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Abstract
Aim: Quantitative measurement of spinopelvic parameters from radiographs is important for assessing spinal 
disorders but is limited by the subjectivity and inefficiency of manual techniques. Deep learning may enable 
automated measurement with accuracy rivaling human readers.

Methods: PubMed, Embase, Scopus, and Cochrane databases were searched for relevant studies. Eligible studies 
were published in English, used deep learning for automated spinopelvic measurement from radiographs, and 
reported performance against human raters. Mean absolute errors and correlation coefficients were pooled in a 
meta-analysis.

Results: Fifteen studies analyzing over 10,000 radiographs met the inclusion criteria, employing convolutional 
neural networks (CNNs) and other deep learning architectures. Pooled mean absolute errors were 4.3° [95% 
confidence interval (CI) 3.2-5.4] for Cobb angle, 3.9° (95%CI 2.7-5.1) for thoracic kyphosis, 3.6° (95%CI 2.8-4.4) 
for lumbar lordosis, 1.9° (95%CI 1.3-2.5) for pelvic tilt (PT), 4.1° (95%CI 2.7-5.5) for pelvic incidence (PI), and 
1.3 cm (95%CI 0.9-1.7) for sagittal vertical axis (SVA). Intraclass correlation coefficients exceeded 0.81, indicating 
strong agreement between automated and manual measurements.
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Conclusion: Deep learning demonstrates promising accuracy for automated spinopelvic measurement, potentially 
rivaling experienced human readers. However, further optimization and rigorous multicenter validation are required 
before clinical implementation. These technologies may eventually improve the efficiency and reliability of 
quantitative spine image analysis.

Keywords: Deep learning, spine parameters, pelvic parameters

INTRODUCTION
Quantitative evaluation of spine and pelvis anatomy has long interested clinicians and researchers in fields 
such as orthopedics, neurosurgery, and radiology. Assessing sagittal spinal balance - the geometric 
relationships between spinal curves and pelvic parameters - is considered essential for understanding 
normal posture and alignment[1]. Sagittal balance encompasses important radiographic measures such as 
cervical and lumbar lordosis, thoracic kyphosis, pelvic tilt (PT), pelvic incidence (PI), and sacral slope 
(SS)[2,3]. Abnormal spinopelvic alignment has been associated with pain, disability, and poor health 
outcomes[4].

Traditionally, spinopelvic parameters were manually measured from plain radiographs using techniques like 
the Cobb method, with known limitations in accuracy and objectivity[5]. Computer-assisted analysis tools 
later emerged to potentially improve measurement consistency, though substantial human input was still 
required[6]. Deep learning has rapidly advanced in recent years but traces its origins back decades. The 
concepts of neural networks were initially developed in the 1950s and 60s. However, computational power 
limited applications. In the 1980s and 90s, techniques like convolutional neural networks (CNNs) were 
pioneered, laying the groundwork for modern deep learning. Major advancements in computing, along 
with the availability of large datasets, then enabled deep neural networks to surpass previous benchmarks 
across diverse tasks. Beginning in the 2010s, deep learning achieved remarkable performance in computer 
vision, natural language processing, and medical imaging analysis. The latest methods like CNNs now offer 
transformative opportunities to extract information from complex data. Over the past decade, advances in 
artificial intelligence and machine learning have enabled more automated approaches for quantitative 
radiology and medical imaging[7,8].

Machine learning utilizes statistical models trained on known data to recognize patterns in new data[9]. Deep 
learning is a subset of machine learning based on layered neural networks that can automatically learn 
optimal features directly from raw data, unlike traditional techniques requiring hand-crafted feature 
engineering[10]. The latest deep learning methods have become integral for the automated analysis of medical 
images across specialties[11,12], including quantitative characterization of spine disorders from radiographs 
and CT scans[13,14].

Several recent studies have applied deep CNNs for automated measurement of key spinopelvic parameters 
from standard radiographs[15]. Reported accuracy has been promising but varies widely across studies. 
However, a comprehensive synthesis of the latest achievements, methodological innovations, and measured 
performance has been lacking. This review aims to systematically summarize and critically appraise the 
existing literature on deep learning-based assessment of sagittal spinopelvic alignment on radiographs. It 
elucidates the current state of the field and future directions to potentially improve clinical adoption.
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METHODS
This Meta-analysis was conducted according to the preferred reporting items for systematic reviews and 
meta-analyses (PRISMA) guidelines[16] [Supplementary Table 1].

Search strategy
A comprehensive literature search was conducted using PubMed, Embase, Scopus, and Cochrane databases 
from inception to December 2023 to identify relevant studies. The search strategy included a combination 
of controlled vocabulary terms (e.g., MeSH) and keywords related to “artificial intelligence”, “deep 
learning”, “convolutional neural network”, “spine”, “spinopelvic parameters”, and related terms. Reference 
lists of included articles and relevant systematic reviews were hand-searched to identify any additional 
eligible studies.

Study selection
Studies were included if they met the following criteria: (1) published in English language peer-reviewed 
journals; (2) used deep learning models including CNNs to automatically estimate spinopelvic parameters 
from radiographs (X-ray); (3) reported model performance metrics compared to human rater 
measurements including mean absolute error and correlation coefficient. Conference abstracts, case reports, 
editorials, and non-peer reviewed articles were excluded.

Two reviewers (A.K.M and J.C) independently screened the titles, abstracts, and full texts of retrieved 
records against the eligibility criteria. Disagreements were resolved by consensus or consultation with a 
third reviewer if needed. The study selection process was documented using a PRISMA flow diagram 
[Figure 1].

Data extraction
A standardized data extraction form was created and pilot-tested on a subset of included studies. Two 
reviewers (A.K.M and J.C) then independently extracted data from the full set of included studies. Extracted 
information included: first author name, publication year, dataset details (number of images, resolution, 
pathology), imaging modality, model details, spinopelvic parameters analyzed (Accuracy Metrics), deep 
learning model details including architecture and training approach, mean absolute error, correlation 
coefficient, batch size, number of epochs, any additional reported performance metrics, computational 
efficiency, validation approach, and any key limitation. Any discrepancies in extracted data were resolved 
through discussion and mutual consensus. Additionally, studies focusing specifically on lumbosacral 
transitional vertebrae (LSTV) were excluded to maintain homogeneity in the analysis. While LSTV can 
significantly impact spinopelvic measurements, the unique challenges they present in parameter assessment 
warrant separate consideration from standard spinopelvic measurements. This exclusion allowed for a more 
consistent comparison of measurement accuracy across included studies.

Statistical analysis
A random-effects meta-analysis was performed to pool the mean absolute errors reported by the included 
studies for each spinopelvic parameter. The inverse variance method was used to calculate the weighted 
mean differences and 95% confidence intervals (CIs). Heterogeneity among the studies was assessed using 
the I2 statistic, which represents the percentage of total variation across studies due to heterogeneity rather 
than chance. An I2 value of 0% indicates no observed heterogeneity, while larger values indicate increasing 
heterogeneity. The pooled estimates and their 95%CIs were graphically presented using forest plots. All 
statistical analyses were conducted using R software (version 4.0.3) with the “meta” package (version 4.15-
1).

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/ais4036-SupplementaryMaterials.pdf
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Figure 1. PRISMA flow chart. PRISMA: Preferred reporting items for systematic reviews and meta-analyses.

Quality assessment
The quality and risk of bias of included studies were assessed using the IJEMDI tool tailored specifically for 
diagnostic accuracy studies. Studies were evaluated across four domains: (1) clarity in the description of the 
research question, study objectives, and replicability of the study design; (2) availability of an open dataset 
or detailed instructions for data access; (3) comprehensive documentation of methods, including software 
details and statistical approaches, to facilitate replication; and (4) whether the results supported the 
conclusions, limitations were discussed, and conflicts of interest were disclosed. Each domain was rated as 
either present (2), absent (0), or unclear (1)[17].

RESULTS
A total of 14 studies published between 2018-2023 were included in this systematic review, encompassing 
10,727 subjects[18-31]. The studies utilized various imaging modalities to develop and validate automated 
methods for measuring spinal alignment, including lateral X-rays[18-31], biplanar radiographs[30,31], and CT 
scans[26]. Both preoperative and postoperative images were employed, with 6 studies incorporating cases 
with spinal implants[19,20,23,24,28] to evaluate performance in surgically altered anatomy. The diversity of 
imaging captures numerous clinically relevant scenarios, although multicenter external validation was 



Page 5Glaser et al. Art Int Surg. 2025;5:1-15 https://dx.doi.org/10.20517/ais.2024.36

lacking, with most datasets from single institutions [Table 1].

A range of deep learning models were applied for automated spinal measurement, including custom 
CNNs[18-21,23-25,27-31], multi-view correlation networks[19,20], and segmentation-based approaches[23,24,28-30]. For 
Cobb angle measurement, mean absolute errors ranged from 1.2° to 7.81°[18-21,23,27,28], with most studies 
achieving errors ≤ 5°. Similar trends were observed for other sagittal parameters, such as thoracic kyphosis, 
lumbar lordosis, and PI[18,19,22-25,29,30]. Intraclass correlation coefficients between automated and manual 
measurements exceeded 0.75, indicating strong agreement[22,25,26]. Computational efficiency was reported in 
several studies, with inference times ranging from 0.2 to 75 s per image[22,23,27,28], demonstrating the potential 
for accelerated analysis compared to manual methods.

Cobb angle demonstrated a pooled mean error of 4.3° (95%CI: 3.2°-5.4°). Thoracic kyphosis and lumbar 
lordosis showed similar pooled errors of 3.9° (95%CI: 2.7°-5.1°) and 3.6° (95%CI: 2.8°-4.4°), respectively. PT 
had the lowest pooled error at 1.9° (95%CI: 1.3°-2.5°), while PI exhibited a slightly higher pooled error of 
4.1° (95%CI: 2.7°-5.5°). Sagittal vertical axis (SVA) demonstrated a pooled mean error of 1.3 cm (95%CI: 
0.9-1.7 cm). These results highlight the overall accuracy of deep learning models in automatically measuring 
key spinopelvic parameters from radiographic images [Figure 2].

Manual measurement of spinopelvic parameters has shown inter-observer variability ranging from 5° to 10° 
for Cobb angle measurements and similar ranges for other parameters in previous studies. The pooled AI 
measurement errors we found (4.3° for Cobb angle, 3.9° for thoracic kyphosis, and 3.6° for lumbar lordosis) 
demonstrate comparable or better accuracy than manual measurements while offering significantly 
improved efficiency.

Quality assessment
Utilizing the IJEMDI checklist, the papers address most checklist items sufficiently but have room for 
improvement around enabling replicability and providing more method/software specifics. Conflicts of 
interest and limitations also remain inconsistently addressed [Supplementary Table 2].

DISCUSSION
This systematic review and meta-analysis demonstrate the potential of deep learning for the automated 
measurement of spinopelvic parameters from radiographs. The comprehensive literature search identified 
14 eligible studies between 2018-2023, analyzing over 10,000 radiographs with deep CNNs and other 
architectures[18-31]. The studies utilized various imaging sources to develop and validate automated methods 
for measuring spinal alignment, including lateral X-rays[19,20,23-25,27,32-34], biplanar radiographs[31,35], and CT 
scans[36]. Both preoperative[19,23,25,27,31-33,35,36] and postoperative[19,20,24] images were employed, with 6 studies 
incorporating cases with spinal implants[19,20,23,24,33,36] to evaluate performance in surgically altered anatomy. 
The diversity of imaging captures numerous clinically relevant scenarios. However, multicenter external 
validation was lacking, with most datasets from single institutions. Aspects like vendor variability could 
impact segmentation. Model development must be capable of analyzing all imaging protocols for 
translation.

A range of model types were applied for automated spinal measurement, from conventional machine 
learning[21,25] and rule-based systems[31] to modern deep CNNs[19,20,23-25,31,33-37]. Details for replication varied 
extensively - 4 studies provided no specific model details[19,25,27,34], while 5 gave networks and 
parameters[19,20,25,31,35]. Public code/data availability remains limited. Custom architectures were common for 
direct spinal measurement[19,33-35,37], rather than off-the-shelf models. Multi-task[25,33,37], multi-view[19,33], and 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/ais4036-SupplementaryMaterials.pdf
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Table 1. Main table describing study characteristics

Paper Dataset details Imaging Model details
Mean 
absolute 
error

Correlation 
coefficient Accuracy metrics

Comparison 
with other 
methods

Key 
limitations

Validation 
approach

Neural 
network 
architecture

Batch 
size

No. of 
epochs

Chae et al. 
2020[18]

Training - 400; 
resolution - 3,240 × 
1,080 pixels; variety - 
57% normal spine, 
20% lumbar lordosis, 
24% thoracic kyphosis

X-ray Decentralized 
CNN; multiple 
orders

1.45°-3.52° NA Mean absolute error: 
1.45°-3.52° for 
parameters

Compared to 
manual 
measurement by 
experienced 
surgeons, as well 
as regression 
CNN model

Requires 
multiple ordered 
datasets, 
training time; 
limited diversity

40 test 
radiographs; 
comparison to 
manual 
measurements by 
experienced 
surgeons

Custom 
decentralized 
CNN

NA Initial: 
0.001, 
SGDM 
momentum 
0.95

Wu et al. 
2018[19]

526 (154 patients); 
resolution: 128 × 256 
pixels

X-ray Custom MVC-
Net

Landmark: 
0.0398-
0.0459; 
Cobb: 
4.04°-
4.07°

NA Mean absolute error 
(landmark): 0.0398 
(AP) - 0.0459 
(LAT); circular mean 
absolute error (Cobb 
angle): 4.04° (AP) - 
4.07° (LAT)

Compared to 
manual 
measurement and 
other deep 
learning methods

Single clinic 
dataset; no 
metal artifact 
images

10-fold patient-
wise cross-
validation; 
comparison to 
manual “gold 
standard”

Custom MVC-
Net

100 Starting: 
0.01, halved 
every 10 
epochs

Wang et 
al. 2019[20]

526; resolution: 
0.26 mm/pixel

X-ray Custom MVE-
Net

Cobb: 
6.26°-7.81°

NA Circular mean 
absolute error (Cobb 
angle): 7.81° (AP) - 
6.26° (LAT); SMAPE 
(Cobb angle): 
24.94% (AP) - 
11.90% (LAT)

Compared to 
manual 
measurement and 
other deep 
learning methods

Single clinic 
dataset

Used same 
dataset as 
previous study; 
compared to other 
deep learning 
methods

Custom MVE-
Net

NA Starting: 
0.01

Zhang et 
al. 2022[21]

2,738 pairs (AP & LAT 
X-rays); from local 
hospital

X-ray Custom MPF-
Net

Landmark: 
0.0046-
0.0050; 
Cobb: 
3.52°-4.05°

NA Scaled mean 
absolute error 
(landmark): 0.0046 
(AP) - 0.0050 
(LAT); circular mean 
absolute error (Cobb 
angle): 3.52° (AP) - 
4.05° (LAT); SMAPE 
(Cobb angle): 
13.71% (AP) - 
12.60% (LAT)

Compared to 
manual 
measurement and 
other deep 
learning methods

Single clinic 
dataset

10-fold cross-
validation; 
comparison to 
manual “gold 
standard” 
measurements

Custom MPF-
Net

120 Initial: 
0.001, 
decayed by 
0.2 every 30 
epochs

Zerouali
et al. 
2023[22]

100 patients with 
coronal & sagittal 
whole spine 
radiographs

X-ray SmartXpert 
(Milvue)

≤ 2.9° or ≤ 
2.7 mm

≥ 0.85 except 
thoracic 
kyphosis = 
0.58

Mean absolute error: 
≤ 2.9° or ≤ 2.7 mm 
for parameters; 
intraclass correlation 
coefficient: ≥ 0.85 
except thoracic 
kyphosis = 0.58

Compared to 
measurements by 
senior 
musculoskeletal 
radiologist 
(ground truth)

Mainly pediatric 
population, 
exclusions 
restricted 
analysis to 
preoperative 
patients

Comparison to 
“gold standard” 
manual 
measurements; 
visual assessment 
of reliability by 
radiologists

NA NA NA

145 images to train 
model, 97 test images 
with variety of 

Mean absolute 
difference vs. manual 
measurements: 1.2°-

Compared to 
manual 
measurements by 

Single center 
data; did not 
evaluate intra-

Statistical analysis 
(mean absolute 
difference, 

Korez et 
al. 2020[23]

X-ray RetinaNet + U-
Net CNNs

1.2°-5.0° NA RetinaNet + U-
Net

NA NA

conditions 5.0° for parameters spine surgeon observer correlation 
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(reference 
standard)

variability analysis, etc.) 
against manual 
measurements

Kim et al. 
2023[24]

1,807 lateral 
radiographs; variety of 
spinal conditions

X-ray Mask R-CNN 
for vertebral 
segmentation

0.4°-3.0° NA Mean absolute error 
vs. manual 
measurements: 
0.4°-3.0° for 
parameters; dice 
similarity coefficient: 
92.6% for 
segmentation

Compared to 
measurements by 
3 surgeons 
(criterion 
standard)

Did not include 
images with 
severe spinal 
deformities or 
implants

200 test images; 
statistical analysis 
(MAE, ICC, etc.) 
against manual 
measurements

Mask R-CNN 
(ResNet 101 
backbone)

18 
images 
per 
batch

36 epochs

Yeh et al. 
2021[25]

2,210 whole spine 
lateral radiographs; 
variety of spinal 
conditions

X-ray Cascaded 
pyramid 
network + 
differentiable 
spatial to 
numerical 
transform layer

Landmark: 
1.75-3.39 
mm; 
parameter: 
0.1°-6.6°

NA Median error: 1.75-
3.39 mm for 
landmarks; 
parameter errors: 
mean 0.1°-6.6°, 
median 0.03-5.3°

Compared to 
measurements by 
3 doctors (ground 
truth)

Single center 
data; did not 
include images 
with vertebral 
anomalies

400 test images; 
statistical analysis 
against ground 
truth 
measurements

Cascaded 
pyramid net

NA 120 epochs 
(early 
stopping 
applied)

Orosz et 
al. 2022[26]

600 lateral spine 
radiographs for 
training; 200 lumbar 
spine radiographs (100 
pre-op, 100 post-op) 
for testing

X-ray CNN for 
segmentation + 
U-Net for 
landmark 
detection

Not 
reported

0.75-0.92 Intraclass correlation 
coefficient between 
AI and human raters: 
0.85-0.92 pre-op, 
0.75-0.91 post-op

Compared to 
measurements by 
expert human 
raters

Single-center 
data for 
validation; did 
not assess intra-
rater reliability

Statistical analysis 
(ICC, mean error, 
etc.) against 
manual 
measurements by 
expert raters

Convolutional 
NN + U-Net

NA NA

Gami et al. 
2022[27]

100 images to train 
model, 130 images to 
test model

X-ray YOLO version 3 
CNN

Cobb: 
1.726°

NA Average absolute 
difference - Cobb 
angle: 1.726°, plumb 
line: 0.415 cm

Compared to 
radiographic 
measurements in 
cadaver model

Testing only on 
single cadaver 
model and 
artificial 
templates

Cadaver testing + 
verification testing 
on artificial 
templates

YOLOv3 CNN NA NA

Schwartz
et al. 
2021

[28]

816 lateral lumbar 
radiographs including 
some with 
instrumentation/hip 
prostheses

X-ray MultiResUNet 
CNN + 
computer vision 
pipeline

≤ 4.6° NA Mean absolute 
difference vs. 
surgeons: ≤ 4.6° for 
parameters; success 
rate: 90%-100%

Compared to 
measurements by 
3 orthopedic spine 
surgeons

10% failure rate 
for Cobb angle; 
potential for 
measurement 
skew

163 test images; 
statistical analysis 
against manual 
surgeon 
measurements

MultiResUNet NA NA

Aubert et 
al. 2019[29]

68 biplanar 
radiographs with 
variety of spinal 
conditions

X-ray CNN for 
anatomical 
landmark 
detection to fit 
statistical spine 
model

Landmark: 
1.6-2.3 mm; 
parameter: 
2.8°-4.7°

NA Mean error: 1.6-2.3 
mm for landmarks; 
2.8°-4.7° for spinal 
parameters; 1°-2.1° 
for pelvic 
parameters

Compared to 
expert supervised 
reconstructions 
(ground truth)

Small dataset 
from single 
center

Comparison to 
multiple expert 
supervised 
reconstructions; 
automated vs. 
expert agreement 
analysis

CNNs NA NA

Correlation 
coefficient: ≥ 0.8 for 
10 of 12 parameters; 
mean absolute error: 

Compared to 
manual 
measurements by 
experienced 

Difficulty with 
parameters 
related to T1 
vertebrae; 

30 test images + 
statistical analysis 
against standard 
reference 

Nguyen et 
al. 2022[30]

500 whole spine lateral 
radiographs with 
variety of conditions

X-ray Decentralized 
CNN

1.156°-
6.318°

≥ 0.8 for 10 of
12 parameters

VGG-net 
based CNN 
architecture

Batch 
size: 32

50 epochs
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CNN: Convolutional neural network; NA: not applicable; SGDM: stochastic gradient descent; AP: anteroposterior; LAT: lateral; MVC-Net: multi-view correlation network; MVE-Net: multi-view extrapolation net; 
MPF-Net: multi-task, proposal correlation, feature fusion network; MAE: mean absolute error; ICC: intraclass correlation coefficient; AI: artificial intelligence; YOLO: You Only Look Once.

vertebral correlation[25] learning schemes showed benefits for parameter accuracy through inter-relationship modeling, overcoming imaging challenges like 
occlusion.

Studies assessed accuracy via comparison to expert manual measurement, using metrics such as mean absolute differences (all studies) and voxel overlap 
measures where segmentation was evaluated[19,23,24,31,35,36]. For Cobb angle measurement, mean errors ranged from 1.7° to 8.1°, but most CNN methods achieved 
≤ 5° mean difference[23-25,31,32,34,35], adequate for clinical usage[38]. Similar trends were held for other sagittal measurements[19,20,23,24,31,35]. Notably, Wang et al. 
employed extrapolation methods atop initial estimates to give the best overall accuracies of 6.2°/7.8° Cobb angle errors in lateral/AP views vs. 4.0°/4.1° for 
MCV-Net[20,37]. Intraclass coefficients of 0.86-0.99[19,23-25] confirmed automated/manual measurement agreement.

Comparisons were made to traditional manual measurement[19,20,23-25,31,35], manual tools[19,25,27], early machine learning applications[25], and different iterations of 
automated algorithms[19,33]. Automated methods met or exceeded both classic and contemporary techniques. Particular benefits arose in reproducibility, 
efficiency, and standardization vs. manual approaches prone to subjectivity and variability[19,23,24]. Deep learning methods showed headroom over alternate 
automated implementations in accuracy, overcoming limitations such as occlusion. Wang et al. achieved better Cobb measurement than MCV-Net[19] (7.8° 
lateral error vs. 4.1°), through vertebral correlation and extrapolation augmentations[20].

Studies cited small datasets[31], external validity[19,24,31,35,36], surgical cases[19,20,23,24,33], implant handling[33,36], need for inter-rater evaluations[33], pelvic measurement 
gaps[27], follow-up studies[24], and real-world clinical workflow integration[24,27] as main limitations. Anonymization, reproducibility, negative societal impacts, 
and public data availability were generally not addressed. Small samples particularly restricted subgroup analysis - only Gami et al. reported metrics by spinal 
pathology[27]. Building large heterogeneous benchmark datasets could facilitate model development and address generalizability. Standardized reporting 
guidelines for spine AI could also benefit the field.

1.156°-6.318° doctors (standard 
reference)

requires 
separate 
datasets for 
each model 
order

measurements

Galbusera
et al. 
2019[31]

493 biplanar 
radiographs; variety of 
spinal disorders and 
deformities

X-ray Fully CNN + 
differentiable 
spatial to 
numerical 
transform layer

Not 
explicitly 
reported

NA Standard error 
between DL 
predictions & ground 
truth: 2.7°-11.5° for 
parameters

Compared to 
parameters 
extracted from 
sterEOS 3D 
reconstructions 
(ground truth)

Limited training 
dataset size (n = 
443 image 
pairs); 
polynomial 
interpolation 
introduced error

50 test cases; 
statistical analysis 
(linear regression, 
Bland-Altman 
analysis) against 
ground truth

Fully 
convolutional 
network

NA 100 epochs
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Figure 2. Forest plot showing weight distribution of the different spino-pelvic parameters.

End-to-end runtimes ranged from 2 to 75 s for automated measurement pipelines[23,24], up to 17× faster than 
manual analysis; most systems took under 20 s[19,23,35], adequate for surgical usage. Inference-only times were 
often sub-second[23,27]. Accelerated measurement enables more intraoperative images for improved surgical 
decisions. However, detailed computational profiling was generally lacking, impeding comparisons. Cloud-
based implementations could broadly enable these techniques.

Studies used statistical comparisons between automated and manual measurements for validation, 
i n c o r p o r a t i n g  B l a n d - A l t m a n  analysis[19,23,25,27,31,35], p a i r e d  s i g n i f i c a n c e  tests[19,23,27,35], l i n e a r  
regression[19,23,25,27,31,35], Pearson correlation coefficients[19,23,25,27,31,35], and intra-class coefficients[19,23-25]. Manual 
measurement reliability was sometimes quantified[27]. Both preoperative[19,23-25,27,31,32,35] and postoperative 
subjects[19,24,37] were included, although only Kim et al. performed validation in distinct pre- and 
postoperative cohorts[24]. Most evaluations used held-out testing data from the same institution as model 
development; multicenter validation was absent. Generalizability beyond the typically homogeneous 
training populations requires further scrutiny.

CNN backbones ranged from VGG[19] and U-Nets[31,36] to ResNets[24,25,33]. Both feedforward[19,25] and fully 
convolutional layouts were used. Custom network engineering was common[19,23-25,27,31,32,35], given insufficient 
anatomical representational power in generic classification architectures. Pretraining on natural images via 
Mask R-CNN[36] and DetectNet[34] helped offset smaller target dataset sizes. Segmentation-based approaches 
employed secondary algorithms on CNN outputs to estimate spinal parameters[24,25,31,35,36], adding 
measurement variability. End-to-end sagittal measurement could minimize error propagation within 
integrated networks.

Reported batch sizes during neural network training spanned 16-256. However, 10 studies did not specify 
this optimization detail at all[18-31,34,36]. Small batches can enhance generalization and reduce overfitting, but at 
a computational cost. Larger batches offer efficiency yet may miss anomalous cases. Standardization would 
benefit reproducibility. The median batch size was 64[24,31,33,36], aligning with typical practices.
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The number of training epochs ranged from 30 to 6,000 for deep neural networks. But again, most studies 
omitted specifics[18-31,34,36]. Two reports described adaptive epoch counts based on validation 
improvements[24,36], rather than fixed values. Typical regimes were 30-50 epochs[31,33]. Standardized detail 
would aid reproducibility. Generalizability with shorter training requires scrutiny where transfer learning 
was not employed.

The IJMEDI checklist for medical imaging AI highlighted several shortcomings (see tabulated results in 
requests), particularly around enabling reproducibility. Areas such as software details, computational 
resource usage, model accessibility, and evaluation set specificity suffered poor reporting. However, studies 
did well in conveying overall aims, statistical and evaluation methodology, and limitations. Recent initiatives 
for standardizing ML reporting[39,40], plus reproducibility checklists[38], may benefit new spine AI imaging 
research.

Despite promising accuracy, certain limitations remain. Most studies used single-institutional data lacking 
sufficient diversity[19-21,23,25,28-30]. Reference standards from manual radiograph measurements intrinsically 
incorporate subjectivity from inter-observer variations[41]. CT imaging remains unevaluated. Studies for 
some parameters are still few. Real-world clinical validation is lacking[42]. Our subgroup analyses found that 
studies using CNN architectures demonstrated higher accuracy for parameters like lumbar lordosis 
compared to other models. This highlights the importance of selecting appropriate architectures tailored to 
the specific radiographic quantification task. As deep learning continues advancing, further research is still 
needed to optimize model design and determine the most effective architectures for automated spinopelvic 
measurement. Larger comparative studies evaluating different network architectures on common datasets 
would help elucidate the relative merits and guide selection.

Moving forward, larger multicenter studies should validate these models before clinical 
implementation[40,43]. Continued research on handling label noise and measurement uncertainty is 
required[13,41]. Standardized reporting guidelines could enhance reproducibility[40]. Models should be 
optimized across diverse settings and pathologies[42,43]. Clinically meaningful accuracy metrics deserve focus 
beyond errors[41].

The application of deep learning models and their potential role in spine surgery has already begun to be 
explored. Of value to spine surgeons, models have demonstrated success in diagnosing various 
musculoskeletal and spinal disorders, including sarcopenia, scoliosis, and low back pain[44-47]. In regard to 
prognosis, deep learning models have been successful in predicting postoperative complications such as 
surgical site infections and 30-day readmission rates after lumbar fusion procedures[48,49]. While these initial 
findings are promising, further research validating the use of these models in other realms of patient care, 
particularly surgical planning, is needed.

Spinopelvic parameters are of great importance to the surgeon for planning, and methods of measurement 
have evolved significantly. Early assessments began with the Cobb angle and focused on spinal curvatures 
but overlooked the pelvis. In the 1980s and 1990s, the introduction of parameters such as PI, PT, and SS 
revolutionized the understanding of sagittal balance. These measurements linked pelvic alignment to spinal 
posture. By the 2000s, global spinal alignment gained attention, with the SVA and newer measures like the 
T1 pelvic angle (TPA) becoming essential for surgical planning in adult spinal deformity (ASD).

Up until the early 2000s, measurement of spinopelvic parameters was mostly done manually and, on 
average, took 3-15 min. The manual measurement process is tedious and time-consuming while also being 
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prone to rater-dependent error[50]. Advancements in imaging techniques, including full-body electron optic 
system (EOS) radiographs, CT scans, and MRI, have enabled more accurate measurements of spinopelvic 
parameters. The development of more sophisticated software has led to accelerated measurement times via 
semi-automated computer-aided tools, such as SurgiMap[50]. Software tools such as SurgiMap have 
demonstrated a mean time efficiency of 75 ± 25 s to perform a full spinopelvic analysis, significantly 
reducing the burden associated with manual measurements[50]. Our review of the existing literature on deep 
learning models for spinopelvic parameter measurement revealed processing times ranging from 0.2 to 1 s 
per image. A set of radiographs for spinopelvic parameter measurement typically involves 2-3 images on 
average: a lateral X-ray, an anterior and posterior X-ray, and possibly a full-body EOS image in more 
complicated cases. Regarding time saved, deep learning models would require an estimated 0.6-3 s to 
analyze a full set of images compared to the 75-second mean from the studies mentioned previously. Deep 
learning models are, therefore, roughly 25× more efficient. Additionally, there were studies included in our 
analysis that involved pathological images, whereas the study using SurgiMap involved images with no 
pathology, further demonstrating the capability and efficiency of deep learning technology. To contextualize 
these efficiency gains with accuracy: Manual measurements typically show inter-observer variability of 5°-
10° for the Cobb angle and similar ranges for other parameters. Semi-automated tools reduced this 
variability to 3°-7°. Our meta-analysis found AI measurement errors of 4.3° for Cobb angle, 3.9° for thoracic 
kyphosis, and 3.6° for lumbar lordosis - comparable to or better than both manual and semi-automated 
methods. This suggests AI can dramatically improve measurement efficiency without compromising 
accuracy, potentially offering both time savings and measurement reliability improvements in clinical 
practice.

No one model stood out as superior to the others. Each study and the model they used had advantages and 
disadvantages that are open to interpretation. For example, the model used by Zerouali et al. was mainly 
tested in a pediatric population; therefore, this model would likely only be of interest to a surgeon who 
operates on this population[22]. Many studies only involved a single clinical dataset, which is a key reason 
why we argue for multicenter validation to demonstrate reproducibility. Additionally, some studies did not 
train their models on patients who had implants. Therefore, these models would require further validation 
to be useable in scenarios such as postoperative evaluation and planning for revision surgery. What was 
consistent across all models was that they all were more efficient than current methods without 
compromising accuracy.

Despite the demonstrated accuracy and efficiency of these models, there remains a gap in understanding 
their practical utility for surgeons across various clinical contexts, including preoperative and intraoperative 
stages. Theoretically, the enhancement in efficiency should offer surgeons more time to review images and 
make surgical plans. Pending multicenter validation, future research should explore whether or not the 
integration of deep learning truly enhances efficiency throughout the entire perioperative continuum. For 
example, a surgeon may use deep learning as an adjunct for formulating a preoperative plan. Within 
surgery, intraoperative X-ray image evaluation may allow synchronous measurement of spinopelvic 
parameters to assess the efficacy of hardware placement. Lastly, in the postoperative phase, the technology 
can be used to predict postoperative complications and 30-day readmission rates as stated earlier, with the 
potential for much more. No one model stood out as superior to the others. Each study and the model it 
used had advantages and disadvantages that are open to interpretation.

A notable limitation in measuring PI deserves specific attention. Our meta-analysis found PI measurements 
had a relatively higher pooled error of 4.1° compared to other pelvic parameters such as PT (1.9°). This 
larger error can be attributed to several specific challenges: First, the presence of double-dome endplates can 
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make it difficult to precisely identify the sacral endplate angle. Second, femoral head overlapping, 
particularly in patients with high BMI or osteoarthritis, can obscure the precise center of the femoral head. 
Third, the quality of lateral radiographs, especially in patients with wide pelvises, can result in poor 
visualization of anatomical landmarks due to increased soft tissue density. Fourth, metallic implants such as 
total hip replacements can create artifacts that interfere with landmark identification. These factors 
compound measurement uncertainty and likely contribute to the higher error rates observed for PI across 
studies. Future deep learning models should specifically address these challenges, perhaps through 
specialized preprocessing steps or architectural modifications designed to better handle landmark obscurity 
and anatomical variations.

As this technology continues to evolve, it is highly unlikely that it will not play a role in patient healthcare. It 
is of great importance for future research to ensure adequate ethical standards, as new concepts and 
technologies are often met with some resistance. Issues with accountability, transparency, and permissions 
could come into question by involving deep learning in the decision-making process. Therefore, the 
integration of deep learning technology should come as a complementary tool in the surgical decision-
making processes, where surgeons can potentially optimize patient care pathways and improve overall 
clinical outcomes.

Limitations
This review has certain limitations. The literature search was restricted to studies published in English, 
potentially excluding some relevant non-English studies. Searches were limited to four databases, although 
additional sources were hand-searched. Study screening and data extraction were performed by only two 
reviewers. The meta-analysis combined studies using different deep learning architectures and imaging 
modalities, which may have introduced heterogeneity. Only mean absolute errors and correlation 
coefficients were synthesized, although various other accuracy metrics were reported in the studies.

An additional limitation that should be taken into consideration is that the included studies did not account 
for anatomic variations such as LSTV. The prevalence of LSTV varies widely within the literature, ranging 
anywhere from 3.3% to 35.6%. A recent study by Khalifé et al. demonstrated that patients with low-grade 
LSTV, defined as Castelvi I and II, have similar alignments as PI-matched no-LSTV and, therefore, should 
have their measurements taken from S1. Patients with high-grade LSTV, defined as Castelvi III and IV, have 
more kyphotic L5-S1 segments with more cranial lumbar apex and thoracolumbar inflection point and, 
therefore, should have their measurements taken from L5. Future studies involving machine learning 
models for measuring spinopelvic parameters may have to pre-identify patients with LSTV and manually 
input the starting point to account for these anatomic variations[51].

Conclusion
In conclusion, the breadth of imaging, network architecture details, spine pathologies, and statistical 
validation encompassed within these studies support automated measurement of spinal curvature as viable 
for clinical integration pending minor reporting enhancements. Multicenter datasets and model access 
could additionally reinforce external validity and enable incremental developments in this space.

Overall, this review supports deep learning as a potentially transformative technique for automated 
spinopelvic measurement from radiographs pending rigorous multicenter validation. These AI technologies 
may eventually improve efficiency, accuracy, and reliability for quantitative spine image analysis.



Page 13Glaser et al. Art Int Surg. 2025;5:1-15 https://dx.doi.org/10.20517/ais.2024.36

DECLARATIONS
Authors’ contributions
Manuscript writing and revision: Glaser D
Data collection, analysis, and manuscript revision: AlMekkawi AK, Caruso JP
Data contribution and manuscript revision: Chung CY, Khan EZ, Daadaa HM
Conceptualization, progress monitoring, and final manuscript revision: Aoun SG, Bagley CA

Availability of data and materials
The data are available from the corresponding author upon reasonable request.

Financial support and sponsorship
None.

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2025.

REFERENCES
Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28:1889-905.  DOI  
PubMed

1.     

Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. A review of methods for evaluating the quantitative 
parameters of sagittal pelvic alignment. Spine J. 2012;12:433-46.  DOI  PubMed

2.     

Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation 
of spinal sagittal curves. Eur Spine J. 1998;7:99-103.  DOI  PubMed  PMC

3.     

Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal 
deformity. Spine. 2005;30:2024-9.  DOI  PubMed

4.     

Maillot C, Ferrero E, Fort D, Heyberger C, Le Huec JC. Reproducibility and repeatability of a new computerized software for sagittal 
spinopelvic and scoliosis curvature radiologic measurements: Keops®. Eur Spine J. 2015;24:1574-81.  DOI  PubMed

5.     

Lafage R, Ferrero E, Henry JK, et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 
2015;15:2493-502.  DOI  PubMed

6.     

Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.  DOI7.     
Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-48.  DOI  PubMed  PMC8.     
Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR Spine. 2019;2:e1044.  DOI  
PubMed  PMC

9.     

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-44.  DOI  PubMed10.     
Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29:102-27.  
DOI  PubMed

11.     

Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from 
medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271-97.  DOI

12.     

Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 
2020;49:183-97.  DOI  PubMed

13.     

Jamaludin A, Lootus M, Kadir T, et al; Genodisc Consortium. ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of 
reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is 
comparable with an expert radiologist. Eur Spine J. 2017;26:1374-83.  DOI

14.     

Lopez CD, Boddapati V, Lombardi JM, et al. Artificial learning and machine learning applications in spine surgery: a systematic 15.     

https://dx.doi.org/10.1007/s00586-019-06083-1
http://www.ncbi.nlm.nih.gov/pubmed/31332569
https://dx.doi.org/10.1016/j.spinee.2012.02.013
http://www.ncbi.nlm.nih.gov/pubmed/22480531
https://dx.doi.org/10.1007/s005860050038
http://www.ncbi.nlm.nih.gov/pubmed/9629932
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611230
https://dx.doi.org/10.1097/01.brs.0000179086.30449.96
http://www.ncbi.nlm.nih.gov/pubmed/16166889
https://dx.doi.org/10.1007/s00586-015-3817-1
http://www.ncbi.nlm.nih.gov/pubmed/25724685
https://dx.doi.org/10.1016/j.spinee.2015.08.067
http://www.ncbi.nlm.nih.gov/pubmed/26343243
https://dx.doi.org/10.1016/j.media.2017.07.005
https://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479722
https://dx.doi.org/10.1002/jsp2.1044
http://www.ncbi.nlm.nih.gov/pubmed/31463458
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686793
https://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://dx.doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
https://dx.doi.org/10.1016/s2589-7500(19)30123-2
https://dx.doi.org/10.1007/s00256-019-03284-z
http://www.ncbi.nlm.nih.gov/pubmed/31377836
https://dx.doi.org/10.1007/s00586-017-4956-3


Page 14 Glaser et al. Art Int Surg. 2025;5:1-15 https://dx.doi.org/10.20517/ais.2024.36

review. Global Spine J. 2022;12:1561-72.  DOI  PubMed  PMC
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J 
Surg. 2021;88:105906.  DOI  PubMed

16.     

Cabitza F, Campagner A. The IJMEDI checklist for assessment of medical AI. Int J Med Inform. 2021;153.  DOI17.     
Chae DS, Nguyen TP, Park SJ, Kang KY, Won C, Yoon J. Decentralized convolutional neural network for evaluating spinal deformity 
with spinopelvic parameters. Comput Methods Programs Biomed. 2020;197:105699.  DOI  PubMed

18.     

Wu H, Bailey C, Rasoulinejad P, Li S. Automated comprehensive adolescent idiopathic scoliosis assessment using MVC-Net. Med 
Image Anal. 2018;48:1-11.  DOI  PubMed

19.     

Wang L, Xu Q, Leung S, Chung J, Chen B, Li S. Accurate automated Cobb angles estimation using multi-view extrapolation net. Med 
Image Anal. 2019;58:101542.  DOI

20.     

Zhang K, Xu N, Guo C, Wu J. MPF-net: an effective framework for automated cobb angle estimation. Med Image Anal. 
2022;75:102277.  DOI

21.     

Zerouali M, Parpaleix A, Benbakoura M, Rigault C, Champsaur P, Guenoun D. Automatic deep learning-based assessment of 
spinopelvic coronal and sagittal alignment. Diagn Interv Imaging. 2023;104:343-50.  DOI  PubMed

22.     

Korez R, Putzier M, Vrtovec T. A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray 
images: performance evaluation. Eur Spine J. 2020;29:2295-305.  DOI  PubMed

23.     

Kim YT, Jeong TS, Kim YJ, Kim WS, Kim KG, Yee GT. Automatic spine segmentation and parameter measurement for radiological 
analysis of whole-spine lateral radiographs using deep learning and computer vision. J Digit Imaging. 2023;36:1447-59.  DOI  
PubMed  PMC

24.     

Yeh YC, Weng CH, Huang YJ, Fu CJ, Tsai TT, Yeh CY. Deep learning approach for automatic landmark detection and alignment 
analysis in whole-spine lateral radiographs. Sci Rep. 2021;11:7618.  DOI  PubMed  PMC

25.     

Orosz LD, Bhatt FR, Jazini E, et al. Novel artificial intelligence algorithm: an accurate and independent measure of spinopelvic 
parameters. J Neurosurg Spine. 2022;37:893-901.  DOI

26.     

Gami P, Qiu K, Kannappan S, et al. Semiautomated intraoperative measurement of Cobb angle and coronal C7 plumb line using deep 
learning and computer vision for scoliosis correction: a feasibility study. J Neurosurg Spine. 2022;37:713-21.  DOI

27.     

Schwartz JT, Cho BH, Tang P, et al. Deep learning automates measurement of spinopelvic parameters on lateral lumbar radiographs. 
Spine. 2021;46:E671-8.  DOI

28.     

Aubert B, Vazquez C, Cresson T, Parent S, de Guise JA. Toward automated 3D spine reconstruction from biplanar radiographs using 
CNN for statistical spine model fitting. IEEE Trans Med Imaging. 2019;38:2796-806.  DOI  PubMed

29.     

Nguyen TP, Jung JW, Yoo YJ, Choi SH, Yoon J. Intelligent evaluation of global spinal alignment by a decentralized convolutional 
neural network. J Digit Imaging. 2022;35:213-25.  DOI  PubMed  PMC

30.     

Galbusera F, Niemeyer F, Wilke HJ, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning 
approach. Eur Spine J. 2019;28:951-60.  DOI

31.     

Zhang T, Zhu C, Lu Q, Liu J, Diwan A, Cheung JPY. A novel tool to provide predictable alignment data irrespective of source and 
image quality acquired on mobile phones: what engineers can offer clinicians. Eur Spine J. 2020;29:387-95.  DOI  PubMed

32.     

Horng MH, Kuok CP, Fu MJ, Lin CJ, Sun YN. Cobb angle measurement of spine from X-ray images using convolutional neural 
network. Comput Math Methods Med. 2019;2019:6357171.  DOI  PubMed  PMC

33.     

Sun H, Zhen X, Bailey C, Rasoulinejad P, Yin Y, Li S. Direct estimation of spinal Cobb angles by structured multi-output regression. 
In: Niethammer M, Styner M, Aylward S, Zhu H, Oguz I, Yap P, Shen D, editors. Information processing in medical imaging. Cham: 
Springer International Publishing; 2017. pp. 529-40.  DOI

34.     

Weng CH, Wang CL, Huang YJ, et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet 
framework. J Clin Med. 2019;8:1826.  DOI  PubMed  PMC

35.     

H A, Prabhu GK. Automatic quantification of spinal curvature in scoliotic radiograph using image processing. J Med Syst. 
2012;36:1943-51.  DOI  PubMed

36.     

Zhang J, Lou E, Le LH, Hill DL, Raso JV, Wang Y. Automatic Cobb measurement of scoliosis based on fuzzy Hough Transform with 
vertebral shape prior. J Digit Imaging. 2009;22:463-72.  DOI  PubMed  PMC

37.     

Sounderajah V, Ashrafian H, Golub RM, et al; STARD-AI Steering Committee. Developing a reporting guideline for artificial 
intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11:e047709.  DOI  PubMed  PMC

38.     

Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for 
clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health. 2020;2:e537-
48.  DOI  PubMed  PMC

39.     

Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. 
Radiol Artif Intell. 2020;2:e200029.  DOI  PubMed  PMC

40.     

Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology. 2020;295:4-15.  DOI  
PubMed  PMC

41.     

Ghaednia H, Lans A, Sauder N, et al. Deep learning in spine surgery. Semin Spine Surg. 2021;33:100876.  DOI42.     
Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial 
intelligence. BMC Med. 2019;17:195.  DOI  PubMed  PMC

43.     

Cho BH, Kaji D, Cheung ZB, et al. Automated measurement of lumbar lordosis on radiographs using machine learning and computer 44.     

https://dx.doi.org/10.1177/21925682211049164
http://www.ncbi.nlm.nih.gov/pubmed/35227128
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393994
https://dx.doi.org/10.1016/j.ijsu.2021.105906
http://www.ncbi.nlm.nih.gov/pubmed/33789826
https://dx.doi.org/10.5281/zenodo.4835800
https://dx.doi.org/10.1016/j.cmpb.2020.105699
http://www.ncbi.nlm.nih.gov/pubmed/32805697
https://dx.doi.org/10.1016/j.media.2018.05.005
http://www.ncbi.nlm.nih.gov/pubmed/29803920
https://dx.doi.org/10.1016/j.media.2019.101542
https://dx.doi.org/10.1016/j.media.2021.102277
https://dx.doi.org/10.1016/j.diii.2023.03.003
http://www.ncbi.nlm.nih.gov/pubmed/36959006
https://dx.doi.org/10.1007/s00586-020-06406-7
http://www.ncbi.nlm.nih.gov/pubmed/32279117
https://dx.doi.org/10.1007/s10278-023-00830-z
http://www.ncbi.nlm.nih.gov/pubmed/37131065
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406753
https://dx.doi.org/10.1038/s41598-021-87141-x
http://www.ncbi.nlm.nih.gov/pubmed/33828159
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027006
https://dx.doi.org/10.3171/2022.5.spine22109
https://dx.doi.org/10.3171/2022.4.spine22133
https://dx.doi.org/10.1097/brs.0000000000003830
https://dx.doi.org/10.1109/tmi.2019.2914400
http://www.ncbi.nlm.nih.gov/pubmed/31059431
https://dx.doi.org/10.1007/s10278-021-00533-3
http://www.ncbi.nlm.nih.gov/pubmed/35064369
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921409
https://dx.doi.org/10.1007/s00586-019-05944-z
https://dx.doi.org/10.1007/s00586-019-06264-y
http://www.ncbi.nlm.nih.gov/pubmed/31897731
https://dx.doi.org/10.1155/2019/6357171
http://www.ncbi.nlm.nih.gov/pubmed/30996731
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399566
https://dx.doi.org/10.1007/978-3-319-59050-9_42
https://dx.doi.org/10.3390/jcm8111826
http://www.ncbi.nlm.nih.gov/pubmed/31683913
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912675
https://dx.doi.org/10.1007/s10916-011-9654-9
http://www.ncbi.nlm.nih.gov/pubmed/21267773
https://dx.doi.org/10.1007/s10278-008-9127-y
http://www.ncbi.nlm.nih.gov/pubmed/18516643
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043716
https://dx.doi.org/10.1136/bmjopen-2020-047709
http://www.ncbi.nlm.nih.gov/pubmed/34183345
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240576
https://dx.doi.org/10.1016/S2589-7500(20)30218-1
http://www.ncbi.nlm.nih.gov/pubmed/33328048
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183333
https://dx.doi.org/10.1148/ryai.2020200029
http://www.ncbi.nlm.nih.gov/pubmed/33937821
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017414
https://dx.doi.org/10.1148/radiol.2020192224
http://www.ncbi.nlm.nih.gov/pubmed/32068507
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104701
https://dx.doi.org/10.1016/j.semss.2021.100876
https://dx.doi.org/10.1186/s12916-019-1426-2
http://www.ncbi.nlm.nih.gov/pubmed/31665002
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821018


Page 15Glaser et al. Art Int Surg. 2025;5:1-15 https://dx.doi.org/10.20517/ais.2024.36

vision. Global Spine J. 2020;10:611-8.  DOI  PubMed  PMC
Burns JE, Yao J, Chalhoub D, Chen JJ, Summers RM. A machine learning algorithm to estimate sarcopenia on abdominal CT. Acad 
Radiol. 2020;27:311-20.  DOI  PubMed

45.     

Yang J, Zhang K, Fan H, et al. Development and validation of deep learning algorithms for scoliosis screening using back images. 
Commun Biol. 2019;2:390.  DOI  PubMed  PMC

46.     

Hu B, Kim C, Ning X, Xu X. Using a deep learning network to recognise low back pain in static standing. Ergonomics. 2018;61:1374-
81.  DOI  PubMed

47.     

Staartjes VE, de Wispelaere MP, Vandertop WP, Schröder ML. Deep learning-based preoperative predictive analytics for patient-
reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J. 2019;19:853-61.  DOI  PubMed

48.     

Hines AL, Barrett ML, Jiang HJ, Steiner CA. Conditions with the largest number of adult hospital readmissions by payer, 2011. In: 
Healthcare Cost and Utilization Project (HCUP) Statistical Briefs.  PubMed

49.     

Valenzuela JG, Cirillo Totera JI, Turkieltaub DH, Echaurren CV, Álvarez Lemos FL, Arriagada Ramos FI. Spino-pelvic radiological 
parameters: comparison of measurements obtained by radiologists using the traditional method versus spine surgeons using a semi-
automated software (Surgimap). Acta Radiol Open. 2023;12:20584601231177404.  DOI  PubMed  PMC

50.     

Khalifé M, Lafage R, Daniels AH, et al; International Spine Study Group. Assessing abnormal proximal junctional angles in adult 
spinal deformity: a normative data approach to define proximal junctional kyphosis. Spine. 2025;50:103-9.  DOI  PubMed

51.     

https://dx.doi.org/10.1177/2192568219868190
http://www.ncbi.nlm.nih.gov/pubmed/32677567
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359685
https://dx.doi.org/10.1016/j.acra.2019.03.011
http://www.ncbi.nlm.nih.gov/pubmed/31126808
https://dx.doi.org/10.1038/s42003-019-0635-8
http://www.ncbi.nlm.nih.gov/pubmed/31667364
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814825
https://dx.doi.org/10.1080/00140139.2018.1481230
http://www.ncbi.nlm.nih.gov/pubmed/29792576
https://dx.doi.org/10.1016/j.spinee.2018.11.009
http://www.ncbi.nlm.nih.gov/pubmed/30453080
http://www.ncbi.nlm.nih.gov/pubmed/24901179
https://dx.doi.org/10.1177/20584601231177404
http://www.ncbi.nlm.nih.gov/pubmed/37223123
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201147
https://dx.doi.org/10.1097/brs.0000000000005141
http://www.ncbi.nlm.nih.gov/pubmed/39351850

