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Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of
immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired
resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-
programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, 
but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop 
drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of 
cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to 
comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy
resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an
adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years
highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived
alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive
resistance to anti-PD-1/PD-L1 therapy.
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INTRODUCTION
The development of immune checkpoint blockade (ICB) therapies revolutionized cancer treatment across a
variety of indications. Immune checkpoints are necessary for the controlled initiation and termination of
immune responses as well as for the maintenance of self-tolerance, which are critical in preventing
autoimmunity[1]. However, tumors leverage this checkpoint system to inappropriately dampen the immune
response and facilitate immune escape[1]. Continuous antigen stimulation drives the upregulation of
checkpoint receptors on CD8+ T cells[2], while tumor cells exploit a variety of mechanisms to upregulate
checkpoint ligands. Therefore, blocking the interaction between immune checkpoint receptors and ligands
reinvigorates CD8+ T cell function to elicit tumor cell killing. There are several ICB therapies that are
currently utilized in the clinic, but the most well-studied are anti-programmed cell death protein 1
(anti-PD-1), which is predominantly found on T cells, and anti-programmed cell death ligand 1
(anti-PD-L1), which is expressed on tumor and myeloid cells[3]. While anti-PD-1/PD-L1 treatments 
are widely used, a substantial number of patients are resistant to this type of therapy[4], prompting 
researchers to identify resistance mechanisms that drive inadequate outcomes. Response to ICB is largely 
dependent on the existing profile and infiltration of immune cells within the tumor, specifically CD8+ T 
cells, because they are the main contributors to anti-tumor effects[4]. Therefore, modulating 
the tumor-immune microenvironment (TIME) to enhance CD8+ T cell infiltration and function, in 
combination with current ICB therapies, serves as an attractive approach to increase efficacy and overcome 
resistance.

The intersection of cancer and metabolism has been at the forefront of oncology research for several
decades. Otto Warburg and his identification of the Warburg effect, wherein malignant cells exhibit a
metabolic shift from oxidative phosphorylation to glycolysis[5], ignited massive research efforts towards
uncovering the metabolic reprogramming that occurs in tumors. These efforts led to the classification of
dysregulated tumor cell metabolism as one of the hallmarks of cancer in 2022[6]. Therefore, altered
metabolism of lipids, amino acids, carbon, and nucleotides, to name a few, are highly implicated in the
development and progression of cancer[7]. More recently, this field of onco-metabolism has expanded to
include the immune system, given its role in regulating tumorigenesis. Immune cells and their subtypes
have different metabolic requirements during activation, differentiation, and expansion[8], wherein
alterations in the extrinsic metabolome at any of these stages can lead to immune cell dysfunction. The
TIME is an objectively harsh environment for many cell types due to its acidity, hypoxia, nutrient
deprivation, and accumulation of inhibitory metabolites[9]. To the advantage of the tumor, malignant and
immunosuppressive cells, such as T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs),
and macrophages, are better adapted to this oppressive environment compared to anti-tumor CD8+ T
cells[10]. These conditions, which are largely facilitated by cancer cells, heavily contribute to decreased CD8+

T cell infiltration and function.

There is mounting evidence that tumor-intrinsic metabolic reprogramming has a profound effect on the
recruitment and function of various immune cell types within the TIME. As such, it is necessary to identify
ways to specifically target malignant cell metabolism to enhance the efficacy of ICB. The scope of this review
article will aim to cover the current literature that demonstrates how tumor-derived alterations in energy,
amino acid, and lipid metabolism within the TIME mediate CD8+ T cell dysfunction and how targeting
these pathways combats resistance to anti-PD-L1/PD-1 treatment.

ENERGY METABOLISM
Energy metabolism includes a complex network of biochemical pathways that contribute to sustained 
cellular function through the production of adenosine triphosphate (ATP). Some of these processes include 
glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid b-oxidation. A shift in energy metabolism 
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towards the Warburg effect in malignant cells generates high levels of lactic acid, while consuming and 
producing ATP/adenosine diphosphate (ADP) and oxidizing and reducing nicotinamide adenine 
dinucleotide (NAD). While concurrently studying lactate, adenosine, and NAD+ in the context of energy 
metabolism is important, each individual metabolite uniquely influences the function of malignant and 
immune cells within the TIME. Therefore, this section will focus on how the altered metabolism of lactate, 
adenosine, and NAD+ by tumor cells impacts the anti-tumor immune response by CD8+ T cells and 
contributes to anti-PD-1/PD-L1 resistance.

Lactate
Lactate is predominantly formed through glycolysis, wherein lactate dehydrogenase (LDH) reduces 
pyruvate to lactic acid, which then dissociates into hydrogen (H+) and lactate ions [Figure 1]. To a lesser 
extent, glutaminolysis also drives pyruvate formation, resulting in lactic acid production[11]. Lactate and H+ 
are exported through proton-linked monocarboxylate transporters 1-4 (MCT1-4)[12], wherein export is 
highly dependent on the existing concentration of extracellular lactate[13]. Intracellular lactate levels are also 
modulated by import through MCT1[14]. Extracellular lactate facilitates intracellular signaling by binding to 
hydroxycarboxylic acid receptor 1 (HCAR1), which regulates a variety of downstream oncogenic pathways, 
such as cell proliferation, migration, and invasion[15]. Accumulation of H+ via lactic acid production 
contributes to the acidity of the TIME, which promotes an immunosuppressive milieu[16]. Conversely, 
lactate ions have both tumor-promoting and -inhibiting effects in CD8+ T cells.

T cells require adequate levels of lactic acid for proper development and function[17,18], but excess amounts in 
the TIME and intracellularly promote dysfunction. Tumor-derived lactic acid accumulation within the 
TIME inhibits T cell proliferation and cytokine production by altering redox homeostasis[19]. Specifically, 
lactic acid downregulates T cell production of both reactive oxygen species (ROS) and the antioxidant 
glutathione[19]. While excess amounts of ROS promote oxidative stress, low levels are important for T cell 
activation and signaling[20], suggesting that tumor-derived lactic acid inhibits T cell functions by ablating 
ROS formation. Additionally, overabundance of lactic acid in the TIME prevents T cell export of lactate and 
H+ ions because of the unfavorable concentration gradient, and subsequent accumulation promotes 
intracellular acidification and decreases effector function[21]. In particular, intracellular acidification in T 
cells due to tumor-derived lactic acid production prevents the expression of nuclear factor of activated T 
cells (NFAT)[22], a family of transcription factors that mediate T cell development[23]. In CD8+ T cells, 
decreased NFATC1 expression reduces IFNg production, whereas inhibiting lactate dehydrogenase A 
(LDHA) reduces intracellular acidification and restores CD8+ T cell function and tumor infiltration[22]. 
Similarly, the hypoxic nature of the TIME drives upregulation of LDHA in CD8+ tumor-infiltrating 
lymphocytes (TILs), leading to excess intracellular lactic acid, which then inhibits IFNg and granzyme B 
production[24] and T cell expansion[18]. Upon chronic antigen stimulation, CD8+ T cells will progress through 
progenitor exhausted and terminally exhausted states, with the latter resulting in dysfunction and the 
inability to elicit anti-tumor effects[25]. Therefore, there has been a significant focus on promoting the 
expansion of non-exhausted states and inhibiting the progression into terminal exhaustion to reinvigorate 
the anti-tumor response. Researchers found that treatment of CD8+ T cells with IL-21 promotes expansion 
but does not drive T cells towards an exhausted state, like IL-2[18]. Moreover, IL-2, but not IL-21, induced 
metabolic reprogramming in T cells to favor glycolysis and shunt pyruvate towards lactic acid formation[18]. 
Treatment with IL-2 and LDH inhibitor invoked a shift from glycolysis towards oxidative phosphorylation, 
and IL-2 or IL-21 treatment in combination with LDH inhibitor increased stem cell memory T cell 
formation and reduced tumor growth[18]. These data demonstrate that tumor-derived lactic acid can directly 
or indirectly inhibit T cell function and anti-tumor immune response.
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Lactate serves as a carbon source in both tumor and T cells[26-28], but like with any metabolite, 
overabundance dampens cellular functions. In T cells, increased lactate metabolism depletes NAD+ levels by 
reducing it to NADH, preventing the downstream glycolytic processes that rely on NAD+[29]. Similarly, 
reduced glycolytic flux in T cells diminishes serine production, which is critical for T cell proliferation[29]. 
Moreover, tumor-derived lactate promotes depletion of NAD+ in naïve T cells, resulting in translation 
inhibition of FIP200, which forms one subunit of the ULK kinase complex that regulates autophagy[30]. 
FIP200 is selectively lost in naïve T cells from ovarian cancer patients, wherein autophagy is suppressed, 

Figure 1. Energy metabolism pathways for lactate, adenosine, and NAD+. Pyruvate is generated predominantly through glycolysis, but 
the TCA cycle also contributes to pyruvate production via conversion from malate. LDH catalyzes the reaction to convert pyruvate to 
lactic acid, which dissociates into H+ and lactate ions that are exported and imported through MCTs. Alternatively, pyruvate can be 
converted to acetyl-CoA to participate in the TCA cycle to drive energy metabolism. In the TIME, H+ contributes to the low pH and 
lactate facilitates a variety of intracellular signaling pathways by binding to HCAR1. Extracellular adenosine is formed through both the 
canonical and non-canonical pathways. The canonical pathway utilizes CD39 to convert ATP or ADP to AMP and CD73 to convert 
AMP to adenosine. The non-canonical pathway metabolizes NAD+ to ADPR through CD38, ADPR to AMP through CD203a, and finally, 
AMP to adenosine via CD73. Extracellular adenosine binds to P1 to initiate intracellular signaling pathways or is imported through NTs. 
Note: adenosine generated by the canonical and non-canonical pathways participates in both P1 signaling and NT import. NAD+ is 
formed through the Preiss-Handler pathway, de novo synthesis, salvage pathway, and various enzymatic reactions in energy 
metabolism, such as PEP to pyruvate. The Preiss-Handler pathway imports NA and forms NAD+ through a series of enzymatic 
reactions. Do novo synthesis of NAD+ results from the metabolism of tryptophan and the salvage pathway recycles NAM to regenerate 
intracellular NAD+ levels. NAD+ serves as a co-factor for many enzymes and participates in redox reactions, such as pyruvate to lactic 
acid. Ado: Adenosine; ADP: adenosine diphosphate; ADPR: adenosine diphosphate ribose; AMP: adenosine monophosphate; ATP: 
adenosine triphosphate; GLUT: glucose transporter; G3P: glycerol-3-phosphate; H+: hydrogen; HCAR1: hydroxycarboxylic acid receptor 
1; LDH: lactate dehydrogenase; MCTs: monocarboxylate transporters; NA: nicotinic acid; NAAD: nicotinic acid adenine dinucleotide; 
NAD+: nicotinamide adenine dinucleotide; NADS: NAD+ synthetase; NAM: nicotinamide; NaMN: nicotinic acid mononucleotide; 
NAMPT: nicotinamide phosphoribosyltransferase; NAPRT: nicotinic acid phosphoribosyltransferase; NMNAT: nicotinamide 
mononucleotide adenylyltransferase; NMN: nicotinamide mononucleotide; NTs: nucleoside transporters; PARP: poly (ADP-ribose) 
polymerase; PEP: phosphoenolpyruvate; P1: type 1 purinergic receptors; TCA: tricarboxylic acid; 1,3-BPG: 1,3-Bisphosphoglycerate.
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leading to mitochondrial dysfunction and, ultimately, apoptosis[30]. Genetic ablation of FIP200 in naïve T 
cells reduced CD8+ and CD4+ T cell infiltration and IFNg production[30]. Recently, tumor-derived lactate was 
also found to diminish TCA-intermediate recycling in CD8+ T cells by inhibiting pyruvate carboxylase, 
which shunts pyruvate to oxaloacetate[31]. Pyruvate carboxylase is exceedingly important to maintain TCA 
cycle anaplerosis in CD8+ T cells because succinate is diverted from the TCA cycle to participate in 
autocrine signaling[31]. In addition to tumor-derived lactate suppressing CD8+ T cell function, it also drives 
the expansion and function of immunosuppressive cells. Tregs inhibit the function of anti-tumor immune 
cells and require lactate to maintain their suppressor functions in the harsh TIME[32,33]. Moreover, lactate 
produced by cervical cancer cells supports immunosuppressive macrophages by regulating anti-
inflammatory cytokine production and HIF1a expression[34]. Taken together, these data highlight that 
tumor-derived lactate not only directly inhibits effector T cell functions, but also indirectly through 
supporting immunosuppressive cell populations. As such, multiple reports have examined the feasibility of 
inhibiting tumor-intrinsic lactate metabolism in combination with anti-PD-1/PD-L1 therapy.

Several correlative studies through bioinformatic analyses have demonstrated that targeting lactic acid 
metabolism might overcome ICB resistance and yield better patient outcomes. High LDH expression has 
been evaluated as a selection criterion for and predicting response to ICB therapy[35-39]. Similarly, other 
lactate-related genes have been correlated with the expression of immune checkpoint proteins, CD8+ T cell 
infiltration, and resistance to ICB in breast cancer[40]. Moreover, decreased glycolytic flux in melanoma 
patients treated with anti-PD-1 therapy was associated with increased probability of progression-free 
survival[41].

In addition to bioinformatics studies, numerous reports indicate that inhibiting tumor-intrinsic lactic acid 
metabolism in combination with anti-PD-1/PD-L1 therapies combats resistance and increases efficacy. 
MCT4 is regulated at the mRNA level by the demethylase alkB homolog 5 (ALKBH5)[42]. Genetic or 
pharmacologic inhibition of ALKBH5 reduces intratumoral lactate concentration and the number of Tregs 
and MDSCs, but has no effect on the number of infiltrating cytotoxic T cells[42]. Furthermore, utilizing a 
small molecular inhibitor of ALKBH5 significantly improved the efficacy of anti-PD-1 treatment in murine 
melanoma tumors[42]. Consistent with the findings that lactic acid benefits immunosuppressive cells, 
researchers found that lactic acid produced by high-glycolytic tumors drove expression of PD-1 on Tregs, 
but not CD8+ T cells, leading to anti-PD-1 resistance[43]. However, inhibiting either LDHA in tumors or 
MCT1 in Tregs combined with anti-PD-1 therapy reversed these effects[43]. In addition to inhibiting lactic 
acid production and/or lactate import, antagonizing intracellular lactate signaling in malignant cells 
through HCAR1 also promotes anti-tumor effects[44]. Abrogating HCAR1-mediated lactate signaling 
sensitized tumors to anti-PD-1 and metformin treatment, leading to reduced tumor volume and increased 
CD8+ T cell infiltration and IFNg production[44].

While a plethora of evidence supports the notion that lactic acid production by tumors and accumulation in 
T cells drives oncogenesis, a few reports contradict this idea. In mouse melanoma tumors, blocking the 
export of lactate and H+ ions through MCT1 and MCT4 reduced the acidification of the TIME[41]. While 
blocking MCT1 and 4 in T cells decreased lactate secretion and glucose uptake, it surprisingly did not 
impair IFNg production[41], which contrasts with other findings that accumulation of intracellular lactic acid 
promotes acidification and dampens effector functions[21,22,24]. The authors found that inhibiting MCT1 and 
4 activities in T cells increased glucose flux through the TCA cycle and increased oxygen consumption, thus 
providing an explanation as to why CD8+ T cell effector functions were preserved[41]. Moreover, 
pharmacologically inhibiting MCT1 and 4 in combination with anti-PD-1 treatment resulted in increased 
efficacy and decreased tumor volume[41]. The results from these findings are indeed surprising given the 
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mounting evidence that accumulation of lactic acid within T cells dampens their function. Researchers have 
also found that lactate, when studied separately from H+ in the form of sodium lactate, induces stemness 
and tumor infiltration, and reduces apoptosis in CD8+ T cells[45]. Moreover, sodium lactate supplementation 
in three mouse tumor models showed synergistic effects with anti-PD-1 treatment[45]. A plausible 
explanation for these somewhat contradictory findings is that variations between the TIMEs of different 
tumor types metabolically reprogram CD8+ TILs in distinct ways, wherein some tumors drive increased 
sensitivity of CD8+ TILs to lactic acid. Therefore, it is exceedingly important to delineate the metabolic 
changes in CD8+ TILs from different tumor types to identify the most effective therapy.

Additional research is needed to tease apart the intricate relationship between lactate, lactic acid, tumor 
cells, CD8+ T cells, and immunosuppressive cells. Inhibiting tumor-derived lactic acid production seems to 
generally have anti-tumor effects, due to the detrimental effects of high acidity on the anti-tumor immune 
cells within the TIME. While lactate ions serve as a carbon source and promote CD8+ T cell stemness, they 
also benefit immunosuppressive cells and excess amounts can dampen T cell effector functions. Collectively, 
these data demonstrate that tumor-derived alterations in lactic acid metabolism contribute to ICB resistance 
and modulating these pathways may augment efficacy, prompting the need for continued research efforts in 
this field.

Adenosine
Adenosine is formed through two major pathways [Figure 1]. In the canonical pathway, ectonucleoside 
triphosphate diphosphohydrolase-1 (CD39) hydrolyzes ATP or ADP to adenosine monophosphate 
(AMP)[46], which is subsequently converted to adenosine by ecto-5′-nucleotidase (CD73)[47]. The non-
canonical pathway involves the conversion of NAD+ to adenosine diphosphate ribose (ADPR) through 
cyclic ADP ribose hydrolase (CD38); ADPR is then metabolized to AMP via ectonucleotide 
pyrophosphatase/phosphodiesterase 1 (CD203a), and finally to adenosine through CD73[48]. Extracellular 
adenosine has several fates; it is converted to inosine via adenosine deaminase, converted back to AMP 
through adenosine kinase, or binds to type 1 purinergic receptors, which include A1, A2A, A2B, and A3. 
Both A2A and A2B receptors (A2AR and A2BR) are important for mediating adenosine signaling in 
immune cells within the TIME[49]. High affinity A2AR is more broadly expressed on immune cells, while 
low affinity A2BR facilitates the expansion of MDSC populations[50].

Within the TIME, adenosine formation is predominantly mediated by malignant and immunosuppressive 
cells[51] and the impact of this metabolite on immunosuppression and cancer progression was recently 
comprehensively reviewed[52]. Under physiological conditions, extracellular ATP and adenosine levels are 
low[53]. However, during cellular stress, such as hypoxia and nutrient deprivation, intracellular ATP is 
released and serves as a strong pro-inflammatory mediator by recruiting immune cells[53,54]. On the other 
hand, adenosine is a potent immunosuppressive metabolite[50]. As such, it is not surprising that tumor cells 
highly upregulate CD73 and immunosuppressive cells, such as cancer-associated fibroblasts (CAFs), Tregs, 
and MDSCs, highly upregulate CD39 to facilitate adenosine accumulation within the TIME[52,55-59]. Further, 
terminally exhausted CD8+ T cells exhibit increased CD39 expression, therefore contributing to the elevated 
adenosine levels within the TIME[60], and adenosine drives the expansion of Treg populations[61].

Tumor-derived adenosine inhibits CD8+ T cell functions in a myriad of ways. Adenosine triggers IL-10 
secretion from cervical cancer cells, leading to downregulation of MHC-I expression and subsequent 
immune evasion from CD8+ T cells[62]. Increased adenosine production also favors tumor growth, as 
indicated by the negative correlation between CD73 expression and survival in pancreatic adenocarcinoma 
human cohorts[63]. Moreover, loss of CD73 in pancreatic ductal adenocarcinoma cell lines leads to increased 
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activation and IFNg production in CD8+ T cells[63], highlighting the inverse relationship between adenosine 
and CD8+ T cell function. Adenosine production within the TIME is also regulated by cancer exosomes, 
which are endosomal-derived extracellular vesicles[64,65]. Specifically, cancer exosomes were found to express 
CD39 and CD73, leading to inhibition of T cell activation and proliferation in human neuroblastoma 
samples[66] and bladder, colorectal, prostate, and breast cancer cell lines[67]. Accumulation of adenosine 
within the TIME also severely hinders tumor infiltration by CD8+ T cells due to adenosine-mediated 
dysfunction of KCa3.1 channels[68,69]. KCa3.1 is a potassium channel that regulates Ca2+ influx, which affects 
T cell gene expression, activation, and differentiation[70]. Inhibition of KCa3.1 by adenosine reduced T cell 
migration and cytokine production[69], and decreased KCa3.1 channel activity, but not protein expression, 
resulting in decreased tumor infiltration[68]. Building on this, the same group later found that anti-PD-1 
therapy increased the activity of ion channels KCa3.1 and Kv1.3, leading to enhanced CD8+ T cell 
infiltration in head and neck squamous cell carcinoma (HNSCC) patient samples[71]. While not the focus of 
this section, it is important to mention that Treg-derived adenosine also drives CD8+ T cell 
dysfunction[56,57,72,73]. On the other hand, increased IL-7 signaling in CD8+ T cells inhibits FoXO1 activation, 
which is a transcription factor that controls T cell proliferation, to overcome the suppressive effects of the 
adenosine-rich TIME and promote tumor infiltration and expansion[74]. Leveraging these mechanisms 
might be a viable therapeutic strategy to be used in conjunction with current ICB therapies to overcome 
resistance.

Adenosine within the TIME engages with the A2A receptor (A2AR) on CD8+ T cells to drive adenosinergic 
signaling that results in impaired anti-tumor effects[75]. Early studies found that A2AR signaling inhibited T 
cell activation and proliferation[76], and in the context of cancer, many studies have shown that A2AR 
signaling promotes immune evasion and T cell dysfunction. In mouse melanoma and fibrosarcoma models, 
pharmacological inhibition or genetic deficiency of A2AR increases CD8+ T cell tumor infiltration and IFNg 
production, and reduces tumor growth[77,78]. Moreover, targeted knockdown or antagonizing A2AR 
increases CD8+ T cell infiltration[79] and decreases Treg infiltration and tumor volume in mouse models of 
HNSCC[80]. Similarly, administering A2AR agonists during T cell activation impaired cytotoxic function, 
although proliferative capacity was maintained, and these effects persisted after A2AR agonists were 
removed[81]. These data demonstrate that even if CD8+ T cells infiltrate the adenosine-rich TIME, 
adenosinergic signaling reduces their effector functions and renders them incapable of eliminating tumor 
cells. However, one study showed that complete abrogation of the A2AR gene in CD8+ T cells inhibited 
expansion and effector functions[75]. In this way, it is important to preserve some degree of A2AR signaling 
in CD8+ T cells to maintain proper cell function, highlighting that complete deletion of immunosuppressive 
targets might not produce the most efficacious results.

The studies thus far have demonstrated that tumor-intrinsic adenosine metabolism adversely affects CD8+ T 
cell function; therefore, it is not surprising that these metabolic alterations also contribute to anti-PD-1/
PD-L1 resistance. To date, there are many drugs in the pre-clinical and clinical stages that target CD39, 
CD73, and A2AR, either alone or in combination with anti-PD-1/PD-L1 therapies[82]. Because it is not 
feasible to cover all these data, we have chosen to focus on the relevant articles from 2020 until now to 
demonstrate that modulating adenosine metabolism helps overcome resistance to ICB therapies. Using 
bioinformatics approaches, researchers showed that adenosine signaling gene signatures are inversely 
correlated with survival and efficacy of anti-PD-1 treatment across multiple cancer indications[83]. The first-
in-human study using an A2AR antagonist with anti-PD-L1 treatment improved the probability of 
progression-free survival and overall survival, and monotherapy or combination with anti-PD-L1 increased 
CD8+ T cell infiltration[84]. However, current A2AR antagonists do not perform well in the adenosine-rich 
TIME, so multiple groups have developed novel A2AR antagonists to increase effectiveness[85,86]. Both 
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compounds have shown limited toxicity in Phase I clinical trials[85,86], with iTeos Therapeutics’ compound 
demonstrating initial signs of clinical benefit[86]. Dizal Pharmaceuticals’ compound was also evaluated in 
murine models of prostate cancer, where treatment with the novel antagonist and anti-PD-1 significantly 
reduced tumor volume compared to monotherapy[85].

There are several pre-clinical and clinical studies that demonstrate promising results for targeting CD39 or 
CD73 in combination with anti-PD-1 or PD-L1. Cancer exosomes expressing CD39 and CD73 drive 
adenosine accumulation and were also found to promote CD39 expression on macrophages[87]. 
Macrophage-derived CD39 cooperates with tumor-derived CD73 to increase adenosine levels in the TIME, 
which drives anti-PD-1 resistance[87]. Targeting CD39 on macrophages in combination with anti-PD-1 
therapy abrogated therapeutic resistance and synergistically reduced the volume of murine hepatocellular 
carcinoma tumors and increased CD8+ T cell infiltration and granzyme B production[87]. Moreover, a first-
in-human Phase I clinical trial was conducted in 2020 to assess the efficacy of an anti-CD39 antibody 
(IPH5201) in combination with anti-PD-L1 treatment[88], and the first patient for the Phase II study was 
dosed in June 2023[89]. A poster presentation at the European Society for Medical Oncology Immuno-
Oncology Summit in 2022 showed pre-clinical data for IPH5201, wherein treatment alone reduced 
adenosine levels in the TIME of mouse fibrosarcoma tumors[90]. The data also demonstrated that combining 
anti-CD39, the chemotherapeutic agent gemcitabine, and anti-PD-L1 controlled tumor growth and 
increased survival better than monotherapy or anti-PD-L1 with gemcitabine in murine colorectal carcinoma 
tumors[90]. In a clinical study of 44 patients, researchers found no major toxicities when combining an anti-
CD39 monoclonal antibody with anti-PD-1 and the chemotherapy regimen FOLFOX for the treatment of 
gastric cancer or gastroesophageal junction adenocarcinoma[91]. These data are critical first steps in the 
approval and use of anti-CD39 therapies in combination with anti-PD-1/PD-L1 treatment. The results from 
a first-in-human Phase I clinical trial with anti-CD73 and anti-PD-L1 recently reported tolerable safety and 
moderate efficacy[92]. Further, targeting CD73 has also recently been shown to be a promising therapeutic 
strategy, wherein Phase II clinical trials combining anti-CD73 with anti-PD-L1 elicit increased response rate 
and progression-free survival compared to anti-PD-L1 monotherapy in patients with non-small cell lung 
cancer[93]. One thing to consider when targeting CD39 or CD73 is that anti-CD39 treatments not only 
inhibit adenosine production, but also promote accumulation of immunostimulatory ATP.

In addition to more conventional treatment methods, several unique approaches for inhibiting adenosine 
metabolism and PD-1 have recently been discovered. Because of the ubiquitous expression of A2AR on T 
cells, localizing inhibition of A2AR signaling to tumor-infiltrating CD8+ T cells would likely mitigate off-
target effects. In this approach, researchers increased tumor oxygenation to relieve the hypoxic conditions 
that promote tumor-derived adenosine production[94]. Using a photo-modulated nanoreactor, hydrogen 
peroxide is converted to oxygen within the TIME, leading to decreased adenosine production and abrogated 
A2AR signaling in CD8+ T cells[94]. Moreover, combination with anti-PD-1 therapy synergistically reduced 
tumor growth and increased CD8+ T cell infiltration in triple-negative murine breast cancer tumors[94]. In 
another tumor-targeting approach, researchers utilized cancer-derived exosomes packaged with both a 
CD39 antagonist and AMPK agonist to inhibit adenosine and promote ATP production, respectively[95]. 
This method increased CD8+ T cell infiltration and production of granzyme B and IFNg, reduced 
intratumoral adenosine and Treg populations, and synergized with anti-PD-1 treatment in mouse 
melanoma models[95]. The final targeted approach used ROS-producing nanoparticles to deliver a CD39 
inhibitor[96]. Inducing ROS accumulation in the TIME seems counterintuitive, but like hypoxia, ROS trigger 
the release of ATP. Therefore, ROS would increase ATP concentration and inhibiting CD39 would prevent 
adenosine formation, thus remodeling the TIME away from an immunosuppressive state[96]. This method 
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elicited a more robust anti-tumor effect in murine mammary carcinoma tumors[96].

Collectively, these data strongly demonstrate that tumor-derived adenosine has detrimental effects on CD8+ 
T cell infiltration and effector functions, thereby contributing to anti-PD-1/PD-L1 resistance mechanisms. 
As such, there is a compelling need for the continued development of adenosine-targeting drugs that can 
synergize with current anti-PD-1/PD-L1 therapies to prevent resistance and evoke better patient response.

NAD+

NAD+ is comprised of adenosine monophosphate linked to nicotinamide mononucleotide. NAD+ can be 
reduced to form NADH or phosphorylated and subsequently reduced to form NADP+ or NADPH, 
respectively. NAD+ is synthesized through three pathways: de novo biosynthesis, Preiss-Handler pathway, 
or the salvage pathway, the latter of which is the predominant way that cells restore NAD+ levels[97] 
[Figure 1]. NAD+ is a co-factor that is involved in a variety of redox and non-redox reactions. In energy 
metabolism, NAD+ and its derivatives are indispensable for cellular function because they accept and donate 
electrons in a variety of metabolic pathways, such as glycolysis, pentose phosphate pathway, TCA cycle, and 
fatty acid b-oxidation[98]. NAD+ also acts as a substrate for multiple enzyme families, including sirtuins, 
PARPs, and ADP-ribosyl cyclases[97]. Moreover, the metabolic pathways of adenosine and NAD+ are tightly 
linked through CD38, an ectoenzyme present on the surface of tumor and immune cells, which depletes 
NAD+ levels, which ultimately results in adenosine formation[99].

High NAD+ levels are required in malignant cells to meet their increased energetic demands for rapid 
growth and proliferation. Therefore, malignant cells will upregulate NAD+ biosynthesis to replenish 
intracellular stores, leading to depletion of this metabolite within the TIME. Several enzymes involved in 
anabolic NAD+ pathways, such as nicotinamide phosphoribosyltransferase (NAMPT), have been heavily 
implicated in cancer progression and severity[100]. Moreover, drugs targeting these enzymes have shown 
promising results in pre-clinical and clinical studies[101]. Targeting tumor-intrinsic NAD+ metabolism is a 
promising therapeutic approach because it would restore NAD+ levels in the TIME, thus allowing T cells to 
utilize this metabolite to maintain proper function.

NAD+ is highly important for anti-tumor immune functions and NAMPT is an important regulator of 
NAD+ availability. As previously mentioned, NAD+ and adenosine metabolism are highly linked due to the 
ability of NAD+ to be converted to adenosine. Inhibiting NAMPT in tumor cells reduces levels of 
intracellular NAD+ and extracellular adenosine, thereby enhancing CD8+ T cell functions[102]. Further, 
NAMPT expression in CD8+ T cells is necessary to produce NAD+ and induce anti-tumor effects[103]. In 
tumor-infiltrating lymphocytes (TILs), NAMPT and NAD+ levels are lower compared to peripheral T 
cells[103], suggesting that the TIME induces NAD+ depletion in TILs, leading to impaired function. 
Mechanistically, NAD+ deficiency in TILs drives mitochondrial dysfunction and reduces ATP production, 
whereas supplementation with nicotinamide (NAM), the substrate of NAMPT, reverses these effects to 
promote a strong anti-tumor immune response in vivo[103]. Interestingly, TCR stimulation in CD8+ T cells 
leads to a 16-fold upregulation of NAMPT, compared to 1.3-fold upregulation in Tregs[104]. This suggests 
that CD8+ T cells rely more heavily on NAMPT expression and NAD+ levels compared to Tregs, giving these 
immunosuppressive cells an advantage in the NAD+-depleted TIME. Consistently, Tregs are particularly 
sensitive to NAD+-induced cell death[105], and systemic NAD+ treatment preferentially depleted Tregs, 
leading to decreased tumor volume[106]. To date, there are several pre-clinical and clinical studies 
investigating the use of NAMPT inhibitors in both solid and hematologic malignancies[107]. However, 
systemic inhibition of NAMPT might have profound adverse effects on CD8+ T cell function, decreasing the 
drugs’ efficacy. Perhaps these types of drugs are more effective in cancers that do not have high T cell 

alone decreased tumor volume and increased CD8  T cell production of IFNg and, together with anti-PD-1, +

infiltration but overexpress NAMPT.
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In immune cells, CD38 is inversely correlated with NAD+ levels because it degrades NAD+ to NAM and 
ADP-ribose[108,109]. These derivates of NAD+ are important secondary messengers that regulate intracellular 
calcium levels and storage, which in turn mediates T cell differentiation and activation[109]. CD38 expression 
is a marker of T cell exhaustion that contributes to adverse epigenetic modifications in CD8+ TILs[110]. 
Further, high expression of CD38, PD-1, and CD101 correlates with the inability of CD8+ T cells to undergo 
epigenetic reprogramming to reverse the exhausted state[110]. Conversely, inhibiting CD38 expression in 
Tregs and B-regulatory cells induced cell death, but drove proliferation of cytotoxic T cells, likely due to 
depletion of the immunosuppressive populations[111]. Consistently, mice deficient in CD38 expression 
exhibited lower Treg numbers as a result of increased NAD+ levels[106]. CD38 expression on tumor cells has 
also been implicated in a variety of solid and hematologic malignancies[112-116]. Increased CD38 expression on 
malignant cells results in acquired resistance to anti-PD-1/PD-L1 therapy by driving CD8+ T cells towards 
an exhausted state[114]. Moreover, CD8+ T cell function was found to be inhibited by CD38-mediated 
adenosine production, and anti-PD-L1 and CD38 combination therapy synergistically inhibited the growth 
of murine lung adenocarcinoma tumors[114]. Currently, there are two approved anti-CD38 monoclonal 
antibody treatments (Daratumumab and Isatuximab) and one in clinical trials (MOR202) to treat multiple 
myeloma; however, these drugs do not inhibit the ectoenzymatic activity of CD38, rather they induce 
antibody-dependent cell-mediated cytotoxicity[117-119]. There are several drugs in pre-clinical stages that 
target the ectoenzymatic activity of CD38 to increase NAD+ levels for different diseases[120-122]. While these 
drugs are not yet being evaluated in the oncologic space, it would be advantageous because inhibiting CD38 
is both beneficial for T cells and detrimental for malignant and immunosuppressive cells, thus eliminating 
the need for cell-specific drugs.

Taken together, these data demonstrate an important role for lactate, adenosine, and NAD+ in regulating 
immune cell function and ultimately controlling cancer development and progression. Further, pre-clinical 
studies show promising results that combining these treatments with existing ICB therapies can remodel the 
TIME to boost the anti-tumor immune response. Thus, continued pre-clinical and clinical efforts are 
needed to determine whether resistance to anti-PD-1/PD-L1 therapy is ablated when combined with 
approved anti-CD39/CD73/A2AR/CD38 treatments.

AMINO ACID METABOLISM
Amino acid metabolism is widely implicated in oncogenesis due to the necessity of amino acids in protein 
synthesis, epigenetic modifications, and fueling energetic processes. Of the 20 amino acids, only a handful 
are well-studied in the context of immuno-oncology metabolism and resistance to ICB. Because tryptophan 
is thoroughly researched in this space and was recently comprehensively reviewed[123], we wanted to focus 
on amino acids that are sometimes overlooked but still immensely important in regulating cancer 
development and progression. As such, this section will discuss how tumor-derived alterations in arginine, 
glutamine, and methionine metabolism contribute to anti-tumor immunity and how modifying the 
metabolism of these amino acids helps diminish resistance to anti-PD-1/PD-L1 therapy.

Arginine
Arginine is considered a non-essential amino acid in normal cells because it can be imported or synthesized 
through citrulline metabolism in the urea cycle[124] [Figure 2]. Conversely, arginine is also catabolized 
through the urea cycle to form urea and ornithine through arginase (ARG) enzymes[124]. Extracellular 
arginine also participates in the activation of intracellular signaling pathways by binding to G protein-
coupled receptor family C group 6 member A (GPRC6A)[125]. While arginine itself is important for many 
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cellular processes, it is also a precursor for the synthesis of polyamines, which are organic compounds that 
facilitate cell proliferation and are upregulated in a variety of cancers[126-128]. Similarly, nitric oxide synthase 
(NOS) metabolizes arginine to nitric oxide (NO), which promotes angiogenesis and metastasis, and 
dampens the immune response[129].

In malignant cells, arginine helps sustain tumor-promoting functions, and arginine starvation results in 
detrimental effects, such as ROS formation, mitochondrial dysfunction, and cell death[130-135]. Despite this, 
metabolic rewiring of the urea cycle in tumor cells results in increased ornithine and proline synthesis and 
decreased arginine synthesis[131]. Moreover, many cancer types have decreased expression of arginosuccinate 
synthase 1 (ASS1), which catalyzes the penultimate step in arginine synthesis[130]. As such, arginine is 
considered an essential amino acid in malignant cells, and they must rely on exogenous uptake to sustain 
their metabolic demands[130-132]. On the other hand, T cells are completely reliant on exogenous arginine 

Figure 2. Metabolic pathways of arginine, glutamine, and methionine. Extracellular arginine binds to GPRC6A to drive intracellular 
arginine signaling or it is imported through various SLC transporters depending on the cell type. Arginine can also be formed through 
metabolism of citrulline in the urea cycle. Once inside the cell, arginine is catabolized through NOS to form NO or ARG into urea and 
ornithine, the latter of which is converted back into citrulline to fuel the urea cycle. Glutamine is similarly imported through a variety of 
SLCs, with SLC1A5 being the predominant transporter on T cells. Intracellular glutamine is used for amino acid/protein synthesis or 
transported to the mitochondria and converted to glutamate via GLS. In the mitochondria, glutamate is converted to a-Ketoglutarate to 
fuel the TCA cycle. In the cytosol, glutamate combines with cysteine to form glutathione to combat oxidative stress. Cysteine is 
generated in part through metabolism of homocysteine in the methionine cycle, which generates methionine for various cellular 
processes. Methionine is generated by re-methylation of homocysteine through donation of CH3 by methyl- THF in the folate cycle. 
Methionine is then converted to SAM, an indispensable methyl donor, and subsequently SAH following loss of the methyl group. SAM 
is also involved in the methionine salvage pathway that restores intracellular methionine levels. AHCY: Adenosylhomocysteinase; ARG: 
arginase; ASL: argininosuccinate lyase; ASS1: argininosuccinate synthase 1; CH3: a methyl group; GLS: glutaminase; GPRC6A: G protein-
coupled receptor family C group 6 member A; MAT2A: methionine adenosyltransferase 2A; MS: methionine synthase; MTA: 5′-
methylthioadenosine; MTs: methyltransferases; NO: nitric oxide; NOS: nitric oxide synthase; OCT: ornithine transcarbamoylase; SAH: 
S-adenosyl-L-homocysteine; SAM: S-adenosylmethionine; SLC: solute carrier; TCA: tricarboxylic acid; THF: tetrahydrofolate.
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because they do not express ASS1[136,137], meaning they must compete with tumor cells and 
immunosuppressive cells for arginine.

T cell function is highly disrupted by arginine depletion within the TIME, which is mediated by both 
malignant cells[138-141] and immunosuppressive cells[142-147]. In T cells, arginine is important in regulating CD3z 
expression, which is necessary for proper antigen recognition by the TCR-CD3 complex[148-151]. For example, 
ARG2-dependent depletion of arginine by murine renal cell carcinoma cells leads to decreased expression of 
CD3z in T cells[139]. Sufficient arginine levels are also necessary during T cell activation because arginine is 
quickly metabolized to fuel downstream processes[152]. Moreover, decreased systemic arginine levels in Lewis 
lung carcinoma[150] and arginine depletion via ARG1 from cancer-derived exosomes in ovarian 
carcinoma[153] inhibit antigen-specific proliferation of CD8+ TILs. Arginine depletion also impairs the 
effector function of CD8+ T cells by preventing the secretion of IFNg and granzyme B[154,155]. On the other 
hand, arginine supplementation in CD8+ T cells induces metabolic rewiring from glycolysis towards 
oxidative phosphorylation to promote proliferation, survival, and anti-tumor responses[152].

Several promising pre-clinical studies have demonstrated that targeting arginine metabolism in 
combination with anti-PD-1/PD-L1 treatment increases efficacy in overcoming resistance. Employing 
anti-PD-1 treatment in combination with vaccine inhibition of ARG1 synergistically impaired tumor 
growth and led to increased CD8+ T cell infiltration in mouse models of colorectal carcinoma and 
fibrosarcoma[156]. Further, systemic arginine supplementation with anti-PD-1 or PD-L1 treatment increased 
CD8+ T cell infiltration and exhibited more efficacious results than monotherapy in mouse models of colon 
carcinoma[157] and osteosarcoma[158]. Utilizing a unique approach, researchers engineered an E. coli strain 
that localizes to the TIME and converts ammonia to arginine[159]. This innovative method promoted 
continuous arginine supplementation in murine colorectal carcinoma tumors, leading to increased CD8+ T 
cell infiltration and synergistic anti-tumor effects when combined with anti-PD-L1 treatment[159]. Extensive 
pre-clinical studies for a novel ARG1/2 inhibitor (OATD-02) have shown promising results alone and in 
combination with both anti-PD-1 and -PD-L1, and researchers are hopeful this drug will enter first-in-
human clinical trials soon[150,160-162]. Moreover, the ARG1 inhibitor CB-1158 entered first-in-human clinical 
trials in 2017 and was evaluated with anti-PD-1 treatment[163-165]. The results indicate that CB-1158 
monotherapy and combination with anti-PD-1 are well-tolerated and elicit a response in solid tumors[163-165].

A considerable amount of evidence demonstrates that tumor-mediated depletion of arginine negatively 
impacts CD8+ T cell function and the anti-tumor response. Additionally, the enhanced anti-tumor effects 
seen by combining anti-PD-1/PD-L1 with ARG inhibitors or arginine supplementation demonstrate that 
altering tumor metabolism could have profound effects on the efficacy of ICB. However, continued pre-
clinical and clinical efforts are necessary to identify additional ways to target tumor-derived arginine 
metabolism and reinvigorate the anti-tumor immune response to improve ICB.

Glutamine
Glutamine has many essential functions, such as supporting the formation of nucleotides and non-essential 
amino acids, protein synthesis, energy metabolism, and maintaining intracellular redox states[166]. Import of 
glutamine is facilitated by many transporters, predominantly SLC1A5[136,167] [Figure 2]. Once inside the cell, 
glutamine is transported to the mitochondria to be converted to glutamate via glutaminase enzymes[166]. In 
the cytosol, glutamate serves as a precursor for glutathione synthesis, which is a strong antioxidant[166]. The 
metabolism of glutamine also drives the formation of NADPH, which is critical for restoring the 
intracellular redox balance by reducing oxidized glutathione[168]. In the mitochondria, glutamate is converted 
to a-Ketoglutarate to drive the TCA cycle[166].
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Many cancers exhibit a dependence on or addiction to glutamine. As such, increased glutaminolysis is 
highly important for ATP production, redox homeostasis, and activation of various oncogenic signaling 
pathways in tumor cells[168-170]. Glutamine fuels KRAS signaling in pancreatic adenocarcinoma[168], mTORC1 
signaling in osteosarcoma and cervical cancer cells[170], and promotes lipid biogenesis under hypoxic 
conditions to provide additional energy sources[171]. Hypoxia also drives the mitochondrial import of 
glutamine to support ATP and glutathione production to combat oxidative stress and promote uncontrolled 
cell growth[172]. Interestingly, data suggest that some cancers will adapt to the glutamine-deprived TIME and 
will cease to rely on glutamine. In patient-derived melanoma tumors, for example, excess dietary glutamine 
inhibits cell growth[173].

T cells require glutamine for a variety of functions during differentiation and development[174]; thus, there is 
stiff competition between tumor cells and T cells for glutamine consumption. Ligation of CD3 and CD28 on 
T cells induces glutamine uptake via ERK and calcineurin pathways to sustain T cell activation, 
proliferation, and cytokine production[175,176]. Interestingly, glutamine is also required for glucose uptake and 
glycolysis in activated CD8+ T cells, and proper effector functions were dependent on both glucose and 
glutamine[177]. As such, increasing glutamine availability for T cells, while depriving tumor cells and 
immunosuppressive cells, has strong anti-tumor effects. For example, selectively inhibiting glutamine 
uptake in triple-negative breast cancer cells increased CD8+ T cell activation and effector function by 
promoting glutathione production[178]. On the other hand, non-specific intracellular depletion of glutamine 
leads to impaired mitochondrial function and CD8+ T cell apoptosis[179], likely due to increased oxidative 
damage from reduced glutathione production. Data also suggest the temporal importance of glutamine 
availability in driving T cell function. During TCR stimulation, glutamine deprivation decreases PD-1 and 
increases Ki67 expression[180], suggesting that glutamine abundance needs to be tightly regulated at various 
stages of T cell development to ensure proper functionality. As discussed in previous sections, 
immunosuppressive cells largely thrive in the nutrient-deprived TIME. Specifically, tumor-associated 
macrophages respond to low glutamine levels by secreting IL-23 to promote Treg proliferation and 
activation, resulting in diminished CD8+ T cell function[181].

Several reports have demonstrated that inhibiting tumor-associated glutamine metabolism in combination 
with anti-PD-1/PD-L1 therapies may be a promising approach to restore CD8+ T cell function and 
overcome resistance. Because glutamine deprivation promotes T cell dysfunction, specifically inhibiting 
glutamine metabolism in tumor cells would yield the most efficacious results. Two separate groups found 
that glutamine deprivation in cell lines of human clear cell renal carcinoma[182], human non-small cell lung 
carcinoma[183], and mouse colorectal carcinoma[183] induced PD-L1 expression, which would theoretically 
boost anti-PD-L1 response. Byun et al. found that anti-PD-L1 monotherapy had almost no effect on tumor 
volume in murine colorectal carcinoma models[183]. However, tumor-specific inhibition of glutamine uptake 
and glutaminase activity in combination with anti-PD-L1 therapy strongly induced CD8+ T cell 
proliferation and granzyme B production, while abating tumor growth[183]. Similarly, another group targeted 
tumor-derived glutamine enzymes by creating a prodrug that is only activated by TIME-restricted enzymes 
to limit the cytotoxic effects of systemic glutamine antagonism[184]. This treatment method decreased 
glycolysis in malignant cells, decreased hypoxia, acidosis, and nutrient depletion within the TIME, and 
increased activation of and oxidative phosphorylation in CD8+ T cells[184]. In combination with anti-PD-1 
therapy, tumor-specific glutamine antagonism synergistically reduced tumor growth and increased survival 
in murine colorectal carcinoma tumors[184]. Conversely, employing a non-tumor cell specific glutaminase 
inhibitor does not yield the same efficacious results. Serine/threonine kinase 11 (STK11) phosphorylates 
AMPK to regulate a variety of downstream pathways, such as cell growth and proliferation, lipid 
metabolism, and PD-L1 expression[185]. Several studies have shown that STK11 mutations, resulting in loss 
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of function, are associated with resistance to anti-PD-1 treatment[186-188]. Building on this, one group found 
that STK11-mutated lung adenocarcinomas from both patient samples and cancer cell lines exhibited 
increased glutamate production, so they hypothesized that targeting glutaminase would be a viable way to 
overcome resistance to anti-PD-1 treatment[189]. However, they found that using a non-tumor cell-specific 
glutaminase inhibitor in combination with anti-PD-1 severely impeded CD8+ T cell clonal expansion and 
anti-tumor functions, and anti-PD-1 efficacy was dependent on intact CD8+ T cell glutaminase activity[189].

These data demonstrate a promising future for targeting glutamine metabolism to bolster CD8+ T cell 
effector function and combat ICB resistance. However, it also highlights the importance of finding ways to 
specifically target malignant cells due to the highly conserved nature of these metabolic pathways.

Methionine
Methionine is an essential amino acid that is involved in a variety of metabolic pathways, such as 
methylation reactions, homocysteine synthesis, and the folate pathway [Figure 2]. This metabolite also 
cooperates with arginine and glutamine to promote polyamine and glutathione synthesis, respectively[190]. In 
the methionine pathway, methionine is converted to S-adenosyl methionine (SAM), which is critical for the 
methylation of histones, DNA, RNA, proteins, and various metabolites[191]. The loss of a methyl group 
converts SAM to S-adenosyl homocysteine (SAH), and subsequently homocysteine, which is ultimately 
metabolized to glutathione[192]. Methionine regeneration is supported by the metabolism of SAM through 
the salvage pathway[192] and through the re-methylation of homocysteine via intermediates in the folate 
pathway[193].

The role of methionine in malignant transformation and growth is not as well-studied as other metabolites, 
but its wide consumption in cancer cells suggests its importance[194,195]. In tumor-initiating cells, exogenous 
methionine is consumed at extreme rates, leading to pro-tumorigenic epigenetic modifications through 
methionine adenosyltransferase 2A (MAT2A), which metabolizes methionine to SAM to promote histone 
methylation[196]. In the presence of methionine, malignant cells activate c-MYC, leading to increased 
MAT2A activity and tumorigenic genome modifications[197]. On the other hand, tumor overexpression of 
nicotinamide N-methyltransferase (NNMT), which converts SAM to NAD+ and 1-Methylnicotinamide, 
leads to increased NAD+ levels, hypomethylation, and tumor progression[198], highlighting that altered 
methionine metabolism can drive oncogenesis in multiple ways.

In T cells, proper metabolic regulation of methionine and its derivatives is necessary for epigenetic 
reprogramming during activation and differentiation[199], as evidenced by increased expression of 
methionine transporters during antigen recognition[175]. However, dysregulated methionine metabolism by 
tumor cells alters the abundance of SAM and 5-methylthioadenosine (MTA)[200], both of which drive the 
methionine salvage pathway[201]. Increased abundance of SAM and MTA within the TIME are associated 
with T cell exhaustion and expression of inhibitory checkpoint markers[200]. These two metabolites decrease 
chromatin accessibility in CD8+ T cells for genes involved in TCR signaling, lymphocyte proliferation and 
differentiation, and increase the accessibility of PD-1[200]. Together, these data indicate that tumor-derived 
alterations in methionine metabolism have a substantial impact on the anti-tumor immune functions of 
CD8+ T cells, but much remains to be discovered.

Despite the limited studies in this field, two recent reports demonstrate that restricting tumor methionine 
increases CD8+ T cell effector functions and overcomes resistance to anti-PD-1/PD-L1 treatment. The first 
study shows that dietary restriction of methionine reduces SAM levels in murine colorectal carcinoma 
tumors[202]. Mechanistically, SAM controls the expression of immune inhibitory markers PD-L1 and VISTA 
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through m6A methylation, whereby the RNA-binding protein YTHDF1 enhances the translation efficiency 
of RNA containing m6A methylation[202]. While anti-PD-1 treatment alone in mouse colorectal carcinoma 
tumors did not significantly alter tumor volume or CD8+ T cell infiltration, depletion of YTHDF1 or 
restricting methionine in the diet synergized with anti-PD-1 treatment to significantly increase survival 
probability and CD8+ T cell infiltration, while decreasing tumor volume[202]. Similarly, the second study 
found that methionine-dependent histone methylation regulates CD8+ T cell anti-tumor activities. 
Methionine deprivation in CD8+ T cells resulted in reduced H3K79me2 methylation and subsequent STAT5 
expression[203], which is a critical transcription factor that maintains CD8+ T cell effector functions[204]. In 
vitro, methionine supplementation increased CD8+ T cell survival and IFNg and TNFa production, while 
inhibiting murine melanoma tumor growth[203]. The authors also found that SLC43A2 and SLC7A5 import 
methionine in malignant cells, but T cells are predominantly dependent on SLC7A5[203]. As such, genetic 
ablation of SLC43A2 in mouse melanoma cells restored CD8+ T cell polyfunctionality and survival in vitro, 
and decreased tumor growth in vivo[203]. While anti-PD-1 treatment or pharmacological inhibition of 
SLC43A2 alone did not elicit significant anti-tumor effects, combination treatment synergistically increased 
CD8+ T cell function and infiltration, and decreased growth of mouse melanoma and ovarian tumors[203]. 
These data demonstrate that resistance to anti-PD-1 treatment can be negated by restricting methionine 
availability and metabolism in tumors.

Taken together, the studies in this section have undoubtedly established that targeting amino acid 
metabolism is an efficacious way to improve the response to anti-PD-1/PD-L1 treatment. Targeting these 
metabolic pathways proves to be challenging because, unlike the immunosuppressive metabolites that have 
been discussed, amino acids are beneficial for both T cells and tumor cells. Therefore, therapeutic strategies 
have to promote amino acid supplementation in T cells but restriction in tumor cells, which is no easy feat. 
Despite these challenges, researchers have made great strides in pre-clinical settings towards identifying 
how to alter amino acid metabolism in a way that impedes ICB resistance.

LIPID METABOLISM
The TIME is enriched with various lipid classes[205-207], which is in contrast to other metabolites that are 
predominantly depleted. Lipids are ubiquitously important for structural support, energy supply, and 
signaling, making them essential for the malignant properties of tumors and for the proper function of anti-
tumor immune cells. Specifically, cholesterol is indispensable for cell membrane integrity and facilitating 
cell-to-cell and intracellular signaling, while fatty acids (FAs) are the most abundant lipid intermediate, so 
they are more readily detectable and their role in cancer biology is better understood. Therefore, this section 
will highlight how tumor-mediated cholesterol and FA dysregulation within the TIME affects CD8+ T cell 
function and anti-PD-1/PD-L1 resistance.

Cholesterol
Cholesterol serves as an important component in cellular membranes and regulates membrane fluidity and 
cell signaling through the formation of lipid rafts[208] [Figure 3]. Moreover, cholesterol is a precursor for 
steroid hormones, bile acids, and vitamin D[208]. Intracellular cholesterol levels are maintained through 
biosynthesis via the mevalonate pathway, which converts acetyl-CoA to cholesterol through a series of 
enzymatic reactions. Additionally, cholesterol is imported as low-density lipoproteins, which are small lipid-
enclosed particles that facilitate the systemic transport and cellular import of cholesterol[209]. On the other 
hand, cholesterol is exported through ATP-binding cassette transporters[210]. Excess intracellular free 
cholesterol is converted to cholesteryl esters and stored in lipid droplets, which promote oncogenic 
signaling and cancer growth[211].
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Malignant cells utilize excess cholesterol to sustain their rapid growth and proliferation[212-214] and elevated 
intracellular cholesterol levels are maintained by increasing import and synthesis and decreasing 
export[215,216]. Altered cholesterol content in malignant cell membranes regulates apoptosis[217], proliferation, 
metastasis[218], and killing by cytotoxic T cells[219]. Cholesterol and its derivatives are also involved in various 
oncogenic signaling pathways and protein modifications[220]. Unsurprisingly, these metabolites are 
sequestered by tumor cells to promote malignant growth, and dysregulation of cholesterol in the TIME by 
tumor cells affects the cytotoxic functions of CD8+ T cells.

There are multiple ways in which tumor cells directly alter cholesterol metabolism within the TIME to 
inhibit CD8+ T cell function. Protein convertase subtilisin/kexin type 9 (PCSK9) is a secreted enzyme that 

Figure 3. Diagram of cholesterol and FA metabolic pathways. Cholesterol is either imported as LDL through LDLR or it is synthesized 
through the mevalonate pathway. From there, cholesterol serves as a precursor to vitamin D, steroid hormones, and bile acids or it 
integrates into the cellular membrane to regulate membrane fluidity and cell signaling. Excess intracellular cholesterol is exported 
through ABCA or esterified to form CE, which are stored in lipid droplets. FAs are imported via CD36 and fatty acid transport proteins 
or synthesized through citrate from the TCA cycle. Palmitate, the initial FA that is formed, undergoes elongation and desaturation by 
ELOVL and FADS enzymes, respectively, to form a variety of FAs with varying chain lengths and degrees of unsaturation. FAs 
participate in energy metabolism through the FA b-oxidation pathway that generates acetyl-CoA to drive the TCA cycle. Similar to 
cholesterol, fatty acids are important components of cellular membranes via the formation of phospholipids and excess fatty acids are 
converted to TG and stored in lipid droplets. ABCA: ATP-binding cassette transporters; ACAT1: Acyl-CoA cholesterol acyl transferase 
1; ACC: acetyl-CoA carboxylase; ACLY: ATP citrate lyase; ATP: adenosine triphosphate; CE: cholesteryl esters; ELOVL: elongation of 
very long chain fatty acids protein; FA: fatty acid; FADS: fatty acid desaturase; FATP: fatty acid transport protein; FASN: fatty acid 
synthase; FPP: farnesyl diphosphate; LDL: low-density lipoprotein; LDLR: low-density lipoprotein receptor; MUFA: mono-unsaturated 
fatty acid; PUFA: poly-unsaturated fatty acid; SQS: squalene synthase; SQLE: squalene epoxidase; TCA: tricarboxylic acid; TG: 
triglyceride.
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regulates cholesterol levels by facilitating the degradation of low-density lipoprotein receptors 
(LDLR)[221-224], which imports low-density lipoprotein cholesterol. Tumor-secreted PCSK9 promotes 
intratumoral accumulation of cholesterol[225], prevents LDLR and TCR recycling in CD8+ TILs[226], and 
inhibits MCH-1 recycling on tumor cells[227], leading to immune evasion in multiple ways. Further, several 
reports demonstrate that intratumoral cholesterol accumulation promotes PD-L1 expression[228-231], thereby 
contributing to immune evasion. Mechanistically, cholesterol binds to the transmembrane domain of 
PD-L1 to stabilize cell surface expression[231]. Cholesterol-derived metabolites produced by malignant cells 
also dictate anti-tumor response. For example, cholesterol sulfate creates a chemical barrier within the 
TIME to prevent CD8+ T cell infiltration[232]. Moreover, cholesterol sulfate-producing tumors are more 
resistant to ICB therapy[232] than tumors that do not produce this metabolite, demonstrating that targeting 
tumor-intrinsic cholesterol metabolism could enhance ICB outcomes.

In addition to cholesterol biochemical pathways regulating CD8+ T cell function, mechanical forces driven 
by altered cholesterol levels within tumor cells also influence anti-tumor immune response. Cancer cells 
accumulate cholesterol within the cell membrane, leading to increased membrane fluidity, or “cell 
softening”[219]. This phenomenon is associated with cancer development and progression because cancer cell 
softening impairs the cytotoxic effects of T cells, leading to immune escape[219]. By reversing these effects and 
promoting cancer cell stiffening, increased T cell forces and actin accumulation at the immunological 
synapse enhance tumor killing[219]. Notably, cancer cell stiffening did not alter TCR signaling or cytokine 
production, demonstrating that these effects were purely through mechanical forces[219].

In T cells, maintaining a proper balance between membrane and intracellular cholesterol levels is important 
for development, activation, and effector functions. Cholesterol in the cell membrane is essential for the 
intricate formation of lipid rafts which regulate TCR signaling[233]. In TILs, several studies report that the 
allocation of cholesterol towards cell membrane formation instead of storage as cholesterol esters promotes 
anti-tumor activities. Pharmacologic inhibition in tumor cells and CD8+ T cells of acyl-CoA cholesterol 
acyltransferase 1 (ACAT1), which promotes cholesterol esterification, inhibits cancer cell growth[234]. 
Similarly, another group found that RORa, a nuclear hormone receptor, promotes CD8+ T cell membrane 
cholesterol accumulation by inhibiting cholesterol esterification, thus enhancing anti-tumor functions[235]. 
On the other hand, intracellular cholesterol accumulation in CD8+ T cells due to cholesterol enrichment in 
the TIME leads to endoplasmic reticulum (ER) stress, which causes T cell exhaustion and increased 
expression of immune checkpoint markers[207]. Mechanistically, ER stress promotes upregulation of the ER 
stress sensing protein XBP1, which drives the expression of immune inhibitory markers, namely PD-1 and 
2B4[207]. As a result, inhibiting XBP1 or reducing cholesterol in CD8+ T cells or the TIME boosts the anti-
tumor functions of CD8+ T cells[207]. These studies demonstrate that shifting cholesterol away from 
intracellular stores towards membrane formation in T cells might be an effective therapeutic strategy to 
diminish resistance to ICB therapy.

Given the profound effect of tumor-derived cholesterol on CD8+ T cell function, it is no surprise that 
targeting this altered metabolic pathway inhibits resistance to anti-PD-1 treatment. Building on the idea that 
allocating cholesterol towards cellular membranes in CD8+ T cells is beneficial for the anti-tumor response, 
researchers found that pharmacologic inhibition of ACAT1 in combination with anti-PD-1 treatment 
synergistically reduced the growth of mouse melanoma tumors[236]. Further, slight anti-tumor effects were 
observed in four mouse tumor models following genetic ablation of PCSK9, but combination of genetic or 
pharmacologic inhibition of PCSK9 with anti-PD-1 resulted in robust synergistic effects to increase MHC-I 
expression and survival and reduce growth of murine melanoma and colorectal carcinoma tumors[227]. 
Another emerging target is squalene epoxidase (SQLE), which catalyzes one of the rate-limiting steps in 
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sterol synthesis [Figure 3]. Bioinformatics approaches have identified a negative correlation between SQLE 
expression in human pancreatic adenocarcinoma and immune cell infiltration and immunotherapy 
response[237], prompting the need for further validation of this potential target. While the intersection of 
tumor-mediated cholesterol metabolism and ICB response is not as robust as other metabolic programs, 
these recent studies hint at how this relationship can be exploited to overcome ICB resistance.

Fatty acids
Similar to cholesterol, FAs have a variety of cellular functions, including cell membrane formation through 
phospholipids, energy metabolism, and precursors for signaling lipids [Figure 3]. Intracellular FA 
abundance is regulated by import through CD36 or FA transport proteins and synthesis via fatty acid 
synthase (FASN) from acetyl-CoA or malonyl-CoA[238]. FAs undergo modifications to chain length to form 
long-chain FAs (LCFAs) or very long-chain FAs (VLCFAs) and saturation to form mono-, di-, and poly-
unsaturated FAs. Saturation and chain length dictate FA function and their role in oncogenesis[239]. In 
energy metabolism, FAs are subject to fatty acid b-oxidation (FAO) in the mitochondria to generate FADH, 
NADH, and acetyl-CoA to fuel a variety of energetic processes[240].

The increased demand for FAs in malignant cells sustains their rapid proliferation by serving as an energy 
source via FAO and as an indispensable component for cell membrane formation. Moreover, certain FAs 
are important precursors for a variety of oncogenic signaling mediators[241-243]. To meet these metabolic 
demands, cancer cells will increase the uptake and synthesis of fatty acids, while also inducing lipolysis of 
neighboring adipocytes[244-248]. Continuous evidence is emerging that altered FA metabolism by tumor cells 
alters the lipidome in the TIME, contributing to CD8+ T cell dysfunction. However, the effect of tumor-
derived FA metabolic alterations on ICB resistance is not well-studied.

Malignant cells exploit the increased lipid availability in patients with obesity and remodel the TIME to 
inhibit CD8+ T cell function and promote cancer growth. High-fat diet-induced obesity in multiple mouse 
models of cancer alters the metabolic profile of malignant cells to increase FA uptake and utilization and 
creates an immunosuppressive TIME that inhibits CD8+ T cell infiltration and function[249]. Moreover, 
inhibiting obesity-induced metabolic rewiring in murine colorectal carcinoma tumors restores CD8+ TIL 
function and increases anti-tumor immune function[249]. Mechanistically, researchers found that CD8+ T 
cells in obesity-associated breast cancer tumors exhibit ligation of leptin and PD-1 to reduce effector 
functions through activation of STAT3, which promotes FAO and inhibits glycolysis[250]. PD-1 ligation also 
promotes FAO in T cells through upregulation of carnitine palmitoyltransferase 1A (CPT1A), an essential 
enzyme involved in FAO[251]. Further, obesity in mice, humans, and non-human primates leads to increased 
PD-1 expression and CD8+ T cell exhaustion[252]. These data are consistent with the notion that CD8+ T cells 
exhibit a shift from glycolysis to FAO as they become exhausted, highlighting the need to further explore 
targeting metabolic reprogramming as a way to reinvigorate CD8+ T cells and abate ICB resistance.

Similar to obese models of cancer, non-obese models show that CD8+ T cell function is inhibited by an 
overabundance of FAs within the TIME. In response to excess lipid content within the TIME, CD8+ TILs 
exhibit increased intracellular lipid levels compared to peripheral CD8+ T cells[205]. Exhaustion in CD8+ TILs 
is characterized by the expression of CD36, which imports oxidized low-density lipoproteins, oxidized 
phospholipids, and long-chain fatty acids[205]. Increased uptake of oxidized low-density lipoproteins 
promotes lipid peroxidation in CD8+ TILs, leading to decreased cytokine production and effector 
function[205]. Moreover, the accumulation of VLCFAs within the TIME drives the uptake of LCFAs in CD8+ 
T cells, and instead of serving as an energy source, they promote mitochondrial dysfunction, lipotoxicity, 
and exhaustion[253]. Like cancer cells, immunosuppressive cells, such as Tregs, macrophages, and MDSCs, 
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rely heavily on exogenous FAs to sustain their increased rate of FAO[254-257]. In this regard, increased FA 
abundance within the TIME hinders CD8+ T cell function, while benefiting malignant and 
immunosuppressive cells.

FAs are the building blocks for a variety of bioactive lipids, which are involved in signaling pathways. 
Tumor cells, and to a lesser extent CAFs[258], secrete the enzyme autotaxin (ATX) that converts ubiquitously 
available lysophosphatidylcholine (LPC) to the bioactive lipid lysophosphatidic acid (LPA)[259]. LPA 
modulates numerous signaling pathways through lysophosphatidic acid receptors 1-6 (LPAR1-6), which are 
present on a variety of cell types[259]. In malignant cells, the ATX/LPA axis also functions in an autocrine 
manner by promoting oncogenic signaling through LPAR1[260]. On CD8+ T cells, tumor-derived LPA binds 
to LPAR6 and prevents tumor infiltration by inhibiting migration[260]. LPA also signals through LPAR5 on 
CD8+ T cells to induce cytoskeletal dysfunction, immunological synapse malformation, and impaired 
cytokine secretion and intracellular calcium release[261-263]. LPAR5 signaling on CD8+ T cells also induces an 
exhausted-like state by promoting metabolic stress through ROS production and ultimately impairing 
antigen-specific killing[264]. The recent development of a first-in-class ATX inhibitor demonstrated tumor 
growth inhibition in mouse models of breast cancer[265,266]. The safety of this compound was tested in Phase I 
clinical trials in 2021, where the drug was well-tolerated with no significant clinically adverse effects[266]. 
These promising results demonstrate the previously unexplored capacity to target ATX in solid tumors, 
with the future potential to combine this treatment with pre-existing ICB therapies.

There is very limited research on targeting FA metabolism in combination with anti-PD-1/PD-L1 therapy, 
but more evidence is emerging that supports this approach to overcome ICB resistance. Bioinformatics 
methods have identified that FASN expression in patients with bladder cancer, melanoma, and non-small 
cell lung carcinoma is linked to immune infiltration and ICB response[267,268]. Interestingly, ICB is more 
efficacious in obese patients with melanoma compared to non-obese patients[252,269-272]. While this may seem 
contradictory, obesity drives PD-1 expression on CD8+ T cells, thus eliciting a more robust response. On the 
other hand, CD8+ TILs in pancreatic adenocarcinoma exhibit increased expression of checkpoint inhibitors, 
but ICB therapy largely fails[273-275]. The variability in ICB response between cancer types prompts the need 
for a deeper understanding of the mechanisms that contribute to resistance. To further complicate things, 
under hypoxic and hypoglycemic conditions, pharmacologically enhancing FA catabolism in CD8+ T cells 
promotes effector function[206]. Moreover, anti-PD-1 treatment, in combination with increased FA 
catabolism, synergistically reduced the volume of murine melanoma tumors and promoted anti-
tumorigenic metabolic reprogramming in CD8+ T cells[206]. These data suggest that under stressful 
conditions, i.e., oxygen and glucose depletion, increased FAO is required for CD8+ T cell function, but this 
contradicts other studies that demonstrate a shift towards FAO promotes exhaustion.

Together, these research efforts have laid the groundwork to further characterize the intricate relationship 
between tumor-mediated cholesterol and FA metabolism and CD8+ T cell function within the TIME. To 
date, it is not clear whether inhibiting cholesterol or FA metabolism is a viable treatment option to improve 
response to anti-PD-1/PD-L1 therapies. As new data emerges, researchers will have a better understanding 
of the tumor-specific cholesterol and FA metabolic programs that are exploited by cancer cells and if these 
can be targeted to prevent ICB resistance.

CONCLUSION
While ICB therapies have been an imperative advancement in cancer treatment, a majority of patients 
exhibit resistance, prompting the need for researchers to identify and target these resistance mechanisms. 
This review has provided a multitude of examples wherein tumor-intrinsic alterations to energy, amino 
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Figure 4. Summary schematic of how altered tumor-intrinsic energy, amino acid, and lipid metabolism drive CD8+ T cell dysfunction 
and resistance to anti-PD-1/PD-L1 treatment. Targets in red are described in the previous sections and modulating these targets 
overcomes resistance to anti-PD-1/PD-L1 therapy. ACAT1: Acyl-CoA cholesterol acyl transferase 1; Ado: adenosine; ALKBH5: alkB 
homolog 5, RNA demethylase; Arg: arginine; ARG1: arginase 1; ATX: autotaxin; A2AR: adenosine A2A receptor; CD8+: CD+ T cell; CHL: 
cholesterol; FAs: fatty acids; Gln: glutamine; GLS: glutaminase; Glu: glutamate; HCAR1: hydroxycarboxylic acid receptor 1; LD: lipid 
droplet; LDHA: lactate dehydrogenase A; LDL: low-density lipoprotein; LDLR: low-density lipoprotein receptor; LPA: lysophosphatidic 
acid; LPAR5: lysophosphatidic acid receptor 5; LPC: lysophosphatidylcholine; MCT: monocarboxylate transporter; Me: methyl; Met: 
methionine; NAD+: nicotinamide adenine dinucleotide; Orn: ornithine; PCSK9: proprotein convertase subtilisin/kexin type 9; PD-L1: 
programmed cell death ligand 1; PD-1: programmed cell death protein 1; SAM: S-adenosylmethionine; SLC: solute carrier; Tex: CD8+ T 
cell exhaustion; Treg: T regulatory cell; YTHDF1: YTH N6-methyladenosine RNA binding protein F1.

acid, and lipid metabolism have a significant impact on CD8+ T cell function and resistance to anti-PD-1/
PD-L1 therapies [Table 1 and Figure 4]. In many of the studies presented here, anti-PD-1/PD-L1 therapy 
alone elicits limited anti-tumor effects but, when combined with targeting metabolic pathways, the response 
is significantly more robust. Nevertheless, there are a limited number of metabolism-targeting drugs that 
make it to the clinic because these pathways are highly conserved and not tumor-cell specific. As such, this 
warrants either unique ways to mitigate systemic effects, some of which have been provided in this review, 
or continued efforts to identify tumor-specific pathways. However, the extreme heterogeneity of the TIME, 
metabolome, and lipidome between cancer types necessitates large research efforts to uncover these distinct 
metabolic programs.

Future directions for the fields of immuno- and onco-metabolism are rooted in the utilization of 
metabolomic and lipidomic analyses to understand the metabolic landscape of cancer and develop 
efficacious cancer treatments. Taking a true multi-omics approach by incorporating proteomics, 
transcriptomics/spatial transcriptomics, and metabolomics/spatial metabolomics will greatly advance our 
understanding of targetable pathways, both within malignant cells and T cells. These methods are gaining 
more traction within the oncology research space and hopefully will be more widely utilized in the coming 
years.
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Table 1. Tumor-intrinsic metabolic targets, the resulting metabolites, and the drug or compound used against the target that have 
been evaluated pre-clinically and/or clinically in combination with anti-PD-1/PD-L1 therapy

Target (metabolite) Drug/Compound Pre-clinical or clinical Combination with  
anti-PD-1/PD-L1 Ref.

ALKBH5 (lactate) ALK-04 Pre-clinical Anti-PD-1 [42]

LDHA (lactate) GSK2837808A Pre-clinical Anti-PD-1 [43]

HCAR1 (lactate) 3-OBA Pre-clinical Anti-PD-1 [44]

A2AR (adenosine) CPI-444 Clinical Anti-PD-L1 [84]

A2AR (adenosine) DZD2269 Pre-clinical Anti-PD-1 [85]

CD39 (adenosine) IPH5201 Clinical Anti-PD-L1 [89]

CD39 (adenosine) IPH5201 Pre-clinical Anti-PD-L1 [88-90]

CD39 (adenosine) TTX-030 Clinical Anti-PD-1 [91]

CD73 (adenosine) MEDI9447 (oleclumab) Clinical Anti-PD-L1 [92,93]

A2AR (adenosine) Nanoreactor Pre-clinical Anti-PD-1 [94]

CD39 (adenosine) POM-1 Pre-clinical Anti-PD-1 [95]

CD39 (adenosine) ARL67156 Pre-clinical Anti-PD-1 [96]

CD38 (NAD+) Anti-CD38 and RHein Pre-clinical Anti-PD-L1 [114]

ARG1 (arginine) Vaccine Pre-clinical Anti-PD-1 [156]

ARG1/2 (arginine) OATD-02 Pre-clinical Anti-PD-1 [150,160-162]

ARG (arginine) CB-1158 Clinical Anti-PD-1 [163-165]

SLC1A5 (glutamine) V-9302 Pre-clinical Anti-PD-L1 [183]

Glutamine-utilizing enzymes (glutamine) JHU083 Pre-clinical Anti-PD-1 [184]

YTHDF1 (methionine) Short-hairpin knockdown of YTHDF1 Pre-clinical Anti-PD-L1 [202]

SLC43A2 (methionine) BCH Pre-clinical Anti-PD-L1 [203]

ACAT1 (cholesterol) CI-1011 Pre-clinical Anti-PD-1 [236]

PCSK9 (cholesterol) AMG-145 and D10335 Pre-clinical Anti-PD-1 [227]

ACAT1: Acyl-CoA cholesterol acyl transferase 1; ALKBH5: alkB homolog 5; ARG1: arginase 1; A2AR: adenosine A2A receptor; HCAR1: 
hydroxycarboxylic acid receptor 1; LDHA: lactate dehydrogenase A; PCSK9: proprotein convertase subtilisin/kexin type 9; PD-L1: programmed cell 
death ligand 1; PD-1: programmed cell death protein 1; SLC: solute carrier; YTHDF1: YTH N6-methyladenosine RNA binding protein F1.

PERSPECTIVES
In recent years, immense strides have been made in studying the intersection of metabolism, cancer, and the 
immune system. In addition to the metabolites and pathways covered in this review, there are a plethora of 
others waiting to be linked to CD8+ T cell dysfunction and ICB resistance. For example, other amino acids 
and lipid classes, metabolites produced by the gut microbiome, and a closer look at the metabolites 
associated with oxidative phosphorylation and ATP production. Moreover, there is much to uncover about 
how tumor-derived metabolic alterations affect other immune and non-immune cell types. Continued 
research efforts in this field will provide a more comprehensive understanding of tumor-intrinsic metabolic 
alterations and reveal nuanced ways to target tumor metabolism and overcome resistance to ICB therapies.
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