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Abstract
Adaptability and robustness are important expressions of the intelligent walking ability of biped robots. This paper
is concerned with the problem of dynamical biped walking and robust control of biped robots under external forces.
Due to the characteristics of strong coupling and hybrid, the robotic system is modeled as a rigid kinematic chain
with Lagrange equations. A novel adaptive feedback controller is proposed based on sliding mode control (SMC)
and hybrid zero dynamics. The novelty of the proposed work lies in taking the uncertainty of upper-bound error into
consideration. The hybrid robust control is mentioned to approximate unknown dynamic functions with the adaptive
weight. The restricted Poincare return map is utilized to analyze the stability of a nonlinear impulsive system. It
ensures that the flow of the continuous subsystem can pass through the impact cross section. Finally, the simulation
results illustrate that the proposed adaptive SMC control system can favorably track the reference trajectories, even
when a fault occurs, which verifies the effectiveness of the proposed method.

Keywords: Biped walking, impulse hybrid system, adaptive sliding mode control, stability analysis

1. INTRODUCTION
Recently, intelligent robots reflect the deep integration of new-generation information technologies, such as
intelligent control and high-performance computing, and stand for major direction for the development of the
new-generation artificial intelligence strategy of the country. As the ultimate form of intelligent robots, hu-

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.intellrobot.com

https://creativecommons.org/licenses/by/4.0/
www.intellrobot.com
OAE
图章



Page 2 of 16 Wang et al. Intell Robot 2023;3(3):479-94 I http://dx.doi.org/10.20517/ir.2023.26

manoid robots require complex mechanical control systems, environmental awareness, and motion planning
capabilities, which are widely used in service entertainment, disaster rescue, rehabilitation medicine, and so
on [1–3]. Specially, flexible and robust walking is the most basic guarantee for various tasks. However, uncer-
tain disturbances are inevitable in biped walking, which can affect walking stability or even periodic motion.
Hence, it is of great significance to explore advanced high-performance robot control systems, break through
the application bottleneck for fieldwork robots, and promote the development of humanoid robots.

Stability analysis is a convincing demonstration of robust walking. By analyzing the conditions for the existence
of stable equilibrium points, the stability analysis will transform into a mathematical problem for the existence
of limit cycles. Various stability criteria have been proposed. Early scholars proposed the zero moment point
(ZMP) stability criterion, which means that the robot is considered stable when the ZMP falls within the
support area. Goswamiti designed a sole flipping indicator [4]. Huang further discussed the determination
of the stable region [5], and then a large number of 3D bipedal solid robots were manufactured based on this
criterion. However, a series of problems arose subsequently, such as stiff movement and poor anti-interference
ability. Considering stable bipedal walking exhibits periodic motion, the restricted Poincare Return Map can
be used to analyze the stability of the system, which transforms the target of stable biped walking into the
problem of stabilization of periodic orbits. The main purpose of using the Poincare return map is to analyze
the stability of periodic orbits in low dimensions. Besides, it is not constrained by motion speed and, thus,
is suitable for various foot structures. Tedrake analyzed the walking stability of a partially passive robot with
drive only at the ankle joint [6]. Grizzle et al. developed new jumping and running postures for point-legged
robots [7].

Compared to the walking ability of humans, biped robots still have a long way to go. They can be regarded
as multi-variable, variable structure, and strong coupling nonlinear systems, possessing the characteristics of
strong environmental adaptability, complex structure, and difficult motion control [8–11]. Recent years have
witnessed the rapid development of robust control of dynamic biped walking. The traditional quasi-static
walking control based on ZMP has practicability; however, it is required that ZMP always falls in the support
polygon, which is inconsistent with human walking [12–14]. For the dynamic walking of biped robots under
external forces, Ames [14] proposed a hybrid zero dynamics control method and gave the analytical conditions
for stable dynamic walking. Since SMC is insensitive to parameter changes and disturbances and has a fast
response, it has become a research focus for robot control. Active force control is achieved by adding sensors
to detect the external forces on the robot and designing corresponding force control algorithms to achieve the
robot’s active compliance with external forces. The classical force control usually includes impedance control
and hybrid position and force control. Yadukumar et al. achieved the robot AMBER walking by collecting and
analyzing human gait data and combining it with hybrid zero dynamics [15]. The classic force control strategy
is applicable to static environments in which environmental information is determined. The foundation of
force control is the perception of external forces. There are generally two ways to measure external forces: one
is to directly obtain the interaction force with the environment through external sensors; Another approach
is to use the dynamic model of the robot to obtain external forces. Dai et al. took the ground as an external
disturbance, quantified the robustness of the robot to ground disturbances through gain L2, and realized the
robot’s walking based on robust control [16].

In the references [17–20], the controlmethod of a second-order slidingmode is introduced systematically, includ-
ing a twisting algorithm, sub-optimal algorithm, and terminal sliding mode algorithm. Then, a motion/force
hybrid control method based on recurrent neural networks (RNNs) was proposed afterward. Spong et al. pro-
posed a continuous controller design method for dynamic walking on the uneven road [21]. However, it is
difficult to adjust control parameter items. Ravichandran et al. proposed a neural network control method
with the inverted pendulummodel [22]. In view of the strong approximation ability of neural networks, they are
usually utilized to approximate complex nonlinear systems. Particularly, combining with the self-adaptive tech-
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Figure 1. The nine-link model of biped robots.

nology, network weight coefficient identification and updating learning factors can be realized. It has a good
generalization ability and can approach any nonlinear function with the required accuracy, which is suitable
for real-time and online control of signal processing and robot control [23–26]. Although there are numerous
advanced results on biped dynamic walking [27,28], there are still some unresolved issues worth studying, such
as the robustness of walking and mobility flexibility. In this paper, we concentrate on adaptive robust control
for bipedal robots under uncertain external forces.

Themain content of the article is arranged as follows. Section 2 describes the dynamicmodel of the biped robot.
It is modeled as a nonlinear impulsive system. An adaptive sliding-mode controller is proposed in Section 3.
In Section 4, a primary RNN with self-stabilizing ability is utilized to deal with the complicated optimization
problem. The hybrid robust control is then proposed to approximate unknown dynamic functions, and the
network weights are adaptive. The simulation results are shown in Section 5, and Section 6 further proposes
future work.

2. DYNAMIC MODELS
The biped robot model discussed in this paper is depicted in Figure 1, which includes a torso and two legs
with revolute knees. 𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6]𝑇 represents the angle of each joint. According to geometrical
constraints on the biped robot joint coordinates, the constraints in the double-support phase are holonomic.

Assumption 2.1. The swinging foot and the ground are completely elastic collisions.

Assumption 2.2. The joint angle remains the same, while the angular velocity changes immediately since the
impact occurs instantaneously.

http://dx.doi.org/10.20517/ir.2023.26
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Assumption 2.3. The swinging leg did not slip or rebound with the ground during the collision.

Remark 1: The Assumptions 2.1-2.3 are general. These assumptions make it necessary to establish a relation-
ship between the walking process and the dynamic model. Additionally, these assumptions have also been
used in [29,30].

The motion equation in the double support phase is described as,

𝑀 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝐺 (𝑞) = 𝐷 (𝑢 + 𝑢𝑑) (1)

where 𝑀 (𝑞) ∈ 𝑅𝑛×𝑛 is the positive-definite inertia matrix, 𝐺 (𝑞) = 𝜕𝑃/𝜕𝑞 ∈ 𝑅𝑛 is the gravity matrix, and
𝐽 = 𝜕Φ/𝜕𝑞 ∈ 𝑅𝑛 is the Jacobian matrix. Φ represents robot constraints, and Φ(𝑞) = 0. The nonlinear
dynamic equation of the biped robot can be described as a second-order differential equation. 𝐶 (𝑞, ¤𝑞) ∈ 𝑅𝑛×𝑛
is the centrifugal force and Coriolis force terms, and

{
𝐶 (𝑞, ¤𝑞) ¤𝑞 = 𝜕

𝜕𝑞 (𝑀 (𝑞) ¤𝑞) ¤𝑞 − 1
2 (𝑀 (𝑞) ¤𝑞)′ ¤𝑞

𝐶𝑘 𝑗 =
∑𝑁
𝑖=1

1
2

(
𝜕𝑀𝑘 𝑗

𝜕𝑞𝑖
+ 𝜕𝑀𝑘𝑖

𝜕𝑞 𝑗
− 𝜕𝑀𝑖 𝑗

𝜕𝑞𝑘

)
, 𝑘 ≥ 1, 𝑗 ≤ 𝑁

(2)

where N is the length of the generalized configuration vector. 𝑢 ∈ 𝑅𝑛 is the input torques, and 𝑢𝑑 ∈ 𝑅𝑛 is
the external disturbance. Considering the external force exerted on the robot foot during an impact, which is
defined as 𝐹ext =

∫ 𝑡+
𝑡−
𝛿𝐹ext (𝜏)𝑑 (𝜏), (1) can be described as

{
𝑀𝑒 (𝑞𝑒) ¥𝑞𝑒 + 𝐶𝑒 (𝑞𝑒, ¤𝑞𝑒) ¤𝑞𝑒 + 𝐺𝑒 (𝑞𝑒) = 𝜏 + 𝛿𝐹𝑒𝑥𝑡
𝑀𝑒

(
¤𝑞+𝑒
)
¤𝑞+𝑒 − 𝑀𝑒

(
¤𝑞−𝑒
)
¤𝑞−𝑒 = 𝐹𝑒𝑥𝑡

(3)

where 𝑞e =
[
𝑞1 𝑞2 𝑝𝑥 𝑝𝑦

]𝑇 , and (
𝑝𝑥 , 𝑝𝑦

)
shows the hip position in Cartesian coordinates. 𝑀𝑒 (𝑞e),

𝐶𝑒 (𝑞e), and 𝐺𝑒 (𝑞e) are inertia matrix, Coriolis force matrix, and gravity matrix in the double support phase,
respectively. The collision mapping can be written as

{
𝑞+ = 𝑞−

¤𝑞+ = Δ ( ¤𝑞−) (4)

Describing (2) and (4) as the form of state space, as shown in (5), demonstrates that the walking system is
hybrid.

Σ :
{

¤𝑥(𝑡) = ( 𝑓 (𝑥(𝑡)) + Δ 𝑓 (𝑥(𝑡))) + (𝑔(𝑥(𝑡)) + Δ𝑔(𝑥(𝑡)))𝑢(𝑡) 𝑥(𝑡) ∈ 𝐷\𝑆
𝑥+(𝑡) = Δ (𝑥−(𝑡)) 𝑥−(𝑡) ∈ 𝑆 (5)

where 𝑥(𝑡) = [𝑞, ¤𝑞]𝑇 is the defined state variable, and 𝑥−(𝑡) = [𝑞−, ¤𝑞−]𝑇 and 𝑥+(𝑡) = [𝑞+, ¤𝑞+]𝑇 represent state
variables before and after the impact, respectively. 𝑓 (𝑥(𝑡)) and 𝑔(𝑥(𝑡)) are bounded nominal nonlinear func-
tions; Δ 𝑓 (𝑥(𝑡)) and Δ𝑔(𝑥(𝑡)) represent uncertainties. Through differential homeomorphism transformation,
the continuous part of the hybrid system (5) can be expressed as a nonlinear system with uncertainties,
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Figure 2. Basic principle diagram of adaptive sliding mode control (SMC).

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡) + 𝛿(𝑥(𝑡)) (6)

where 𝛿(𝑥(𝑡)) is the system uncertainty, which includes systemmodel uncertainties and external disturbances.
Suppose 𝛿(𝑥(𝑡)) is bounded; that is, ‖𝛿(𝑥(𝑡))‖ ≤ 𝜌, where ‖ · ‖ is the Euclid norm, and 𝜌 is a positive constant.

3. ADAPTIVE SLIDING MODE CONTROL
An adaptive sliding mode controller for uncertain disturbances is proposed in this section. The control system
block diagram is shown in Figure 2. The basic control idea is to design a sliding mode controller, which
makes the state of the system converge to the sliding mode surface when the robot is subjected to uncertain
disturbances. In general, the controller design can be divided into two steps. A sliding surface is established
to make the controlled system reach its control target.

Due to the adaptability of error amplitude, the controller does not need to accurately estimate the amplitude of
external disturbance. Let Δ𝑞 = 𝑞 − 𝑞𝑑 describe the joint control error, where 𝑞𝑑 is the reference track of each
joint. Thus, the control target can be expressed as 𝑠 = Δ ¤𝑞 + 𝛼Δ𝑞 → 0. However, in the actual robot operation,
it will lead to chattering. In order to guarantee smooth operation, the regularization method in the boundary
layer is utilized to solve the chattering problem. A controller is designed to make the state trajectory of the
robot converge to a thin boundary layer, which is about the constant 𝜌 = {(𝑞, ¤𝑞) | ‖𝑠‖ < Φ𝐼8×1}; that is to say,
for ∀𝑖 > 0, the robot will meet the following sliding mode conditions when |𝑠 | > Φ, and

1
2

d
𝑑𝑡 𝑠

2
𝑖 = ¤𝑠𝑖𝑠𝑖 < 0

Considering the coefficients of the Hurwitz polynomial 𝑐1 + 𝑐2𝜆 + · · · + 𝑐𝑛−1𝜆
𝑛−2 + 𝜆𝑛−1, the sliding mode

function can be selected as

𝑠𝑖 (𝑡) = 𝑒(𝑛−1) (𝑡) + 𝛼1𝑒
(𝑛−2) (𝑡) + · · · + 𝛼𝑛−1𝑒(𝑡) + 𝛼𝑛

∫ 𝑡

0
𝑒(𝑡)𝑑𝑡 (7)

where the constants 𝑐𝑙 (𝑙 = 1, 2, · · · , 𝑛 − 1) are to be selected to meet the requirement of sliding surface, and
the derivative of 𝑠 about time 𝑡 is

http://dx.doi.org/10.20517/ir.2023.26


Page 6 of 16 Wang et al. Intell Robot 2023;3(3):479-94 I http://dx.doi.org/10.20517/ir.2023.26

¤𝑠𝑖 (𝑡) = 𝑒(𝑛) (𝑡) + 𝑐1𝑒
(𝑛−1) (𝑡) + · · · + 𝑐𝑛−1 ¤𝑒(𝑡) + 𝑐𝑛𝑒(𝑡)

= 𝛼𝑇𝐸 (𝑡) + 𝛽 ¤𝐸 (𝑡)
(8)

where 𝛼 =
[
𝛼𝑛 𝛼𝑛−1 · · · 𝛼𝑛−1

]𝑇 , 𝛽 =
[

0 0 · · · 𝐼
]𝑇 , and 𝐸 (𝑡) = [

𝑒𝑇 (𝑡) ¤𝑒𝑇 (𝑡) · · · 𝑒(𝑛−1)𝑇 (𝑡)
]
will converge

to the origin when 𝑠𝑖 = 0 .

For a nonlinear system with bounded uncertainties (6), the designed sliding mode controller is proposed to
ensure the system is asymptotically stable. It includes two parts: the former is used to realize input/output
linearization, and the latter is used for robust compensation. The control law is designed as (9),

𝑢𝑆𝑀𝐶 (𝑡) = 𝑔−1(𝑥(𝑡))
[
− 𝑓 (𝑥(𝑡)) + 𝑥 (𝑛)𝑑 (𝑡) + 𝛼𝑇𝐸 (𝑡) + 𝜌 sgn(𝑠(𝑡))

]
(9)

where sgn(·) is the sign function. A simple proof of convergence of the controller is as follows. Firstly, taking
the splitting operation of the control law (9),

𝑢𝑆𝑀𝐶 (𝑡) = 𝑔−1(𝑥(𝑡))
⌊
− 𝑓 (𝑥(𝑡)) + 𝑥 (𝑛)𝑑 (𝑡) + 𝛼𝑇𝐸 (𝑡)

⌋
+ 𝑔−1(𝑥(𝑡))𝜌 sgn(𝑠(𝑡)) (10)

Substitute the control law (11) into the nonlinear system (7); it will be denoted by

𝑥 (𝑛) (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢𝑆𝑀𝐶 (𝑡) + 𝛿(𝑥(𝑡))
= 𝑓 (𝑥(𝑡)) − 𝑓 (𝑥(𝑡)) + 𝑥 (𝑛)𝑑 (𝑡) + 𝛼𝑇𝐸 (𝑡) + 𝜌 sgn(𝑠(𝑡)) + 𝛿(𝑥(𝑡))
= 𝑥 (𝑛)𝑑 (𝑡) + 𝛼𝑇𝐸 (𝑡) + 𝜌 sgn(𝑠(𝑡)) + 𝛿(𝑥(𝑡))

(11)

thus, it can get 𝜌 sgn(𝑠(𝑡)) + 𝛿(𝑥(𝑡)) = −𝛼𝑇𝐸 (𝑡) − 𝛽 ¤𝐸 (𝑡) = −¤𝑠(𝑡).

The Lyapunovmethod is utilized to verify the stability of the control system. We select the candidate Lyapunov
function as follows:

𝑉𝑠 (𝑠(𝑡)) =
1
2
𝑠𝑇 (𝑡)𝑠(𝑡) (12)

By taking the derivative of 𝑉𝑠 (𝑠(𝑡)) with respect to 𝑡, it follows that

¤𝑉𝑠 (𝑠(𝑡)) = 𝑠𝑇 (𝑡) ¤𝑠(𝑡)
= −𝑠𝑇 (𝑡) [𝜌 sgn(𝑠(𝑡)) + 𝛿(𝑥(𝑡))]
= −𝜌‖𝑠(𝑡)‖ − 𝑠𝑇 (𝑡)𝛿(𝑥(𝑡))

)
≤ −𝜌‖𝑠(𝑡)‖ + ‖𝑠(𝑡)‖‖𝛿(𝑥(𝑡))‖
= −‖𝑠(𝑡)‖(𝛽 − 𝛿(𝑥(𝑡)))

(13)

According to the assumption that 𝛿(𝑥(𝑡)) is bounded, where ‖𝛿(𝑥(𝑡))‖ ≤ 𝜌, so that ¤𝑉𝑆 (𝑠(𝑡)) ≤ 0. Therefore,
the SMC law (9) can make the robot system (6) asymptotically stable.

http://dx.doi.org/10.20517/ir.2023.26
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4. HYBRID MOTION/ FORCE CONTROL BASED ON RNN
Considering the uncertainty of the upper-bound error in the controller, a primary RNN is utilized. By design-
ing adaptive laws of network weights based on the Lyapunov stability theory, the parameters of learning factors
in neural networks are adjusted. In addition, the boundary value estimation algorithm is utilized to compen-
sate for the estimation error. In order to analyze the system stability, the Poincare return map is utilized, in
which the manifold of a continuous subsystem can pass through the impact cross section.

4.1. Principle and structure of RNN
A primary RNN is adopted to deal with the complicated optimization problem. It will remember previous
information and use it to affect the output of subsequent nodes. Themapping equation of an RNN is expressed
as follows:

¤𝑉𝑖𝑟 (𝑡) =
𝑛∑
𝑖=1

𝑤 𝑗𝜙 𝑗
(𝑥𝑖 (𝑡) − 𝑣𝑖 𝑗 , 𝜎𝑖 𝑗 , 𝑟 𝑗 , 𝜙 𝑗 (𝑡 − 1)

)
(14)

where 𝑥𝑖 represent input variables, 𝑥𝑖𝑟 are output variables, 𝑤𝑖 is denoted by connective weights between the
hidden layer and output layer, and 𝑣𝑖 𝑗 and 𝜎𝑖 𝑗 are the center and the width of the Gaussian function - 𝑗 th block
membership function - in the 𝑖th input. 𝑟 𝑗 is the internal feedback gain. The base function of the 𝑗 th block
acceptance field corresponding to the 𝑖th input 𝑥𝑖 can be written as

𝜙 𝑗 (𝑡) = exp

[
−

𝑚∑
𝑖=1

[
𝑥𝑖 (𝑡) + 𝜙 𝑗 (𝑡 − 1)𝑟 𝑗 − 𝑣𝑖 𝑗 𝑘

𝜎2
𝑖 𝑗

, (15)

The 𝑘th multidimensional acceptance domain function and the corresponding multidimensional domain
space are respectively denoted by


Φ𝑘 =

∏𝑛
𝑖=1 𝜙𝐴𝑖𝑘 (𝑥𝑖) = exp

[∑𝑛
𝑖=1

(𝑥𝑖−𝑚𝑖𝑘 )2
𝜎2
𝑖𝑘

]
, 𝑘 = 1, 2 · · · 𝑛𝑅,

Φ =
[
Φ1 Φ2 · · · Φ𝑛𝑅

]𝑇 (16)

where 𝑛𝑅 is the number of receptive fields.

Define the weight memory space matrix𝑊 =
[
𝑤1 𝑤2 · · ·𝑤𝑖 · · ·𝑤𝑛𝑅

]𝑇 , where 𝑤𝑖 = [
𝑤𝑖1 𝑤𝑖2 · · ·𝑤𝑖𝑚

]𝑇 .
Then, the coverage of multidimensional function space Φ to the input state 𝐼 will also change. The output
of the system 𝑌 is the product of the weight matrix 𝑊 and the vector of the receptive field Φ, which can be
described in the form of 𝑌 =

[
𝑦1 𝑦2 · · · 𝑦𝑚

]
= 𝑊𝑇Φ.

4.2. Design of a hybrid force/motion controller
The control structure of a hybrid motion/force controller is shown in Figure 3. In order to derive optimized
contact force and motion, hybrid motion/force control is proposed based on RNNs to approximate dynamic
functions. Several assumptions are made in advance.

Assumption 4.1. According to the approximation principle of neural networks, suppose that there exists the
desired weight 𝑊∗, Gauss function Φ∗, desired center value 𝑚∗, width 𝜎∗, and recurrent gain coefficient 𝑟∗,
which makes an RNN approach any smooth nonlinear function 𝛿.

http://dx.doi.org/10.20517/ir.2023.26
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Figure 3. The control structure.

𝛿 = 𝛿∗ + 𝜉 = 𝑊∗Φ∗ (𝑚∗, 𝜎∗, 𝑟∗) + 𝜉, (17)

where𝑊∗,Φ∗, 𝑚∗, 𝜎∗, 𝑟∗ are the desired values of network parameters -𝑊,Φ, 𝑚, 𝜎, 𝑟 . Suppose that𝑊∗,Φ∗, 𝑚∗, 𝜎∗, 𝑟∗

are all bounded, ‖𝑊∗‖ ≤ �̄� , ‖Φ∗‖ ≤ Φ̄, ‖𝑚∗‖ ≤ �̄�, ‖𝜎∗‖ ≤ �̄�, and ‖𝑟∗‖ ≤ 𝑟 . �̄� , Φ̄, �̄�, �̄�, 𝑟 are the correspond-
ing upper bound of each parameter, and 𝜉 is the approximation error, which satisfies ‖𝜉∗‖ ≤ 𝜉. However, the
desired values𝑊∗,Φ∗, 𝑚∗, 𝜎∗, 𝑟∗, 𝛿∗ are not available.

Inspired by pure-motion tracking, some notations are defined as ,

𝑥 (𝑛) = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 + 𝛿
𝛿 = �̂�Φ̂(�̂�, �̂�, 𝑟) (18)

where �̂�, Φ̂, �̂�, �̂�, 𝑟 are the estimated values of𝑊∗,Φ∗, 𝑚∗, 𝜎∗, 𝑟∗ . 𝛿 is the estimation of the system error.

By adjusting the adaptive parameters of RNNs, the hybrid motion/force controller will approximate unknown
dynamic functions. From the part of error estimation 𝛿 = �̂�Φ̂(�̂�, �̂�, 𝑟), the error is defined by

�̃� = 𝛿 − 𝛿 = 𝛿∗ + 𝜉 − 𝛿
= 𝑊∗𝑇Φ∗ − �̂�𝑇 Φ̂ + 𝜉
= 𝑊∗𝑇Φ∗ −

(
𝑊∗ − �̃�

)𝑇 (
Φ∗ − Φ̃

)
+ 𝜉,

= 𝑊∗𝑇 Φ̃ −𝑊𝑇Φ∗ +𝑊𝑇 Φ̃ + 𝜉
= 𝑊𝑇 Φ̂ +

(
𝑊𝑇 + �̂�𝑇

)
Φ̃ + 𝜉

= �̃�𝑇 Φ̃ +𝑊𝑇 Φ̂ + �̂�𝑇 Φ̃ + 𝜉

(19)
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where𝑊 = 𝑊∗ − �̂� , and Φ̃ = Φ∗ − Φ̂.

Utilizing with the Taylor expansion of nonlinear functions, we can get that

Φ̃ = Φ𝑚𝑚 +Φ𝜎�̃� +Φ𝑟 �̃� + 𝑜(·). (20)

Substituting (20) into (19), we get

�̃� = 𝑊𝑇 Φ̃ +𝑊𝑇 Φ̂ + �̂�𝑇 Φ̃ + 𝜉
= 𝑊𝑇 Φ̃ +𝑊𝑇 Φ̂ + �̂�𝑇 (Φ𝑚𝑚 +Φ𝜎�̃� +Φ𝑟 �̃� + 𝑜(·)) + 𝜉
= 𝑊𝑇 Φ̃ + 𝜉 + �̂�𝑇𝑜(·) +𝑊𝑇 Φ̂ + �̂�𝑇Φ𝑚𝑚 + �̂�𝑇Φ𝜎�̃� + �̂�𝑇Φ𝑟 �̃�

(21)

Define Θ = 𝑊𝑇 Φ̃ + 𝜉 + �̂�𝑇𝑜(·); since ‖𝜉‖ ≤ 𝜉, it is assumed that Θ is bounded, and ‖Θ‖ ≤ ℑ,

where ℑ is a constant. Therefore,

�̃� = 𝑊𝑇 Φ̂ + �̂�𝑇Φ𝑚𝑚 + �̂�𝑇Φ𝜎�̃� + �̂�𝑇Φ𝑟 �̃� + Θ. (22)

Theorem 4.1. For the nonlinear system (6) with bounded uncertainties, if the control

law is designed in the form of

𝑢(𝑡) = 𝑔−1(𝑥(𝑡)) | − 𝑓 (𝑥(𝑡)) + 𝑥 (𝑛)𝑑 (𝑡) + 𝛼𝑇𝐸 (𝑡) − 𝛿
⌋
+ 𝑔−1(𝑥(𝑡)))̂ sgn(𝑠(𝑡)), (23)

and adaptive regulation law is adopted as



¤̂𝑊 = −𝐾𝑤𝑠𝑙�̂�
¤̂𝑚 = −𝐾𝑚Φ𝑇

𝑚�̂�𝑠
¤̂𝜎 = −𝐾𝜎Φ𝑇

𝜎�̂�𝑠
¤̂𝑟 = −𝐾𝛾Φ𝑇

𝑟 �̂�𝑠
¤̂𝔍 = 𝐾=‖𝑠‖

(24)

where 𝑙 = 1, 2 · · · 𝑛𝑅 , and ℑ̂ is the estimated value of ℑ; the robot walking system will be asymptotically stable.

Proof. By substituting the control law (30) into (7) 𝑥 (𝑛) (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡) + 𝛿(𝑥(𝑡)), one can get

𝑥 (𝑛) (𝑡) = 𝑓 (𝑥(𝑡)) − 𝑓 (𝑥(𝑡)) + 𝑥 (𝑛)𝑑 (𝑡) + 𝛼𝑇𝐸 (𝑡) − 𝛿 + 𝛿 + =̂ sgn(𝑠(𝑡))
= 𝛼𝑇𝐸 (𝑡) + ℑ̂ sgn(𝑠(𝑡)) + 𝑥 (𝑛)𝑑 (𝑡) − 𝛿 + 𝛿

(25)

that is,
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𝛼𝑇𝐸 (𝑡) + 𝛽 ¤𝐸 (𝑡) + �̂� sgn(𝑠(𝑡)) − 𝛿 + 𝛿 = 0
¤𝑠(𝑡) = −ℑ̂ sgn(𝑠(𝑡)) − (−𝛿 + 𝛿)

The Lyapunov stability theory is used to analyze the stability of the system, and the candidate Lyapunov func-
tion is selected as

𝑉𝑅 (𝑠, �̃�, �̃�, �̃�, �̃�, ℑ̃) = 1
2 𝑠
𝑇 𝑠 + 1

2𝐾𝑤
tr
(
�̃�𝑇�̃�

)
+ 1

2𝐾𝑚
�̃�𝑇 �̃� + 1

2𝐾𝜎
�̃�𝑇 �̃� + 1

2𝐾𝛾
�̃�𝑇 �̃� + 1

2𝐾ℑ
�̃�2

¤𝑉𝑅 (𝑠, �̃�, �̃�, �̃�, �̃�, ℑ̃) = 𝑠𝑇 ¤𝑠 + 1
𝐾𝑤

tr
(
𝑊𝑇 ¤̃𝑊

)
+ 1
𝐾𝑚
�̃�𝑇 ¤̃𝑚 + 1

𝐾𝜎
�̃�𝑇 ¤̃𝜎 + 1

𝐾𝛾
�̃�𝑇 ¤̃𝛾 + 1

𝐾𝔍
ℑ̃ ¤̃𝔍

𝑠𝑇 ¤𝑠 = 𝑠𝑇 (−ℑ̂ sgn(𝑠) − (−𝛿 + 𝛿))
= 𝑠𝑇

(
−�̂� sgn(𝑠) −

(
𝑊𝑇 Φ̂ + �̂�𝑇Φ𝑚𝑚 + �̂�𝑇Φ𝜎�̃� + �̂�𝑇Φ𝑟 �̃� + Θ

))
= −�̂�‖𝑠‖ − 𝑠𝑇Θ − 𝑠𝑇�̃�𝑇 Φ̂ − 𝑠𝑇�̂�𝑇Φ𝑚�̃� − 𝑠𝑇�̂�𝑇Φ𝜎�̃� − 𝑠𝑇�̂�𝑇Φ𝑟𝑟

Considering the structural characteristics of RNNs, tr
(
𝑊𝑇 ¤̃𝑊

)
=
∑𝑛𝑅
𝑙=1 𝑤

𝑇
𝑙
¤̃𝑤𝑙 , and 𝑠𝑇�̃�𝑇 Φ̂ =

∑𝑛𝑅
𝑙=1 𝑠𝑙𝑤

𝑇
𝑙 Φ̂, we

can obtain that

¤𝑉𝑅 (𝑠,𝑊, 𝑚, �̃�, �̃�, =̃) = −𝐾=‖𝑠‖ − 𝑠𝑇Θ − 𝑠𝑇𝑊𝑇 Φ̂ − 𝑠𝑇�̂�𝑇Φ𝑚𝑚 − 𝑠𝑇�̂�𝑇Φ𝜎�̃� − 𝑠𝑇�̂�𝑇Φ𝑟 �̃�

+ 1
𝐾𝑤

tr
(
�̃�𝑇 ¤̃𝑊

)
+ 1
𝐾𝑚
�̃�𝑇 ¤̃𝑚 + 1

𝐾𝜎
�̃�𝑇 ¤̃𝜎 + 1

𝐾𝛾
�̃�𝑇 ¤̃𝛾 + 1

𝐾ℑ

˜̃= ¤̃=
= −=̂‖𝑠‖ − 𝑠𝑇Θ −∑𝑛𝑅

𝑙=1 𝑠𝑙𝑤
𝑇
𝑙 Φ̂ − 𝑠𝑇�̂�𝑇Φ𝑚𝑚 − 𝑠𝑇�̂�𝑇Φ𝜎�̃� − 𝑠𝑇�̂�𝑇Φ𝑟 �̃�

+ 1
𝐾𝑤

∑𝑛𝑅
𝑙=1 𝑤

𝑇
𝑙
¤̃𝑤𝑙 + 1

𝐾𝑚
𝑚𝑇 ¤̃𝑚 + 1

𝐾𝜎
�̃�𝑇 ¤̃𝜎 + 1

𝐾𝛾
�̃�𝑇 ¤̃𝛾 + 1

𝐾𝔍

˜̃𝐽 ¤̃𝐽
= −∑𝑛𝑅

𝑙=1 𝑤
𝑇
𝑙

(
𝑠𝑙Φ̂ − 1

𝐾𝑤

¤̃𝑤𝑙
)
− 𝐾=‖𝑠‖ + 1

𝐾ℑ
=̂ ¤̃𝔍 − 𝑠𝑇Θ

+𝑚𝑇
(

1
𝐾𝑚

¤̃𝑚 −Φ𝑇
𝑚�̂�

𝑇𝑆
)
+ �̃�𝑇

(
1
𝐾𝜎

¤̃𝜎 −Φ𝑇
𝜎�̂�

𝑇 𝑠
)
+ �̃�𝑇

(
1
𝐾𝛾

¤̃𝛾 −Φ𝑇
𝛾�̂�

𝑇𝑆
)

(26)

According to the basic principle of SMC, there is 𝑠(𝑡) → 0 when 𝑡 → ∞, thus, ¤̃
�̃�𝑤 = − ¤̂̂

𝑊, ¤̃̃𝑚 = − ¤̂𝑚, ¤̃𝜎 = − ¤̂𝜎, ¤̃𝛾 =

− ¤̂𝛾, ¤̃= = − ¤̂𝔍.

Let the upper bound error be defined as ℑ̃ = ℑ − ℑ̂; on the other hand, by substituting the adaptive regulation
law (23) into (26), we can obtain that

¤𝑉𝑅 (𝑠,𝑊, 𝑚, �̃�, �̃�, =̃)
= −∑𝑛𝑅

𝑙=1 𝑤
𝑇
𝑙

(
𝑠𝑙Φ̂ − 1

𝐾𝑤
𝐾𝑤𝑠𝑙�̂�

)
− =̂‖𝑠‖ + 1

𝐾𝔖

˜̃=𝐾=‖𝑠‖ − 𝑠𝑇Θ

+𝑚𝑇
(

1
𝐾𝑚
𝐾𝑚Φ𝑇

𝑚�̂�𝑠 −Φ𝑇
𝑚�̂�

𝑇 𝑠
)
+ �̃�𝑇

(
1
𝐾𝜎
𝐾𝜎Φ𝑇

𝜎�̂�𝑠 −Φ𝑇
𝜎�̂�

𝑇 𝑠
)
+ �̃�𝑇

(
1
𝐾𝛾
𝐾𝛾Φ𝑇

𝑟 �̂�𝑠 −Φ𝑇
𝛾�̂�

𝑇 𝑠
)

= (=̃ − =̂) | 𝑠‖ − 𝑠𝑇Θ ≤ 0

(27)

Hence, from (41), it can be seen that the Lyapunov function is not increasing but bounded in its domain of defi-
nition; that is,𝑉𝑅 (0) = 𝑉 (𝑠(0),𝑊 (0), 𝑚(0), �̃�(0), �̃�(0), =̃(0)), and𝑉𝑅 (𝑡) = 𝑉 (𝑠(𝑡),𝑊 (𝑡), 𝑚(𝑡), �̃�(𝑡), �̃�(𝑡), =̃(𝑡)).

Let 𝑅(𝑡) = (‖Θ‖ − 𝔍)𝑆(𝑡). Considering 𝑠(𝑡) is bounded, there exists

𝑅(𝑡) ≤ ‖ΘΘ‖ − =)‖(𝑡)‖ ≤ − ¤𝑉𝑅 (𝑠,𝑊, 𝑚, �̃�, �̃�, =̃).∫ 𝑡
0 𝑅(𝑡)𝑑𝑡 ≤ −

∫ 𝑡
0
¤𝑉𝑅 (𝑠,𝑊, 𝑚, �̃�, �̃�, ∃̃)𝑑𝑡 = 𝑉𝑅 (0) −𝑉𝑅 (𝑡).

(28)
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Table 1. Configuration parameters of robots

Parameter Torso
length

Thigh length Calf length Trunk mass Thigh mass Calf length Thigh rotational inertia Calf
rotational inertia

Value unit 0.204 m 0.412 m 0.385 m 5.9 kg 13.2 kg 7.7 kg 0.56 𝑘𝑔𝑚2 0.28 𝑘𝑔𝑚2

Figure 4. The absolute joint angles 𝑞𝑖 vary with time.

According to the Barbarat lemma, we obtain limt→∞ 𝑅(𝑡) = 0; hence, the system can be asymptotically stable
when lim𝑡→∞ 𝑠(𝑡) = 0. This completes the proof of Theorem 1.

5. EXPERIMENTAL RESULTS AND DISCUSSION
To verify the controlmethods given in Section 3 and Section 4, simulations are implemented. The configuration
parameters of robots are shown in Table 1.

Figure 4 shows that the absolute joint angles qi vary with the time of the biped robot in the duration of walking.
It shows that the phase of each joint is reset based on the foot contact information at the beginning of each
step. The trajectories of each joint are smooth and periodic. 𝑞1 and 𝑞2 have a jump in every period, indicating
the switch between the swing leg and support leg. Figure 4 illustrates a phase diagram of the joint angle 𝑞𝑖
and joint angular velocity 𝑞𝑖 during the walking process, which are all limited circles to prove that the walking
process can achieve asymptotic stability. In Figure 5, the straight lines indicate the discrete instance of the
walking gait. It stands for the fact that the swinging leg has an impulsive action on the ground, and the joint
angular velocity 𝑞𝑖 has a sudden change at the same time.

Figure 6 shows the total energy of the system changes over time in the body and inertial frame, respectively.
Figure 7 shows the stride length. Figure 8 shows the hip position in the body and inertial frame, and its velocity
is shown in Figure 9.

Let external disturbance 𝜏𝑑 = [exp(−0.1𝑡)]6×1 be exerted on the link 2 when t = 2.5 s. This will lead to the
changes of the inertia matrix, Coriolis force matrix, and gravity matrix of the robot system, which is equivalent
to introducing the the model uncertainty. Set the error upper bound 𝛽 = 1, and the boundary layer thickness
is set as 0.01. The simulation results are shown in Figure 10 and Figure 11.

Figure 10 depicts the tracking effect of each joint. The blue solid line and the red dotted line represent the
actual position and desired position of each joint in the walking process, respectively. The simulation results
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Figure 5. Phase diagram of joint angle 𝑞𝑖 and joint angular velocity ¤𝑞𝑖 .

Figure 6. Energy plot.

show that satisfactory excessive control chattering exists due to the fault of mass change. It can be seen that the
designed adaptive sliding mode controller can meet the tracking requirement of the desired trajectory. Figure
11 describes the comparisons of system input torque. The comparisons of joint errors with time are shown
in Figure 12. It indicates that the joint error finally tends to 0, which shows that the system can converge to
the sliding surface and the robot can realize asymptotically stable walking. These figures illustrate that the
proposed adaptive SMC control system can achieve the purpose of tracking reference trajectories. Therefore,
the tracking errors of the proposed RNN hybrid control system converge more quickly than without adaptive
SMC.
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Figure 7. Stride length.

Figure 8. Hip position.

Figure 9. Hip velocity.
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Figure 10. The tracking effect of joint motion in the adaptive sliding mode control (SMC).

Figure 11. The comparisons of system input torque. (A) with adaptive sliding mode control (SMC); (B) without adaptive SMC.

6. CONCLUSIONS
The problem of external disturbance uncertainties will affect the stability during dynamic walking, which has
greatly limited the application and efficiency of robots. In this paper, the robust and efficient walking of biped
robots is investigated. The robust walking model will be optimized, which provides a theoretical basis for
flexible and stable humanoid walking. The focus is on the following aspects: (1) analyzing the mechanism of
disturbances and studying robust control strategies from the perspective of theoretical analysis; (2) transform-
ing the target of stable biped walking into the problem of stabilization of periodic orbits and through stability
analysis; (3) constructing the autonomous evolution mechanism based on hybrid robust control to realize
adaptive optimization of walking models. The verification of the proposed control method is conducted by
simulations. In future work, a more human-like walking gait will be designed to achievemore efficient walking.
The external disturbance has been considered as an unknown uncertainty, and an uncertainty observer will
be designed for efficient learning and dynamic response.
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Figure 12. The comparisons of joint errors with time. (A) with adaptive sliding mode control (SMC); (B) without adaptive SMC.
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