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Abstract
Aim: Computer vision is a subset of machine learning (ML) technology that allows automated analysis of large 
operative video datasets. The aim of this study was to use a commercially available ML-driven platform to evaluate 
a subjective grading of operative difficulty in laparoscopic cholecystectomy (LC).

Methods: Patients undergoing LC prospectively consented, and their operations were recorded. The intra-operative 
findings were prospectively graded (1-4) based on intraoperative gallbladder appearance assessments. 
Deidentified videos were uploaded to Touch SurgeryTMand run through the platform’s algorithm, providing 
automated analytics including the total operative length and operative phase length. The rate of critical view of 
safety (CVS) achievement was also included in the analysis.

Results: 206 LC were included. 27 LC were excluded due to incomplete video recording and were therefore not 
amenable to the final data analysis. Grade 1 and 2 patients had significantly shorter operative time than grade 3 and 
4 patients [17min and 53s (IQR 15min and 24s- 21min and 38s) vs. 25 min and 49s (IQR 20min and 12s-38min and 
38s) (P < 0.010)]. The operative phases for each step were significantly longer in patients with gallbladders graded 
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3 or 4 compared to those patients graded 1 or 2 (P < 0.043). The CVS was achieved in 94% of grade 1 patients, 
88% of grade 2 patients, 85% of grade 3 patients and 73% of grade 4 patients (P = 0.177).

Conclusion: Increased operative time and decreased ability to achieve the CVS with more difficult intraoperative 
findings supports the utility of the proposed grading system. ML in surgery is a nascent field, but this study 
demonstrates the potential of commercially available platforms for use in operative analytics, documentation, audit 
and training of future surgeons.

Keywords: Laparoscopic cholecystectomy, machine learning, artificial intelligence, difficulty grading

INTRODUCTION
Computer vision is a subset of machine learning (ML) that allows automated analysis of large operative 
video datasets. Laparoscopic cholecystectomy is a high-volume procedure with consistent steps suitable for 
the application of ML techniques. Recent advances have included automated identification of operative 
steps and anatomical structures, but the impact of these technologies has been confined to research 
studies[1,2]. Their use in clinical practice has been limited due to a lack of surgeon awareness of the potential 
applications, concerns regarding the black box nature of algorithms, and limited high-quality surgical video 
data sets. Given the significant barriers to entry in developing these systems, including computer science 
expertise and data requirements, it is possible the commercial versions of these tools will become 
increasingly widespread. In this context, surgeon-led consideration of how these tools add value in clinical 
practice is needed.

Traditionally, clinicians have used pre-operative variables to predict the degree of gallbladder inflammation 
and thus surgical difficulty[3]. Increasingly intraoperative grading scores have been shown to be associated 
with operative outcomes and technical difficulty[4-7]. Given outcomes are often related to actions taken 
intraoperatively, quantification of technical difficulty allows for operative benchmarking, prediction of post-
operative outcomes, and development of research standards[8]. We hypothesize that an artificial intelligence 
platform can confirm the impact of a “difficult” cholecystectomy by assessing a subjective intra-operative 
cholecystectomy grading system. The aim of this study was to use a commercially available ML-powered 
surgical video management and analytics platform (Touch SurgeryTM) to evaluate subjective intraoperative 
grading of operative difficulty during laparoscopic cholecystectomy using a stepwise workflow approach 
and thereby consider the implications for clinical practice.

METHODS
Study Design
Patients undergoing elective laparoscopic cholecystectomy and routine operative cholangiogram (IOC) by a 
single specialist hepatobiliary surgeon (North Shore Private Hospital, Sydney, Australia) were consented 
preoperatively to undergo video recording of their operation. This study was approved by the Ramsay 
Health Care research ethics committee (approval no. RG2020.153). Video footage from camera insertion to 
the removal of the specimen was captured as part of routine patient care with an intraoperative photo of the 
critical view of safety (CVS) taken in every operation and measured operative time excluded time setting up 
the equipment, establishing the pneumoperitoneum and closing the wounds. Laparoscopic 
Cholecystectomy procedures were recorded, saved, de-identified, and then uploaded to Touch SurgeryTM (
https://www.touchsurgery.com/professional), a web-based platform for surgical video storage and surgical 
analytics, powered by ML. Upon upload, all videos were run through the Touch Surgery RedactORTM 

algorithm to ensure any remaining patient identifiable information was removed. RedactORTM detects 
portions of the video where the camera is outside of the patient and pixelates the video stream in real-time 
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on upload to prevent the recording of any potentially identifiable information. Operations are automatically 
broken down into phases and steps to provide insights into surgical performance, variation, and 
standardization, which provides opportunities for pre-operative rehearsal and post-operative review. The 
underpinning ML is based on Convolutional Neural Networks architectures for classifying and extracting 
frames into their feature representation (step one). A single frame, however, is normally not sufficient to 
correctly identify the operative phase, as it may depict anatomical landmarks that appear throughout the 
operation. To overcome this limitation and process the temporal information together with the spatial 
information, these features are then fed into a Recurrent Neural Network (step two) to improve temporal 
consistency and representation[9,10]. Touch SurgeryTM phase identification is based on previous works 
including DeepPhase, EndoNet, and a phase recognition model with an F1 (a composite score used to assess 
ML accuracy generated by taking the mean of the positive predictive value and sensitivity) score of 91.1% in 
predicting phase of total knee joint replacement[9-11]. The network used to annotate Laparoscopic 
Cholecystectomy videos in this paper was developed by Digital Surgery Ltd. (UK) using a large dataset of 
combined videos from surgeons of different countries and hospitals. It achieves 95% accuracy in detecting 
phase transitions in laparoscopic cholecystectomy. When tested on the video data included in this study, the 
model also achieved 95% accuracy. Qualified annotators, trained on surgically-validated guidelines, quality-
assured the model outputs.

Operative Phases
In the present platform, Touch SurgeryTM defined the surgical workflow phases for the automated analysis 
by liaising with key opinion leaders and consulting the literature[12-15]. Based on this, the laparoscopic 
cholecystectomy videos were divided into the following five operative phases for the purposes of automated 
analysis:

1 Port insertion and gallbladder exposure.

2 Dissection of Calot’s triangle.

3 Ligation and division of the cystic duct & artery.

4 Gallbladder dissection.

5 Specimen removal and closure.

CVS
Presence of the CVS was manually documented as part of the Touch SurgeryTM digital analytics service by 
trained annotators in accordance with the SAGES safe cholecystectomy program[16]. This approach has 
previously shown validity, with Deal et al.[17] demonstrating a statistically significant correlation between 
expert and crowd workers’ ratings of CVS achievement.

Grading of Operative Difficulty
The North Shore system uses a 4-point “operative difficulty” grading score which has been recorded 
prospectively in the operation record for every patient since 1998. This was modified from an earlier 
grading system first described by Hugh et al. in 1992 in an unselected consecutive series of 100 patients 
undergoing laparoscopic cholecystectomy[5,18]. Assessment of the intraoperative findings was performed and 
documented at the commencement of the procedure by the attending surgeon in keeping with the scale as 
described by O’Neill et al.[Figure 1][5,18].
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Figure 1. Intraoperative grades: Grade 1: Thin wall, normal-appearing gallbladder, no adhesions (Top left). Grade 2: Mildly abnormal-
appearing GB (slightly thick-walled or distended) And/or thin-filmy GB adhesions (Top right). Grade 3: Moderately abnormal 
appearing GB (thick-walled, oedematous, with mucocele, or large distended gallbladder. And/or overlying moderate adhesions (Bottom 
left). Grade 4: Severely inflamed or grossly abnormal-appearing GB (e.g., necrotic or perforated). And/or extensive dense adhesions 
(Bottom right).

Inclusion and exclusion criteria 
The present cohort includes both elective and acute patients presenting to a single surgeon HPB surgeon at 
the Royal North Shore Hospital and North Shore Private Hospital, St Leonards, NSW, Australia. To be 
eligible, captured videos had to have all phases including port insertion, dissection of Calot’s triangle, 
ligation and division of the cystic duct and artery, gallbladder dissection, and specimen removal. Videos that 
did not have all five phases due to late recording or early stopping were excluded from the analysis.

Statistical analysis 
Statistical analysis was performed using SciPy and Pingouin[19,20]. D’Agostino-Pearson’s test of normality was 
performed; where there was a normal distribution, a Levene test of variance was performed, or if non-
parametric, Bartlett’s test. Mann-Whitney U tests were performed for non-parametric samples with equal 
variance and Brunner-Munzel for those with unequal variance. For parametric samples with equal variance, 
a t-test was performed, or Welsh’s test for those with unequal variance.

RESULTS
During the study period, 233 patients consented to the video recording of their procedures, and from this 
group, 206 (88%) videos met the inclusion criteria. 27 LC were excluded due to incomplete video recording 
and were therefore not amenable to analysis. The videos analyzed included a consecutive series of patients 
operated on by a single surgeon over a 3-year period. Most operations were done electively, and in all cases, 

a
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a standardized operative approach including routine intra-operative cholangiography was undertaken. 
Demographic and peri-operative details of the cohort are seen in Table 1.

The median operative time was 19min and 53s (IQR 15min and 53s-26min and 16s).  In total, 143 (69%) 
patients were classified as either grade 1 or 2, with a median operative time of 17min and 53s (IQR 15min 
and 24s-21min and 38s). In comparison, 63 (31%) patients were classified as either grade 3 or 4 with a 
median operative time of 25 min and 49s (IQR 20min and 12s-38min and 38s). Operative time was 
significantly shorter for grade 1 and 2 than for the patients graded 3 or 4 (P < 0.01) [Figure 2]. The variation 
in operative length was greatest in patients who were assigned a grade of 3 or 4. The time differences and P-
values between phases are documented in Table 2.

There were 33 (16%) grade 1 patients, with a median operative time of 15min and 49s (IQR 13min and 14s-
18min and 15s), and 110 (54%) grade 2 patients, with a median operative time of 18 min and 25s (IQR 
15min and 45s-21min and 51s). Fifty-two (25%) grade 3 patients were analyzed with a median operative 
time of 23min and 48s (IQR 19min and 56s-33min and 34s), and 11 (5%) grade 4 patients’ videos were 
analyzed, with a median operative time of 56min and 4s (IQR 41min and 18s-71min and 11s).

When the operations were analyzed according to the five predetermined operative steps, all phases took 
significantly longer to complete in grade 3 and 4 patients compared with grade 1 and 2 patients [Table 2] 
[Figure 3].

The rate of achievement of the CVS for each operative grade is shown in Table 3. The rate of achievement of 
the CVS when comparing grade 1-2 and grade 3-4 was not significantly different (P = 0.177)

DISCUSSION
The ML-powered system allowed automated analysis of a large video dataset, confirming that the total 
operative time and individual operative phases were correlated with an intraoperative difficulty rating. 
Operative time is a consistent marker of technical ability and operative difficulty across the surgical 
literature, and grading of laparoscopic cholecystectomy difficulty has been shown to have validity in 
predicting outcome[4-6,8,21-24]. This study provides an example of the emerging clinical utility of computer 
vision technology in providing automated operative analytics in clinical practice.

Accurate identification of the operative phase is important in allowing workflow planning and the 
development of intraoperative decision support systems. However, to have utility, operative phases need to 
be clinically relevant. While previous publications have considered the accuracy of automated phase 
identification, there is currently no universal standard in laparoscopic cholecystectomy[25]. The present study 
investigated the clinical utility of automated phase identification by considering the impact of a subjective 
gradings score on operative phase times. A significant difference in phases times was seen across all phase 
times when comparing grade 1 and 2 gallbladders with grade 3 and 4 gallbladders. The major time 
difference between grades was seen in the time taken in initial exposure and the time to dissect Calot’s 
triangle, which is arguably the most critical step in avoiding a bile duct injury. The image findings of the 
IOC were not captured as part of the laparoscopic recording, which meant this could not be included as a 
discrete phase in this study; however, routine performance ensured there was no biasing effect between 
groups. While further work is needed to create a unified standard of phase identification, the data presented 
here suggest clinical utility of the chosen phases.
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Table 1. Patient and operative demographics

Preoperative variables (n = 206)

Median Age (IQR) 52 (14-93)

Gender, (%) 
Female

 
68

Median Charlson Comorbidity Index (IQR) 2 (0-7)

Pancreatitis, (%) 3.9

Jaundice, (%) 2.5

Urgent/Semi-urgent operation, (%) 12

Operative variables 

IOC attempted, (%) 97

IOC successful, (%) 95

Postoperative outcomes

Median Hospital stay in days (IQR) 1 (0-21)

Complications

Minor (≤ Grade 2) 6.2%

Major (> Grade 2) 1%

Table 2. Operative time by Grade

Phase Grade 1 and 2 median time in 
minutes (minutes: seconds)

IQR 
(minutes: 
seconds)

Grade 3 and 4 median time in 
minutes (minutes: seconds)

IQR (minutes: 
seconds)

P-
value

Port insertion and 
gallbladder exposure

02:02 01:28-02:54 04:35 02:55-07:55 P = 
0.00

Dissection of Calots 
triangle 

05:15 03:55-07:00 07:00 04:39- 10:29 P < 
0.01

Ligation and division of 
cystic duct & artery

02:53 01:16-05:10 03:53 02:47-07:04 P < 
0.01

Gallbladder Dissection 02:20 01:03-04:27 03:34 01:30-05:44 P < 
0.05

Specimen removal and 
closure

03:24 02:31-05:00 04:06 03:02-07:23 P < 
0.01

Table 3. Achievement of CVS by grade

Grade Anterior CVS Posterior CVS No CVS Total 

Grade 1 91% (n = 30) 3% (n = 1) 6% (n = 2) 100% (n = 33)

Grade 2 86% (n = 95) 2% (n = 2) 12% (n = 13) 100% (n = 110)

Grade 3 83% (n = 43) 2% (n = 1) 15 % (n = 8) 100% (n = 52)

Grade 4 73% (n = 8) 0% (n = 0) 27% (n = 3) 100% (n = 11)

CVS: Critical view of safety.

Achievement of the CVS is an established requirement in safe cholecystectomy[16,26]. Rates of CVS 
achievement are often overstated, with one study finding CVS was only achieved in 10.8% of patients 
despite a documented achievement rate of 80%[27]. Intraoperative photo documentation of the CVS has been 
suggested as a quality control measure; however, this is surgeon dependent and necessitates subsequent 
external audit to ensure consistency[28]. In contrast, routine intraoperative video recording removes barriers 
to capture and may ensure consistency of achievement[29]. The high rate of CVS achievement in the current 
study (88%) is in keeping with operations being performed in the elective setting by a sub-specialist 
hepatobiliary surgeon. The inverse relationship between patient grade and CVS achievement demonstrated 
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Figure 2. Median operative times by grade. Copyright. All rights reserved. Digital Surgery Ltd. 2021.

Figure 3. Median Operative Time by Phase. Phase duration comparisons between Grade 1 and 2 (colored boxes) and Grade 3 and 4 
(grey boxes). All phases took significantly longer to complete in grade 3 and 4 patients compared with grade 1 and 2 patients. 
Copyright. All rights reserved. Digital Surgery Ltd. 2021.

is concordant with an accurate grading score. Broader validation could allow for a benchmark rate of CVS 
achievement, prompting audit and review if rates persistently drop below this. While in the future, a 
prospective analysis could provide intraoperative prompts with manual override to ensure the CVS is 
achieved.

Surgical curricula are increasingly relying on competency-based models as a means of capturing 
progress[30-32]. This approach reflects the operative learning curve, in which trainees perform different 
segments of each operation under supervision before progressing to perform the entirety of the operation. 



Page 53 Tranter-Entwistle et al. Art Int Surg 2022;2:46-56 https://dx.doi.org/10.20517/ais.2022.01

By creating agreed phases or steps of each operation as part of a training curriculum, these competencies 
can be captured, and accurate feedback provided. Capture and automated assessment of these phases with 
ML techniques is a logical step in this pathway. While manual review of large volumes of video is not 
feasible, employing AI allows automated analysis and segmentation of phases. This study provides 
timeframes for each stage of the operation that represents a technical gold standard as the operations were 
performed by an experienced laparoscopic hepatobiliary surgeon. Although further data is needed for each 
level of trainee and each grade of gallbladder difficulty, this forms the first part of establishing competency-
based standards for a surgical procedure. In the future, failure to meet expected time requirements might 
trigger a manual review of the technique with surgeon mentors. Prospective capture with automated 
grading and analysis could allow for focused video review between surgeon and trainee. Routine operative 
difficulty grading would quantify the operative technical difficulty of the procedures trainees are 
undertaking. Given the operative technical skill and the operative difficulty grade are predictive of patient 
outcomes, both need to be taken into account when considering trainee progress[4,5,8]. Understanding the 
degree of difficulty of the operations the trainee is undertaking and what phases of these are challenging 
would more accurately quantify the trainees’ progression through their learning curve.

Given the documented utility of the classification system for quantifying the difficulty of laparoscopic 
cholecystectomy in both classical and ML evaluations, validation of clinical usefulness needs to be 
confirmed in a large cohort of surgeons at different operative levels.  This would allow for the generation of 
normal curves for expected operating time for each phase of the identified operation. The novel test set 
from this study could potentially be used to develop automated identification of the intraoperative difficulty 
grade.

The present study focused on overall and phase timing as measures of operative difficulty as a means of 
considering the clinical utility of the computer vision platform. Time is only one aspect of operative 
performance that can be assessed using ML techniques. In particular, automated assessment of CVS 
attainment would represent a significant advancement. Other factors that could be captured automatically 
include the rate of gallstone spillage, the number of instrument changes, and the economy of instrument 
movement. Incorporating these and other factors in automated analysis could produce a more 
comprehensive assessment of operative techniques for both audit and training purposes.

AI models are able to segment and automatically identify critical operative steps1. However, in most cases, 
this has involved retrospective capture and analysis of video in relatively small sample sizes, and this 
approach is limited by the physical time cost required for surgeon video labeling[17]. Through pooled data 
sets, increased surgeon interest, and possibly unsupervised ML, these issues are slowly being addressed. It is 
even possible to envisage that soon the operative video will be stored as part of the patient notes and with an 
automated operative note generation. As these difficulties are overcome, and AI tools become readily 
available in the workplace, clinician involvement with decision-making regarding utility, utilization, and 
value will be needed. Engagement ensures the tools developed will be driven by clinical applicability and 
provide value in patient care rather than an externally imposed quality indicator adding to the already 
burgeoning paperwork load.

Computer vision tools lack easy explainability due to the opaque nature of the internal logic of their 
underpinning neural networks algorithms, limiting clinicians’ ability to understand and explain how these 
tools reach their conclusions. This concern has been particularly pronounced when these tools are used to 
guide treatment decisions. Where the inability to explain fully how a decision is reached precludes a 
clinician’s ability to undertake informed consent with their patients[33]. However, the recent federal drug 
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administration approval of the GI Genius system for automated polyp identification following clinical trial 
data showing increased adenoma detection rate signifies the increasing acceptability of these systems where 
they are clinically explainable and improve outcomes[34,35]. The current retrospective nature of surgical video 
analysis platforms means that they do not directly impact decision-making around patient treatment and 
therefore do not violate the principles of informed consent due to a lack of algorithmic explainability. While 
this lessens the ethical barrier to uptake, it is still imperative for clinicians to consider how they should be 
used in clinical practice and if outputs are consistent with clinical intuitions. Clinician input is therefore 
needed to link these systems to clinical practice and consider if their results have clinical explainability. In 
particular, while phase identification algorithms in laparoscopic cholecystectomy have shown reasonable 
accuracy, their consistency with real-life clinical intuition needs to be considered. In this context, the 
association seen between increasing operative time and increasing operative difficulty, particularly in the 
dissection of calot’s triangle, is consistent with clinical intuition and clinically explainable.

The study presents a single specialist surgeon cohort of prospectively captured laparoscopic 
cholecystectomy operations. While the universality of laparoscopic cholecystectomy means that from a 
technical perspective, this study is generalizable, this may not be true for the ML analysis. This is because 
these systems can be brittle with significant changes in analysis quality due to seemingly irrelevant changes 
in operative approaches or equipment[36]. It should also be noted that the operative times cannot be 
extrapolated due to the procedures being undertaken by a single expert HPB surgeon. Further validation of 
intraoperative grading is needed in external data sets encompassing a broader number of centers. ML in 
surgery is a nascent field, but this study and others like it demonstrate the potential in operative analytics, 
documentation, audit and training of future surgeons.
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