this outcome. While 
promising, further study is required to confirm tirzepatide as an efficacious therapeutic option for MASH.

While GLP1-RAs may provide metabolic benefits in patients with compensated MASH cirrhosis, their 
efficacy for key endpoints including resolution of histologic inflammation and reduction of fibrosis is 
presently unproven[66]. Clinicians should exercise caution with GLP1-RAs in cirrhosis, as excessive weight 
loss may predispose to decompensation and/or exacerbate malnutrition[67]. It is advisable to discontinue 
GLP1-RA use if decompensation occurs.

Most recently, the β-selective thyroid hormone agonist resmetirom received FDA approval in March 2024 
for patients with MASH and moderate to advanced fibrosis. Its approval was based on a phase 3 study 
demonstrating a 2-3-fold improvement in MASH resolution and 10% absolute improvement in rates of 
fibrosis improvement by at least one stage. Resmetirom improved low-density lipoprotein levels and was 
generally well-tolerated[68]. Long-term studies remain ongoing to demonstrate sustained efficacy and reduce 
liver-related adverse events.

The pharmacologic landscape for MASH is likely to change over the next several years. Numerous novel 
agents targeting various inflammatory and fibrinogenic pathways have been investigated in both phase 2 
and 3 studies, with the anticipated approval of several agents over the next few years[69]. Nonetheless, 
approval of therapies has historically been difficult given the need to demonstrate improvements in 
surrogate outcomes for conditional approval and show evidence of long-term clinical outcome benefits for 
final approval[69]. A summary of the near-term MASH drug pipeline is summarized in Table 3. While 
exciting, significant therapeutic costs are a concern and need to be carefully evaluated in the context of 
expected benefits[70].

Key points:
· Many off-label therapies have been studied in MASLD/MASH, although robust antifibrotic effects are 
limited
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Table 3. Near-term MASH drug pipeline

Mechanism of 
action Drug Route of 

administration Current trial phase Clinical endpoints

THR-β agonist Resmetirom Oral FDA Approved (conditional); LTO 
trial ongoing

MASH resolution or fibrosis 
improvement

FXR agonist Obeticholic 
acid

Oral Rejected by FDA MASH resolution or fibrosis 
improvement

Pan-PPAR agonist Lanifibranor Oral Phase 3, LTO trial ongoing MASH resolution and fibrosis 
improvement

GLP-1 receptor 
agonist

Semaglutide Subcutaneous Phase 3, LTO trial ongoing MASH resolution or fibrosis 
improvement

FGF21 Efruxifermin 
Pegozafermin

Subcutaneous 
Subcutaneous

Phase 3, starting soon (both agents) MASH resolution or fibrosis 
improvement (both)

SCD-1 inhibitor Aramchol Oral Phase 3, on hold NASH resolution or fibrosis 
improvement

FDA: Food and Drug Administration; FGF21: fibroblast growth factor 21; FXR: farnesoid X receptor; GLP-1: glucagon-like peptide 1; LTO: long-term 
outcome; MASH: metabolic dysfunction-associated steatohepatitis; PPAR: peroxisome proliferator-activated receptor; SCD-1: stearoyl-coenzyme 
A desaturase 1; THR-β: thyroid hormone receptor beta; NASH: non-alcoholic steatohepatitis.

· GLP1-RA use in patients with obesity or T2DM and non-cirrhotic MASH appears favorable, although its 
effect on reducing MALO is unclear

· Resmetirom, a β-selective thyroid hormone agonist, is the first FDA-approved therapy for patients with 
F2-F3 MASH; longitudinal studies are ongoing to confirm the long-term benefit

BARIATRIC SURGERY IN PRE-TRANSPLANT MASLD
Lifestyle optimization and medical therapy for MASLD play a central role in its management but may be 
inadequate to prevent disease progression in certain patients. Bariatric surgery is an effective management 
option for patients with excess body weight and diabetes[71-78]. Given many bariatric patients have concurrent 
MASLD, there is increasing interest in the effects of surgical weight loss on liver histology and disease 
progression. Two procedures dominate the current bariatric surgery landscape: sleeve gastrectomy (SG) and 
Roux-en-Y gastric bypass (RYGB). The former is a restrictive procedure aimed at reducing gastric capacity 
and reducing ghrelin secretion, an appetite-stimulating hormone[79]. In contrast, RYGB enables unimpeded 
delivery of nutrients to the hindgut, bypassing foregut metabolism and thus reducing insulin resistance, 
modulating gut hormonal pathways, and altering the microbiome[79].

As seen in Table 4, several studies have investigated the effect of various bariatric surgery modalities on 
MASH resolution and fibrosis regression[80-82]. Overall, bariatric surgery is highly effective at inducing the 
resolution of MASH and at least moderately effective at improving (or resolving) fibrosis. However, each of 
these studies has limitations, and unanswered questions include the optimal surgical technique, relative 
efficacy and safety compared to medical therapies (particularly the GLP1-RAs), and their effect in reducing 
MALO in the long term.

Importantly, bariatric surgery may also be an option for selected patients with compensated cirrhosis, 
particularly when performed at high-volume centers[83]. A small single-center study noted a loss of nearly 2/
3 of excess weight at up to 3-year follow-up. While there was an elevated complication rate of 34.8%, no 
patient developed hepatic decompensation[84]. Whether pre-transplant bariatric surgery alters post-
transplant outcomes is unsettled. Lower body mass index (BMI) at the time of transplant reduces wound 
complications and recurrent MASH[85]. One small study of cirrhotic patients with a history of bariatric 
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Table 4. Selected literature on bariatric surgery in MASLD

Study 
(Ref.) N Study 

design Intervention Primary outcome Findings Limitations

Lassailly 
2020[80]

180 SC, PC Bariatric surgery MASH resolution without 
worsening of fibrosis at 5 years*

84% of patients met the primary outcome 
70% of patients had regression of fibrosis - a 
median of 1.5 stages 
Patients with AF had less robust response

Variable surgical procedures over time 
Few patients with cirrhosis 
Lack of safety data

Pais 2022[81] 66 MC, RC Bariatric surgery (SG or RYGB) Not explicitly defined but likely 
MASH resolution without 
worsening of fibrosis*

74% had MASH resolution without fibrosis 
progression 
 70% had ≥ 1 stage or fibrosis regression 
AF persisted in 47% of patients

Small cohort - only 66/196 had follow-up biopsy 
data 
Variable follow-up 
Only studied patients with “severe MASH” - AF or 
high activity

Verrastro 
2023[82]

288 MC, RCT Bariatric surgery (SG or RYGB) vs. 
lifestyle modification/medical care

MASH resolution without 
worsening of fibrosis at 1 year*

Bariatric surgery superior for the primary outcome 
(56%-57% vs. 16% in ITT; 70% vs. 19% in PP) 
Bariatric surgery induced more fibrosis regression 
and improved glycemic control, dyslipidemia, and 
weight loss 
Low adverse event rate with bariatric surgery

All study patients were Caucasian 
Non-surgical arm was intensely monitored and 
liraglutide permitted (semaglutide and tirzepatide 
not available) 
Duration of benefits unknown given the short 
follow-up

*Biopsy-proven. AF: Advanced fibrosis; ITT: intention-to-treat; MC: multicenter; PC: prospective cohort; PP: per-protocol; RC: retrospective cohort; RCT: randomized controlled trial; RYGB: roux-en-y-gastric bypass; 
SC: single-center; SG: sleeve gastrectomy; MASLD: metabolic dysfunction-associated steatotic liver disease; MASH: metabolic dysfunction-associated steatohepatitis.

surgery (mean of 11.6 years prior; mean BMI 31 kg/m2 at transplant) noted a high reoperation rate (36.4%) but similar survival to patients without a history of 
bariatric surgery[86]. However, a limitation was that long-term post-transplant metabolic outcomes were not measured. In contrast, a matched case-control 
study found that patients with a history of bariatric surgery (median time of 7 year from surgery to LT, mean loss of 130lbs, the predominant procedure was 
RYGB) had a higher risk of delisting or waitlist death in the bariatric surgery group[87]. These findings were attributed to malnutrition and sarcopenia. Thus, 
while bariatric surgery offers potential benefits in carefully selected patients, its effects may become detrimental as patients develop decompensation and 
require further investigation. Furthermore, the optimal surgical modality (i.e., SG vs. RYGB) in the pre-transplant MASLD population has not yet been firmly 
established, although the discontinuous anatomy (more difficult biliary access) and potential decrease in immunosuppressant absorption that result from 
RYGB are significant drawbacks[88,89].

Bariatric surgery is typically avoided in patients with decompensated cirrhosis due to significantly longer hospital stays and increased mortality[83]. However, 
there is growing interest in performing bariatric surgery concurrently with LT. A recent survey of transplant surgeons indicated a preference for this 
simultaneous approach over performing bariatric surgery prior to LT[89]. An early case report of gastric band placement was successful, with the authors 
reporting 30 min of additional surgical time, a 45% reduction in excess total body weight, and significant improvement or resolution of multiple metabolic-
related comorbidities[90]. In contrast, SG has been the predominant procedure performed as an “add-on” procedure during LT in subsequent literature. While 
the overall number of patients undergoing simultaneous LT + SG remains small across a few case series and a Mayo Clinic cohort, there appears to be an 
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improvement in metabolic comorbidities and a reduction in weight loss[91-94]. Interestingly, operative time 
increased by only 38 min, although adverse events include a staple line leak, excessive weight loss, and 
severe acid reflux[93,94]. Despite these encouraging results, further experience is required to understand which 
patients are specifically at increased risk for complications. Additionally, long-term outcome studies 
demonstrating a decreased risk of recurrent MASH in patients undergoing simultaneous LT + SG are 
needed.

Key points:
· Bariatric surgery is highly effective at inducing weight loss and MASH resolution; it also has antifibrotic 
benefits in many patients (particularly if baseline ≤ F2)

· The optimal surgical procedure (SG vs. RYGB) for MASH-related outcomes is unclear and should be a 
mutual patient-physician decision

· Bariatric surgery is reasonable to consider in selected patients with compensated cirrhosis

· Simultaneous LT + SG is an emerging consideration in patients with obesity and/or MASH-related 
cirrhosis but requires further validation in larger studies

ENDOSCOPIC BARIATRIC MODALITIES IN PRE-TRANSPLANT MASLD
Endoscopic bariatric and metabolic therapies may induce weight loss, alter neurohormonal signaling, and 
improve insulin resistance[95]. Most widely available are intragastric balloons (IGB), which are space-
occupying devices that have been FDA-approved for patients with class I obesity (BMI 30-35 kg/m2 and at 
least one related complication or class II obesity (BMI 35-39.9 kg/m2)[96]. However, endoscopic sleeve 
gastroplasty (ESG) has gained popularity in recent years and utilizes a proprietary endoscopic suturing 
system to reduce gastric volume by inducing a tubular shape to the stomach, mimicking that of a 
laparoscopic SG[97].

Literature on endobariatric modalities in MASLD is growing but not explicitly addressed in current societal 
guidelines [Table 5][98-102]. There is a consistent induction of total body weight loss (TBWL) > 10% with both 
the IGB and ESG, which surpasses the established threshold necessary to produce an antifibrotic effect in 
MASLD. Unfortunately, several studies utilized biomarker-based non-invasive tests (NITs) to assess 
reductions in steatosis and fibrosis[99-101], which are less reliable than elastography or biopsy. Despite a lack of 
long-term outcome data and FDA approval specifically for MASLD, endobariatric interventions appear 
fairly safe and may represent either bridge (IGB) or definitive therapy (ESG) for certain patients. However, 
practical considerations such as cost, physician reimbursement, access to local expertise, and insurance 
coverage currently limit widespread use. Further research is required to confirm long-term efficacy and 
their role as adjunctive therapies to optimize surgical candidacy before LT.

Key points:
· Endobariatric modalities (IGB and ESG) promote > 10% weight loss in most patients and short-term 
results suggest improvements in metabolic and MASLD parameters

· Long-term outcomes, safety data, and improved access are required before they can be strongly 
recommended as an alternative to medical and surgical therapies for MASLD
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Table 5. Selected literature on endobariatrics in MASLD

Study (Ref.) N Study 
design Intervention Primary outcome (s) Findings Limitations

Aoko 2024[98] 911 SR/MA IGB (6 months) Change in NAS score and 
liver enzymes

NAS reduction at 6 months 
(2 studies) 
Reduction of liver enzymes 
(16 studies) and A1c (9 
studies) 
Uncertain effect on fibrosis (3 
studies)* 
Induced weight loss (18 
studies)

Heterogenous studies 
Limited assessment of fibrosis 
Long-term outcomes unknown

Espinet-Coll 
2019[99]

30 SC, PC IGB (1 year) vs. 
ESG

Undefined Mean TBWL 16% 
Improved NIT of fibrosis 
Improved insulin resistance 
No major adverse events

Small study 
VCTE or biopsy not utilized 
Long-term outcomes unknown

Jagtap 
2021[100]

26 SC, PC ESG Change in ALT, steatosis, 
and fibrosis at 6 and 12 
months*

Improvement in all primary 
outcomes at both 6 and 12 
months 
Mean TBWL 18%

Small study 
VCTE or biopsy not utilized 
Long-term outcomes unknown

Hajifathalian 
2021[101]

118 SC, PC ESG Change in insulin 
resistance, steatosis, and 
fibrosis at 2 year*

Improved insulin resistance, 
steatosis, and fibrosis* 
Mean TBWL 16%

Biopsy or VCTE not utilized to 
confirm reductions in steatosis or 
fibrosis 
Longer-term outcomes unknown 
16% loss-to-follow-up at 2 year

Bazerbachi 
2021[102]

21 SC, PC IGB Change in NAS score and 
fibrosis at 6 months

NAS reduction in 90% 
Decrease in fibrosis by 1.17 
stages in 15% 
Mean TBWL 12%

Long-term outcomes unknown 
Homogenous study population

*Non-invasive testing was used. ESG: Endoscopic sleeve gastroplasty; IGB: intragastric balloon; NAS: NAFLD activity score; PC: prospective 
cohort; SC: single-center; SR/MA: systematic review/meta-analysis; TBWL: total body weight loss; MASLD: metabolic dysfunction-associated 
steatotic liver disease; NAFLD: non-alcoholic fatty liver disease NIT: non-invasive test; VCTE: vibration-controlled transient elastography; ALT: 
alanine aminotransferase.

SARCOPENIA, FRAILTY AND LIVER TRANSPLANT OUTCOMES IN PATIENTS WITH MASH
Sarcopenia, the loss of skeletal muscle mass and function, is part of the natural aging process but is also 
present at higher rates in patients with obesity, as well as MASLD and MASH[103,104]. Its pathophysiology is 
complex and detailed discussion is beyond the scope of this review. Nonetheless, the development of 
sarcopenia is multifactorial, involving contributions from reactive oxygen species, DNA damage, chronic 
inflammation, decreased protein synthesis and increased degradation, hormonal dysregulation, nutritional 
deficiency, and physical inactivity[105]. While sarcopenia can be non-invasively assessed through 
bioimpedance, dual-energy X-ray absorptiometry (DEXA), or cross-sectional imaging[106], there is a lack of 
consensus definition in the literature. Additionally, only one major societal guideline (ESPEN) provides 
direct recommendations with regard to sarcopenia and MASLD[47].

A recent study utilizing the National Health and Nutrition Examination Surveys (NHANES) and linked 
mortality dataset found that patients with MASLD and sarcopenia had a 25% increase in mortality over a 
mean of 24 years and higher rates of advanced fibrosis[104]. In contrast, a single-center retrospective study 
found only frailty, but not sarcopenia, predictive of LT waitlist outcomes in patients with MASH[107]. The 
association between frailty and waitlist mortality was confirmed in a multicentric American cohort[108], 
although interestingly, this association was independent of the etiology of liver disease[109]. In summary, 
while sarcopenia can be concurrent or precede the development of frailty, it is the latter that ultimately 
predicts waitlist mortality. Clinicians should routinely screen for sarcopenia and frailty in patients with 
MASLD/MASH, particularly in patients under evaluation and listed for transplant [Figure 2]. Early 
identification and intervention may help optimize patient outcomes.
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Figure 2. Relationship between MASH cirrhosis, sarcopenia and frailty. Steatotic liver by Unknown Author, licensed under . Walker by 
Unknown Author, licensed under . MASH: Metabolic dysfunction-associated steatohepatitis.

In patients with MASH who ultimately undergo a transplant, outcomes, fortunately, are comparable to 
other etiologies across multiple studies[5,110-112]. Additionally, a meta-analysis of 15 studies demonstrated 
similar post-LT survival between MASH and non-MASH patients, including no increased risk of 
cardiovascular-related deaths[113]. Higher Model for End-Stage Liver Disease (MELD) scores in MASH 
patients predicted worse survival, although specific demographic and comorbid conditions were not 
predictive. This finding requires further investigation but could be interpreted as MASH patients being less 
tolerant to post-LT complications given their advanced age at transplant and higher risk for renal 
dysfunction. A separate meta-analysis provides evidence to this theory as higher recipient age and pre-LT 
T2DM were both independent risk factors for post-LT mortality in MASH patients[114].

Weight at transplant has variable effects on patient outcomes. In a single-center study of > 1,000 LT 
recipients, a higher BMI (> 35 kg/m2) increased the risk of wound infections, whereas malnourished patients 
with a BMI < 16 kg/m2 had more postoperative infections in general[115]. Another retrospective study did not 
find an association between BMI and graft survival. However, each 1 kg/m2 rise in BMI was associated with 
a 3% increase in biliary complications and a low BMI (< 18.5 kg/m2) increased the risk of hepatic artery 
thrombosis[116]. Nonetheless, both studies acknowledge that weight itself may not be the most important 
factor in influencing LT complications and long-term outcomes. Instead, the degree of sarcopenia and 
severity of malnutrition likely play a significant role[115,116].

Key points:
· Sarcopenia is common in patients with MASLD, but pre-LT outcomes are predominantly tied to frailty
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· Transplant outcomes in MASH are similar to other etiologies of liver disease; extremes of weight increase 
postoperative infection risk

IMPACT AND UTILIZATION OF STEATOTIC GRAFTS IN LT
There exists a severe mismatch between organ supply and demand for LT, leading to significant waitlist 
mortality[117]. Patients with MASH are particularly vulnerable to this disparity. Despite a higher burden of 
portal hypertension-related complications and lower MELD scores (given disproportionally slower declines 
in hepatic synthetic function compared to other etiologies of liver disease)[118,119], waitlist mortality is 
increased in patients with MASH cirrhosis compared to other etiology of liver disease[118,120] The long-term 
clinical consequences of their comorbid conditions and accumulating frailty may make certain patients “too 
sick” for transplant. In the absence of a living donor, the current acuity circle-based allocation system in the 
United States may disadvantage patients with MASH. Whether the revised MELD 3.0 score, which now 
incorporates serum albumin and patient sex as model variables[121], will ultimately improve transplant equity 
for this population in the United States is yet unknown. Thus, novel approaches to increase organ access 
include consideration of steatotic grafts [Figure 3].

Attempts to mitigate the organ shortage include the use of “marginal” deceased donor grafts, which are 
organs from donors conferring an increased risk of graft and patient survival. One of these risk factors is 
graft steatosis, which is a frequent finding during procurement, given the rising prevalence of MASLD[122]. 
Historical data suggest that the presence of any microvesicular steatosis or < 30% macrovesicular steatosis 
does not affect post-transplant outcomes[123-125]. In contrast, the use of organs with > 30% macrosteatosis may 
be more susceptible to ischemia and reperfusion injury, conferring a higher risk of primary graft 
nonfunction[124,125]. About 25% of discarded donor livers are due to significant macrosteatosis[126]. However, 
macrosteatotic graft utilization has risen over the past two decades by 15%[127]. While a recent Scientific 
Registry of Transplant Recipients (SRTR) registry study showed a hazard ratio for graft failure of 1.53 for 
highly steatotic livers, the authors noted that they were being disproportionally discarded relative to the 
expected risk[128]. Their concern is supported by other literature, which has shown that when other risk 
factors for graft loss are mitigated (i.e., long cold ischemia time, donor age, etc.), outcomes of highly 
steatotic grafts may be non-inferior to non-steatotic grafts in select individuals[127].

Another strategy with increasing interest and already employed by some transplant centers is normothermic 
machine perfusion (NMP), which can utilize defatting agents[129]. Although expensive and requiring 
personnel with expertise in operating the device, NMP helps keep the liver metabolically active to reduce 
cold ischemia time. This homeostatic mimicry may reduce the risk of ischemia-reperfusion injury. A small 
case series of 14 grafts demonstrated the potential of NMP to increase recovery rates of steatotic liver grafts, 
although optimal NMP timing and organ viability assessment remain undefined[130]. More research, 
experience, and cost reduction are required before this strategy becomes the standard of care in LT.

An additional alternative to the use of a “marginal” deceased donor graft is living donor liver transplant 
(LDLT). This technique is gaining popularity in the United States but is the predominant modality of LT in 
several countries, including East Asia[131]. Biliary complications are more common in LDLT (15%-60%) 
compared to deceased donation after brain death (DBD) donors[131], although long-term outcomes with 
modern techniques and surgeon experience are now similar to recipients of DBD organs[132]. However, the 
high prevalence of hepatic steatosis in the general population represents a potential threat to the donor pool. 
Some transplant centers decline donors with > 10% macrosteatosis, but this may be overly restrictive if other 
important characteristics associated with outcomes (such as graft to recipient body weight ratio and future 
liver remnant) are optimized. In well-selected individuals, LD grafts with up to 20% macrosteatosis may 
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Figure 3. Currently employed strategies to maximize utilization of steatotic liver grafts. NMP: Normothermic regional perfusion.

produce non-inferior outcomes relative to LD grafts with < 10% macrosteatosis[133]. However, further multi-
center study is required before considering the widespread adoption of this practice.

A rising concern has also been the standardization of defining macrosteatosis in potential donor livers. The 
Banff Working Group on Liver Allograft Pathology addressed this problem with consensus 
recommendations in 2022, seeking to standardize the approach to biopsy evaluation and definition of how 
to report macrosteatosis (given its relationship to allograft dysfunction)[134]. In addition, evaluation of donor 
steatosis may rely on some subjective components, including surgeon visual inspection (either direct or 
review of varying quality photographs) of the graft and consideration of other donor clinical factors such as 
BMI, comorbid conditions, and history of underlying liver disease, leading to non-utilization of certain 
grafts[135]. A wider application of the consensus definition of macrosteatosis is needed to ensure uniform 
practices in organ assessment to improve both discard rates as well as patient outcomes.

Key points:
· Strategies to improve organ access include the use of macrosteatotic liver grafts, machine perfusion, and 
living donation

· Further research is needed to understand the range of acceptable graft macrosteatosis to increase 
utilization rates of both deceased and living donor grafts

RECURRENT AND DE NOVO  MASH IN THE POST-TRANSPLANT SETTING
Incidence
Development of graft steatosis after LT is common and may occur in as little as three weeks[136]. This is 
particularly concerning, as post-LT steatosis can lead to hepatic fibrosis within 2 years[136]. In patients 
transplanted for MASH, recurrent steatotic liver disease may occur in 40%-59% of patients at 1 year[137,138]. 
The overall prevalence of recurrent hepatic steatosis post-LT is increasing with time, with an 11% rise per 
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decade, and is most problematic in North America compared to Europe or Asia[137]. However, patients 
transplanted for non-MASH-related etiologies of liver disease can also develop de novo graft steatosis. 
Estimates vary depending on the study and methodology, as well as the subtype of steatosis. Rates of de novo 
MASLD reach nearly 78% by 5 years, with de novo MASH occurring in only 17% of patients[138]. At least 
moderate fibrosis may be present in > 40% of patients[136,139], placing afflicted patients at risk of progressing 
to cirrhosis of their graft.

Key point:
· Steatosis of liver grafts is common and may occur in patients transplanted for MASH at an accelerated rate

Risk factors
Multiple risk factors for recurrent or de novo MASLD have been identified and are remarkably similar to 
those that contribute to pre-LT MASLD. The most consistently reported risk factors include the presence of 
metabolic comorbidities (diabetes mellitus, hypertension, HLD), elevated BMI, donor graft steatosis, post-
LT weight gain, and use of sirolimus for immunosuppression[137-139]. In a single study looking at risk factors 
for the development of de novo MASLD 5 years after LT, male sex, obesity, MetS, and new-onset diabetes 
mellitus were all independently predictive in multivariate analysis[136]. Pre-transplant MASLD confers a 5-
fold risk for post-transplant steatosis, with alcohol-associated liver disease and chronic hepatitis C being 
associated with only a 2.5-fold and 2-fold risk, respectively[137]. Genetic influences, including specific 
polymorphisms in the PNPLA3 gene and TM6SF2, confer increased risk if present[137]. For example, the 
presence of the PNPLA3 rs738498-G variant in both the donor and recipient led to a 27-fold increased risk 
of graft steatosis[140]. Similarly, recipients with the minor allele form of ADIPOR1 rs10920533 have more 
severe post-LT MASLD. Conversely, the same study found that donors with the rs4880-A polymorphism of 
superoxide dismutase-2 led are protective against post-LT steatosis[141]. While interesting from a research 
perspective, testing for the aforementioned polymorphisms is not routine in clinical practice, given a lack of 
available gene-modifying therapies.

Another driver of post-LT MASLD is exposure to immunosuppressive agents with unfavorable metabolic 
consequences, as summarized in Table 6[142]. Of note, corticosteroids promote gluconeogenesis and free-
fatty acid uptake, reduce insulin production, and decrease lipoprotein lipase (LPL) activity, leading to 
impaired triglyceride degradation[142]. However, most patients can be weaned off corticosteroids within 90 
days, with a minority of transplant centers practicing steroid-free protocols. In contrast to corticosteroids, 
however, CNIs are typically the backbone of post-LT immunosuppression, and thus, patients have chronic 
exposure. These agents increase gluconeogenesis, reduce bile acid synthesis from cholesterol (thus resulting 
in excessive cholesterol levels), and reduce pancreatic beta cell proliferation and survival[142]. Mammalian 
target of rapamycin inhibitors (mTORis) represent another class of immunosuppressants, which are 
sometimes used in post-LT patients for their renoprotective and antitumor effects. While not explicitly 
diabetogenic, mTORis are strongly associated with HLD related to the downregulation of LPL activity and 
increased adipose tissue lipase activity[142]. Current American Association for the Study of Liver Diseases 
(AASLD) and American Society of Transplantation (AST) guidelines do not explicitly recommend a 
preferred immunosuppression strategy to reduce post-LT MASLD but acknowledge the importance of 
avoiding excessive weight gain and controlling metabolic comorbidities[143]. Immunosuppression in patients 
should be routinely reviewed and minimized when possible.

Key points:
· Steroids, CNIs, and mTORis commonly used in LT recipients have negative metabolic consequences
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Table 6. Metabolic effects of common immunosuppressants

Medication Hypertension Dyslipidemia Diabetes mellitus Weight gain

Cyclosporine ↑↑ ↑↑ ↑ ↑

Tacrolimus ↑↑ ↑ ↑↑ ↑

mTORi - ↑↑↑ ↑ -

Mycophenolate - - - -

Corticosteroids ↑↑ ↑↑ ↑↑↑ ↑

↑: Increases risk; -: no significant effect. mTORi: Mammalian target of rapamycin inhibitor (i.e., sirolimus, everolimus).

· Reduction in immunosuppression over time may improve metabolic health

Diagnosis of post-LT MASLD
While significant graft steatosis can be easily identified using ultrasound or contrast-enhanced cross-
sectional imaging, the assessment of fibrosis with these modalities remains limited until advanced disease is 
present. Accurately staging fibrosis provides vital prognostic information as allograft fibrosis is associated 
with decreased graft survival and increased need for retransplantation[144]. Elevated liver enzymes are 
common in the post-LT setting and may be secondary to various inflammatory insults, including (but not 
limited to) cellular or antibody-mediated rejection, vascular issues, biliary complications, infectious 
etiologies, toxic exposures (including medications), and recurrence of pre-LT disease. However, their 
elevation does not necessarily correlate with hepatic fibrosis[144]. Liver biopsy is often performed if the 
etiology remains unclear or to confirm suspected acute or chronic rejection. Biopsy is favored earlier in the 
post-LT timeframe when the differential diagnosis is broader, but in patients otherwise doing well, 
particularly several years out from transplant on stable doses of immunosuppression, the probability of 
post-LT MASLD rises. Given the high incidence, liver biopsy may not always be necessary or practical 
despite remaining the gold standard assessment.

When either recurrent or de novo MASLD is suspected, it is important to confirm a diagnosis to avoid 
unnecessary additional workup and an inappropriate empiric increase in immunosuppression. Various 
modalities have been investigated, but each has its own strengths and weaknesses, as detailed in Table 7. 
Serum-based NITs are well-validated for MASLD in the pre-LT setting, but their utility post-LT is less well-
established[145]. While easy to calculate, the aspartate aminotransferase-to-platelet ratio (APRI) and the 
fibrosis-4 score (FIB-4) demonstrate modest positive predictive values but high negative predictive 
values[146-148]. Changes in these scores over time predict graft loss and death[148], although their dependence on 
platelet levels is a significant drawback. Many patients post-LT continue to have thrombocytopenia despite 
improvement in portal hypertension, which may lead to an overestimation of fibrosis by these scores[149].

Other NITs have also been investigated in LT recipients. Vibration-controlled transient elastography 
(VCTE) is widely available and part of the recommended care pathway by AASLD and European 
Association for the Study of the Liver (EASL) for patients with suspected MASLD[34,48,150]. Its use in post-LT 
patients is validated and superior to serum-based NITs[145,151], albeit with smaller sample sizes[152]. Shear wave 
elastography (SWE) is a modality similar to VCTE that utilizes ultrasound technology to estimate fibrosis 
and is favored by radiologists. While not as widely available as VCTE, SWE demonstrated reasonable 
performance in ruling out significant fibrosis in a cohort of post-LT patients with corresponding liver 
biopsy[153]. However, it is important to note that the generalizability of the prior study is limited by a 
relatively limited number of MASH patients. Magnetic resonance elastography (MRE) has demonstrated 
utility in diagnosing advanced fibrosis[145,154], but its use is limited by availability, cost, and uncertain ability 
to detect earlier stages of fibrosis.
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Table 7. Comparison of diagnostic modalities for post-LT MASLD

Modality Availability Cost Utility Limitations References

Liver-associated enzymes +++ $ + (1) Non-specific 
(2) Poor correlation with fibrosis

[144]

Imaging* +++ $$-$$$ ++ (1) Variable US interpretation 
(2) Cannot assess for early fibrosis

-

Biomarker-based NITs† +++ $-$$ + (3) Platelet levels unreliable 
(4) FibroSure® and ELF™ not validated in post-LT setting

[145-149]

Elastography‡ ++/+++ $$ +++ (1) Invalid in certain patients [34,45,145,150-153]

MRE + $$$ ++ (1) Less studied 
(2) Uncertain diagnostic accuracy for early fibrosis

[145,154]

Biopsy +++ $$ +++ (1) Sampling error 
(2) Risk of procedural complications

-

*Includes ultrasound, CT and MRI; †Includes APRI, FIB-4, FibroTest™/FibroSure ®, ELF™ test; ‡Includes VCTE and SWE. ELF: Enhanced liver fibrosis;
LT: liver transplantation; MRE: magnetic-resonance elastography; NIT: non-invasive test; US: ultrasound; FIB-4: fibrosis-4 score; APRI:
aminotransferase-to-platelet ratio; SWE: shear wave elastography; VCTE: vibration-controlled transient elastography; MASLD: metabolic
dysfunction-associated steatotic liver disease.

Key points:
· Diagnosis of post-LT MASLD requires confirmation of graft steatosis and ruling out other causes of 
elevated liver enzymes, including rejection

· Key limitations of non-invasive testing in the post-LT population include less robust data, difficulty in 
diagnosing early fibrosis, and overestimation of fibrosis if platelet levels are chronically suppressed

TREATMENT OF THE METS AND MASLD AFTER LIVER TRANSPLANT
Post-transplant MetS is common, with rates of up to 90% rate in patients with prior MASH-associated
cirrhosis[155]. In particular, LT recipients are at increased risk for de novo hypertension, HLD, and diabetes
mellitus[143]. These conditions are associated with early atherosclerotic changes and cardiac dysfunction[156],
with a long-term risk of clinically significant coronary heart disease[157]. Initial management is focused on
the optimization of metabolic comorbidities, with specific strategies shown in Table 8[89-94,143,158-170].

Given that CNI and mTORi use contribute significantly to the development or exacerbation of MetS and
MASLD, reduction in immunosuppression (as tolerated) is generally favored in the long term.
Pharmacologic knowledge is also important, particularly with regard to HLD management. Both
cyclosporine and certain statins (atorvastatin, fluvastatin, lovastatin, and simvastatin) are heavily
metabolized by the cytochrome 450 system, leading to elevated serum statin concentrations and a higher
risk of myopathy or elevated liver enzymes[159]. Thus, the selection of a hydrophilic statin (pravastatin or
rosuvastatin) and/or the use of tacrolimus or a mTORi is preferable.

The use of GLP1-RAs in the post-LT population is becoming commonplace, although evidence for their
benefits is primarily derived from kidney transplant recipients. As a class, GLP1-RAs do not require
immunosuppression adjustments[166,167] and are associated with a reduction in the rate of estimated
glomerular filtration rate loss as well as cardiovascular events, both of which are major sources of morbidity
and mortality in LT recpients[164]. The specific agent dulaglutide has been shown to induce weight loss and
decrease exogenous insulin requirement[165]. Further research is needed, including experience specifically in
LT recipients, but current extrapolation from kidney transplant populations appears reasonable given
similar metabolic profiles and even higher dose immunosuppression regimens.
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Table 8. Post-LT metabolic comorbidity management

Metabolic 
condition Targets Preferred agent(s) Comments References

Hypertension BP < 130/80 Amlodipine - counteracts CNI-induced 
renal vasoconstriction 
ACEi/ARBs – preferred if DM, CKD, 
and/or proteinuria present

Good control reduces mortality and CV events [143,158]

Hyperlipidemia LDL < 100 
TG < 150

Elevated LDL or mixed hyperlipidemia -
statins preferred; ezetimibe as adjunctive
or monotherapy if statin intolerance
Isolated hypertriglyceridemia - fish oil,
fibrates*

Reduction of dietary saturated and trans fats, 
alcohol abstinence recommended 
Certain statins significantly interact with 
cyclosporine† 
Check lipids before starting mTORi

[143,157,159]

Diabetes 
Mellitus

A1c < 7% Immediately post-LT - insulin 
Later - metformin, DPP-4i, SGLT2i, GLP1-
RAs

Insulin allows for pancreatic β-islet cell rest [143,160-167]

Obesity Patient-
specific 
weight loss 
goals

Diet, exercise 
GLP1-RAs 
Bariatric surgery

GLP1-RA use offers renoprotective and CV 
benefits‡ 
The optimal timing of bariatric surgery 
(simultaneous with LT vs. delayed) is unclear. SG 
preferred over RYGB to avoid malabsorption and 
preserve conventional biliary access

[89-94,143]

*Requires careful monitoring, given interaction with CNI and increased risk of myopathy when combined with statin; †Statins heavily metabolized 
by cytochrome 450 system: atorvastatin, fluvastatin, lovastatin, simvastatin; ‡Evidence derived from kidney transplant recipients. ACEi: 
Angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; BP: blood pressure; CKD: chronic kidney disease; CV: cardiovascular; 
DM: diabetes mellitus; DPP-4i: dipeptidyl peptidase-4 inhibitor; GLP1-RA: glucose-like peptide-1 receptor agonist; LDL: low-density lipoprotein; 
LT: liver transplantation; mTORi: mammalian target of rapamycin inhibitor; RYGB: Roux-en-Y gastric bypass; SG: sleeve gastrectomy; SGLT2i: 
sodium-glucose cotransporter-2 inhibitor; TG: triglycerides; CNI: calcineurin inhibitor.

Bariatric surgery after LT is also another strategy to address obesity, the MetS and potentially prevent the 
development of either recurrent or de novo MASLD. A small matched case-control study of post-LT 
patients undergoing SG demonstrated a 44% remission rate of diabetes and similar reductions in 
hypertension, sleep apnea, and HLD. No difference in immunosuppression pharmacokinetics was detected 
in the pre- and post-SG periods. However, there was a high incidence of postoperative malnutrition 
complications (25%) requiring balloon dilatation or gastrostomy tube placement[168]. Though the metabolic 
effects from this study were encouraging, follow-up duration was variable and there was no investigation 
into the prevention of recurrent or de novo MASH. A small single-center cohort of 15 patients (all but one 
had pre-LT MASH) who underwent SG a median of > 2 years post-LT also reported excess body weight loss 
of 51.5% after a year. Patients had improvement in some metabolic parameters, particularly reduced insulin 
requirement, and only one patient had a complication (surgical site infection). The authors noted an early 
reduction in tacrolimus levels, but this was attributed more to immediate post-surgical side effects, as the 
levels improved further over time and no patient developed allograft rejection[169]. Other low-quality 
evidence for post-LT bariatric surgery includes multiple small case reports or retrospective cohorts utilizing 
a variety of techniques. The excess body weight loss is comparable to the aforementioned studies, but 
several studies reported fatalities and specific investigation into rates of post-LT MASH were lacking[170]. In 
summary, post-LT bariatric surgery may be an efficacious treatment modality for obesity and MetS, but 
careful patient selection is required to mitigate the increased risk of adverse events compared to the non-
transplant population. Furthermore, long-term outcomes of post-LT bariatric surgery on the reduction of 
MASLD/MASH rates are needed.

Key points:
· Optimization of metabolic comorbidities is key and may require a combination of directed medical 
therapies and immunosuppression adjustment
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· Experience with GLP1-RAs in the post-LT population is increasing and potential benefits appear 
promising

· Bariatric surgery after LT may offer metabolic and weight loss benefits, although the long-term effects on 
reducing MASLD/MASH are unknown

CONCLUSION
The prevalence of MASLD is predicted to continue growing, with parallel increases in MASH, advanced 
fibrosis and cirrhosis. The development of portal hypertension and/or HCC in many patients will 
necessitate transplant consideration and medical providers will need to be adept at managing MASLD and 
its associated metabolic comorbidities in both the pre- and post-LT setting. The burgeoning MASLD 
epidemic also impacts the potential donor pool of organs and strategies designed to optimize organ 
procurement and minimize reperfusion injury will continue to be an ongoing area of focus in the years to 
come. Further study into MASLD and its implications throughout the transplant lifecycle is required to 
address this public health problem to ensure excellent patient outcomes while maintaining financial 
solvency.
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