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Abstract
Population aging is a substantial challenge for the global sanitation framework. Unhealthy aging tends to be 
accompanied by chronic diseases such as cardiovascular disease, diabetes, and cancer, which undermine the 
welfare of the elderly. Based on the fact that aging is inevitable but retarding aging is attainable, flexible aging 
characterization and efficient anti-aging become imperative for healthy aging. The gut microbiome, as the most 
dynamic component interacting with the organism, can affect the aging process through its own structure and 
metabolites, thus holding the potential to become both an ideal aging-related biomarker and an intervention 
strategy. This review summarizes the value of applying gut microbiota as aging-related microbial biomarkers in 
diagnosing aging state and monitoring the effect of anti-aging interventions, ultimately pointing to the future 
prospects of microbial intervention strategies in maintaining healthy aging.
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INTRODUCTION
Aging is a physiological process that individuals must undergo to death. The World Health Organization 
(WHO) defines it as “the gradual accumulation of molecular and cellular damage over time”[1], which 
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further involves all tissues and triggers systemic structural breakdown and functional decline. As estimated, 
people aged 65 or older accounted for 9.1% of the world’s overall population in 2019, imposing a heavy 
burden on the national economy and healthcare system[2]. Glycation, oxidation, inflammation, and dysbiosis 
have been emphasized for a prominent correlation with aging[3], which benefits both the elaboration of 
aging status and the expansion of the anti-aging drug spectrum. With the deepening of research these years, 
the position of gut microbes in aging events has been progressively better described.

Trillions of microbes constitute the broadest human symbiotic microecology, co-operating in the 
maintenance of the body’s immune defense[4], nutrient absorption[5], and neuroprotection[6]. Technical 
advancements in high-throughput sequencing and multi-omics analysis have facilitated the study of 
microbiota in individual growth and metabolism, and the role of gut microbes in host aging has been 
increasingly elucidated[7]. Metagenomic sequencing of fecal samples from multiple longevity families 
implicated that the diversity of gut microbiota and the abundance of bacterial metabolites in aging 
populations were lower than in younger generations[8]. However, specific adjuncts such as fecal microbiota 
transplantation (FMT)[9] or probiotic supplementation[10] could, in turn, help retard aging, or at least 
enhance the survival quality of the elderly. At this scale, gut microbes can be interpreted as a potential 
aging-related biomarker and, through microbiota modulation, hold promise for healthy aging or even aging 
reversal.

This mini-review systematically depicts the role of gut microbiota in distinguishing different aging patterns, 
and its feasibility in retarding aging or maintaining healthy aging, thus outlining a blueprint for the 
application of gut microbes as biomarkers or intervention targets in active health.

BIOLOGICAL OR CLINICAL PERSPECTIVES TO DEFINE AND CHARACTERIZE 
DIFFERENT PATTERNS OF AGING
The definition and signatures of aging
Aging can be interpreted as a state of generalized degeneration. The superimposition of genetic and 
environmental factors contributes to the complexity of aging, and the intuitive evaluation of clinical aging 
by chronological age is no longer applicable. The inconsistency between physical function and age has 
become highly pronounced, making biological age a better criterion. Cellular senescence, the initiating link 
of systemic aging, first triggers molecular damage, which in turn induces oxidative stress, inflammatory 
immunity, nutritional dysregulation, metabolic impairment, and neurodegeneration in the organism, and 
eventually presents signs of aging[11]. On the basis of biological alterations, aging can be classified into 
physiological and pathological aging[12]. The latter is often associated with diabetes[13], cardiovascular 
diseases[14], cancers[15], and neuro-degenerative diseases[16], resulting in poor life quality and, ultimately, a 
shortened lifespan.

It is worth emphasizing that although aging is inevitable, the pursuit of delayed aging or at least healthy 
aging is attainable with flexible monitoring and potent interventions. The identification and detection of 
aging-related biomarkers are paramount for quantifying the level of physical function and evaluating the 
effect of behavioral factors. The ideal aging-related biomarker, as defined by the American Consortium for 
Aging Research (AFAR), should enable individualized marking and systematic monitoring of aging, as well 
as longitudinal non-invasive follow-up in subjects[17]. The DNAmAge, to determine chronological age based 
on the methylation of deoxyribonucleic acids, and GlycanAge, to track the effects of lifestyle interventions 
on aging based on the glycosyl molecules attached to immunoglobulin G, are among the more established 
and commercially available biomarkers of aging[18]. Although none have yet been approved for clinical 
application, their accuracy in marking aging is well accepted. Other studies have also focused on the host 
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level of age-related biomarkers; it is possible that the combination of serum biomarkers such as 
inflammatory bodies[19] (indicating inflammatory aging), Sirtuins[20] (associated with malnutrition risk and 
frailty phenotype), and Clusterin[21] (monitoring neurodegeneration) will be adopted in conjunction for the 
quantification of aging. A common shortcoming, however, is the unsatisfactory efficacy of the above 
indicators in characterizing inter-individual variabilities and environmental sensitivities.

Gut microbiota can be summarized as bacterial communities that colonize or temporarily reside in the 
gastrointestinal cavity[22]. The spatiotemporal variations in the abundance, composition, and vitality of 
microbiota constitute a vast microecology, thus bridging the human body and the external environment, 
and exerting a pivotal impact on health and disease. The key point lies in the role of the gut microbiome in 
characterizing diseases such as gastrointestinal cancers, diabetes, and obesity. For instance, significant 
correlations have been reported between Helicobacter pylori infection and the high risk of gastric 
lymphoma[23], as well as the indication of Fusobacterium nucleatum abundance in the prognosis of colorectal 
cancer[24]. These years, with the inclusion of dysbiosis in aging signatures in 2023[12] and multiple researches 
elucidating the function of microbiota interventions in aging-related diseases, here we reiterate the 
possibility of using gut microbiota as biomarkers to predict aging and evaluate the efficacy of anti-aging 
interventions.

Gut microbiota as biomarkers to diagnose and monitor aging
Gut microbiota as predictive biomarkers
Multiple large-sample, multi-center, and group-based studies have partially clarified the inter- and intra-
population differences in aging-related microorganisms. Metagenomic sequencing of gut microbes from 32 
long-lived families across three generations (including centenarians, the elderly, and the younger) revealed 
reduced gut microbiota diversity and functional deficits of associated essential amino acids in the elderly. 
However, interestingly, a significant enrichment of anti-inflammatory bacteria such as Desulfovibrio piger, 
Gordonibacter pamelaeae, and Ruminococcaceae bacterium D5 was observed in centenarians compared to 
younger and older age groups, and short-chain fatty acid high-yielding bacteria like Akkermansia 
muciniphila and other potential probiotic behave similarly, which may contribute to the health maintenance 
of aging individuals[25]. In addition, an observational study of four age groups, young, old, centenarians, and 
semi-centenarians, proposed the concept of enterotype[26], which divides the gut microbiota into multiple 
functional core microbiome clusters. One group of enterotypes containing Bacillariophyceae, Prevotella, 
and Rumenococcaceae decreased in abundance in the advanced age groups, suggesting that the delineation 
and definition of enterotypes may help describe the downgrading of overall functional levels in the aging 
population and also serve as potential aging-related microbial biomarkers.

Further, healthy elderly individuals also exhibit an evident flora profile compared to the non-healthy ones. 
Akkermansia spp. and Erysipelaceae UGG were the units with significantly increased abundance in the 
microbial taxa of a healthy aging population[27]. Monitoring data on immune function, blood pressure, and 
body weight in both groups also illustrated the role of quantitative changes in taxa such as Ruminococcus, 
Prevotella, Oscellobacter CAG, and Bacteroides in the gut microbiome in healthy aging[28]. Notably, a study 
has confirmed the feasibility of using altered Sartorius spp./Pasteurella ratios as an essential microbial 
alteration for aging-associated sarcopenia; the role of gut bacteria-derived metabolites in characterizing 
aging-induced neurodegeneration has also been highlighted in another study[29], which inspired us to 
construct a subsystem of aging-related diseases with associated microbial factors for a more precise aging 
representation.
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Gut microbiota as reactive biomarkers
Response to interventions is another major criterion for screening aging-related biomarkers. Utilizing diet 
and drug interventions as the primary means of anti-aging has become a consensus, in which gut microbial 
alterations as reactive biomarkers make sense. Modification of dietary strategies such as caloric restriction 
(CR)[30] and intermittent fasting (IF)[31] has been proven to maintain health and prolong lifespan in a target 
of rapamycin (TOR) signaling pathway-dependent or -independent manner, and this is, at least partially 
due to gut improvement. Therefore, the detection of α-diversity and β-diversity, which indicate microbiome 
abundance and diversity, can well reflect the intervention effect[32]. Furthermore, biased diets fortified with 
substances such as phenols and fiber intake have been observed to exhibit dual benefits of delaying aging 
and regulating the gut microbiota. The above effect can be signified by the enhanced abundance of 
probiotics such as Bifidobacterium and Lactobacillus[33]. In addition, medications contribute to the anti-
aging campaign. TOR signaling inhibitor Rapamycin[34], chronic disease targeting drug Resveratrol[35], and 
the Chinese pharmaceutical preparation FuFang Zhenshu TiaoZhi (FTZ) have all been adopted in the 
preventive healthcare of the elderly. Unexpectedly, gut microbial changes can also describe drug efficacy. 
The FTZ-administered aging mice model showed an extended lifespan, along with a decline in the level of 
Clostridium erysipelae, and the raised abundance of probiotics such as A. muciniphila and Clostridium 
butyricum existed at the same time[36]. However, the problem is that the causal association between the anti-
aging capacity of the above interventions and the altered microbiota remains unknown.

THE INVOLVEMENT OF GUT MICROBIOTA IN HEALTHY AGING
Inflammatory immunity
The capacity of gut microbiota to mark aging is inextricably linked to the biological mechanisms by which it 
acts on the body, dominated by immunomodulation. Intestinal stem cells (ISCs), located in the crypts, serve 
as the cellular basis for intestinal epithelial renewal and mucosal permeability[37]. Gut microbes in healthy 
adults can interact with ISCs through their bacterial components and metabolites, on the one hand 
activating the dual oxidase to generate reactive oxygen (ROX) in response to bacterial uracil[38], and on the 
other hand initiating the immune deficiency (IMD)/Relish pathway to enhance the expression of 
antimicrobial peptides (AMP)[39], which together mediate the maintenance of the balance between gut and 
microbiome, as well as normal immune state. The intestinal mucus layer also depends on the commensal 
microbiota to induce the release of secretory immunoglobulin A and inflammatory factors such as 
interleukin-6, interleukin-10, and tumor necrosis factor-α, thereby achieving immune suppression and 
killing of opportunistic pathogens[40].

Due to the hyperfunction of pro-inflammatory T-cell populations (e.g., TH1 and TH17 cells), defects in 
immune surveillance, and loss of self-tolerance, the intrinsic immunity of the elderly is susceptible[41]. In this 
case, unhealthy aging accompanied by intestinal dysbiosis directly disrupts the delicate balance that exists in 
the gut of healthy individuals, as described above, which may at least partially explain the onset of systemic 
low-grade inflammation. Specifically, the upregulated expressions of ROX and AMP should be blamed. 
ROX is a key molecule mediating cellular senescence, while sustained ROX production also leaves the 
intestinal epithelium in a state of chronic oxidative stress damage[38]. Impaired intestinal barrier integrity 
and elevated mucosal permeability not only hinder the digestion and absorption of nutrients in the elderly, 
but also accelerate the leakage of pathogens and harmful substances into the circulation, raising the 
incidence of aging-related diseases[37]. Studies have also confirmed that in Drosophila, the upregulation of 
AMP would make the peptidoglycan recognition protein-dependent gut development and longevity 
modulation difficult to achieve[42]. All of the above prompt that the imbalance of gut symbiotic microbiota-
host interactions may induce a chain reaction of aging and short lifespan via activating conserved immune 
pathways. Therefore, surveillance and maintenance of normal intestinal microecology are required for 
healthy aging.
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Nutrient metabolism regulation
Nutrition is the main common factor that links both gut microbes and hosts; thus, the microbiome may 
influence lifespan and health by supplementing nutrition or regulating the body’s nutritional metabolic 
signaling pathways[43]. Cellulose, for instance, can be decomposed into short-chain fatty acids by 
Ruminococcus and Butyrivibrio, etc., converting from being unavailable for intestinal absorption to 
indispensable bioactive molecules. These bacterial-derived metabolites have been shown to be effective in 
the amelioration of basic diseases in the elderly, such as type 2 diabetes and obesity[44]. Insulin/insulin-like 
growth factor 1 (IGF-1) signaling (IIS), the first signaling proven to be involved in aging regulation, was 
found to be somewhat relevant to the nutrient metabolism of gut bacteria[45]. Caenorhabditis elegans model 
with healthy bacterial composition features proper intestinal nutrient supply and sensory capacity, and the 
IIS pathway is sustained in low activation, thus mitigating the host aging[46]. Similar situations also occur on 
other nutritional metabolic pathways associated with the IIS, such as Sirtuins, Forkhead Box O (FOXO)[47], 
and mammalian TOR pathways[48]. For instance, Δhns Escherichia coli administration could extend the 
lifespan of C. elegans by activating decay accelerating factor-16 (DAF-16)/FOXO family transcription 
factors, and this effect is independent of the IIS pathway[49].

Neuroprotection
Neurodegeneration is the typical feature of individual aging in the central nervous system, mainly 
manifested as motor and cognitive decline, for which the onset of Parkinson’s disease[50] and Alzheimer’s 
disease[51] is most common. For the gut-brain axis, a figurative perception defines it as the collection of 
signaling pathways between the central and enteric nervous systems that enable a bidirectional connection 
between the gut and the brain through immune, metabolic, and neuroendocrine mediators[52]. Studies have 
shown that healthy gut microbiota could prevent Alzheimer’s disease through the gut-brain axis, an effect 
that relies on the interaction and signaling of microecology-associated neurological and humoral factors. In 
particular, the restriction of trimethylamine oxide levels inhibits β-amyloid formation, neuroinflammation, 
and tau phosphorylation, mitigating the further progression of mild cognitive impairment to organic lesions 
in older individuals[53]. In addition, metabolites of gut microbes such as secondary bile acids and tryptophan 
derivatives can modulate the bile acid profile, serotonin synthesis pathway, and the number of brain-derived 
neurotrophic factors, which, in turn, yield positive guidance for the learning behavior, memory recognition, 
and emotional expression in the organism[54,55].

INTERVENTIONS FOR HEALTHY AGING: GUT MICROBIOTA TARGETED
Fecal microbiota transplantation
The mechanism of gut microbiota-host interaction provides another perspective on anti-aging research, 
that is, in addition to marking aging, gut microbes themselves or strategies targeting gut microbes possess 
the potential for anti-aging effects. FMT transplants functional microbiota from the feces of healthy donors 
into the gut of patients, treating both intestinal and extra-intestinal diseases through microecological 
remodeling. Initially, FMT was tentatively applied in Clostridium difficile infection, stubborn constipation, 
and intestinal immune deficiency, with demonstrable efficacy[56]. As standardized FMT takes hold, there is 
growing evidence to support its anti-aging effect. In a premature aging mice model, the experimental group 
transplanted with fecal bacteria from wild-type mice showed a 13.5% prolonged average lifespan and a 9% 
enhanced maximum survival rate[57]. After transplantation of fecal bacteria from long-lived elders into mice, 
alleviation of aging indicators and improved richness of Lactobacillus spp. and short-chain fatty acid-
producing bacteria were observed compared to controls[58]. Another study then illustrated that FMT 
improved aging-related signatures in the eye, brain, and gut by repairing intestinal barrier, reversing 
systemic inflammation, and refining nutrient metabolism[59].
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In addition, the advantage of FMT also lies in the capacity to treat various aging-related diseases through 
the distal effects of axial networks such as the gut-brain axis, gut-skin axis, and gut-muscle axis. 
Enterobacteria transplantation from young mice into premature aging mice revealed that the rejuvenated 
microbiota could reverse aging-related dementia and cognitive decline to some extent via hippocampal 
restoration[60]. In a trial that involved 110 middle and old-aged women with dry, wrinkled skin, a 21.73% 
improvement in skin elasticity and evident reduction in wrinkle depth were observed after consistently 
administrating a specially formulated microbiota drug for 12 weeks[61]. The senile osteoporosis cohort also 
presented significantly better histologic indices, such as bone volume and trabecular bone thickness, than 
the controls after receiving FMT[62]. The above experimental findings could be considered compelling 
arguments for FMT retarding aging and alleviating aging-related lesions. Remarkably, metabolomic analysis 
showed a gradual resumption of the originally dysregulated bile acid profile after FMT, which elucidates the 
contribution of gut microbiota to the endocrine metabolism of the organism[63].

Along with the benefits, we must also be alert to the shortcomings of FMT at this stage. The occurrence of 
adverse events is a concern, since cases of death from resistant bacterial infections after FMT have been 
reported, as well as ineffective transplantation, immune rejection, and gastrointestinal side effects[64]. In 
addition, FMT in unhealthy aging populations is intended to mitigate or even reverse the negative effects of 
aging, but follow-up observational data on whether offsetting these effects on a large scale is feasible in the 
long term is lacking. The specificity of the elderly also requires more rigorous process management for the 
anti-aging application of FMT compared to current regulatory guidelines, including ethical approval, 
metrics assessment, and adverse event monitoring.

Probiotics, prebiotics and postbiotics
WHO defines probiotic living microorganisms as those that benefit the health of the host when 
supplemented adequately[65]. Specific probiotics maintain health and exert aging-delaying effects in multiple 
dimensions, such as dysbiosis regulation, anti-inflammation, and neuroprotection. In addition to the well-
known probiotics with anti-aging properties, such as Lactobacillus salivarius, Lactobacillus galacteri, and 
Lactococcus lactis, other probiotics that have been observed to extend lifespan are emerging these years[66]. 
Recent studies have revealed that Lactobacillus plantarum JBC5 administration prolonged the average 
longevity of Drosophila by 27.81%, mainly through the modulation of the serotonin signaling pathway[67]. 
Bifidobacterium adolescentis could raise superoxide dismutase values in serum and alleviate neuropathies by 
combating oxidative stress[68]. Lacticaseibacillus rhamnosus Probio-M9 significantly extended nematode 
lifespan with a calorie-independent DAF-2 pathway and P38 signaling cascade[69]. Moreover, Clostridium 
pratense (the main producer of butyrate) and Bacillus spp. (production of glycosyl hydrolases) also deliver 
superior anti-aging properties by regulating the balance of small molecules, such as short-chain fatty acids 
in the gut[70]. Probiotics from different phyla work through different biological pathways for anti-aging; 
judging which is superior or inferior makes little sense. Currently, A. muciniphila is a well-deserved hotspot 
with definite anti-glycemic and anti-aging performance[71]. After oral administration of A. muciniphila, the 
biosynthesis of secondary bile acids in premature aging mice was also enriched, thereby exerting the 
protective effect on accelerated aging[72]. Since the relevant research is just starting, the industrialization of 
A. muciniphila in anti-aging still has a long way to go. The results of microbiota localization also remind us 
that the action site of supplemented probiotics is rather limited and the species is relatively homogeneous, 
making it difficult to achieve the holistic regulation of the gut microecology.

Except for probiotics themselves, prebiotics such as inulin, oligosaccharides, and polyphenols have been 
repeatedly shown to selectively promote the growth of beneficial intestinal bacteria without being digested 
and absorbed by the host, thus providing a certain anti-aging effect. In particular, oligosaccharides have 
been proven in previous studies to regulate gut homeostasis by activating Bifidobacteria and inhibiting the 
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production of intestinal spoilage substances[73]. Recent studies have observed the proliferation of 
A. muciniphila in the gut after consumption of oligosaccharides, which may also be one of the anti-aging 
mechanisms of prebiotics[74]. The processed probiotic metabolites, collectively known as postbiotics, contain 
various active ingredients such as vitamins, proteins, and SCFAs[75]. Studies have reported the superior 
probiotic and anti-aging properties of postbiotics in the internal environment compared to living microbes; 
thus, preliminary progress has been made in the application of postbiotic extracts in skin aging and certain 
chronic diseases[76]. The intake of prebiotics and postbiotics is undoubtedly safer compared to direct 
supplementation with exogenous probiotics, but the extent to which their actual anti-aging efficacy can be 
attributed to themselves is worth speculating.

Dietary intervention
Compared to supplements, interventions based on a holistic diet may better reset the gut microbiota and 
thus achieve long-term health maintenance for the aging population. CR that does not induce malnutrition 
is optimal for extending lifespan. A study concluded that a fasting strategy of cutting food intake by 30% for 
two weeks shaped the Lactobacillus-dominant gut microbiota in mice, and the median lifespan of the 
experimental group increased by 20.8% after further full-life-cycle dieting[77]. As estimated, the standard CR 
adopted in most studies could extend the lifespan by an average of 10%-20%[78,79]. The other is the 
Mediterranean diet, which emphasizes the intake of fruits, vegetables, and grains, and limits the 
consumption of red meat and saturated fats. The maintenance of health-related microbiome, including 
enrichment of potential probiotics such as Enterococcus faecalis and Rhodobacter sphaeroides and depletion 
of deleterious bacteria such as Rhodobacter torques and Collinsella, has been found in the elderly with 
Mediterranean diet intervention[80]. This contributes to lowering inflammatory levels, improving cognitive 
function, and reducing frailty, implying a healthier aging condition. The accessibility and health benefits of 
the Mediterranean diet make it a recommended preventive medicine therapy, but its relevance for 
generalization in anti-aging practice still requires individualized assessment by clinicians.

CONCLUSION
Aging is the joint outcome of both genetic and environmental factors. Microorganisms have been observed 
to be involved in multiple aging-related diseases, and their inter-individual variability renders them an 
alternative as aging-related markers and intervention targets. In this review, underlying mechanisms of 
microbiota on host aging were explored, including inflammatory immunity, nutrient metabolic regulation, 
and neuroprotection. By summarizing the microbial features of aging populations, the value of various 
bacteria such as A. muciniphila and derived metabolites as biomarkers in characterizing aging and 
monitoring anti-aging interventions was identified. Additionally, given the active interactions between gut 
microbiota and host, we generalized the current status and future prospects of microbiota-targeted anti-
aging interventions such as FMT and probiotic supplementation, attempting to satisfy the healthy aging of 
the widest range of aging populations.

Setting gut microbiota as an entrance to explore aging characterization and anti-aging interventions is 
certainly a revolutionary mindset, but problems exist as well. The field of gut microbiota as aging-related 
biomarkers is still in its infancy, and the characterization of aging by microbiota remains only qualitative, 
lacking specific quantitative indicators to describe the correlation between both, thus necessitating the 
standardization of authoritative guidelines[81]. Secondly, the detailed mechanism between gut microbiota 
alterations and host aging is not yet clarified, and the actual microbial involvement in the aging process may 
be exaggerated or obscured. Thus, microbiota intervention combined with other anti-aging therapies might 
be a viable option. In addition, given the complexity of aging, model organisms such as nematodes, 
Drosophila, and mice[82] are often employed to simplify variable control and experimental manipulation. 
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This inevitably erases species-specific and inter-individual variations in human aging; thus, how to transfer 
the findings to humans remains to be investigated. Inserting primate models (e.g., rhesus monkey)[83] as an 
intermediate transition may work. Certainly, the microbiota system is already highly sophisticated, and even 
more so with human experiments. Human anti-aging studies must be optimized with updated statistical 
tools and multi-omics analysis to obtain more reference data.
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