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Abstract
In this work, we report the discovery of energy cocrystals using an efficient iterative workflow combining an evo-
lutionary algorithm and a machine learning potential (MLP). The compound 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-
hexaazaisowurtzitane (CL-20) has attracted significant attention owing to its higher energy density than traditional
energetic materials. However, the higher sensitivity has limited its applications. An important way to reduce its
sensitivity involves cocrystal engineering with traditional explosives. Many cocrystal structures are expected to be
composed of these two components. We developed an efficient iterative workflow to explore the phase space of
CL-20 and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) cocrystals using an evolutionary algorithm and an
MLP. The algorithm was based on the Universal Structure Predictor: Evolutionary Xtallography (USPEX) software,
and the MLP was the reactive force field with neural networks (ReaxFF-nn) model. A set of high-density cocrystal
structures was produced through this workflow; these structures were further checked via first-principles geometry
optimizations. After careful screening, we identified several high-density cocrystal structures with densities of up to
1.937 g/cm3 and HMX:CL-20 ratios of 1:1 and 1:2. The influence of hydrogen bonds on the formation of high-density
cocrystals was also discussed, and a roughly linear relationship was found between energy and density.

Keywords: Crystal search, machine learning, ReaxFF-nn, evolutionary algorithm

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.jmijournal.com

https://creativecommons.org/licenses/by/4.0/
www.jmijournal.com
https://orcid.org/0000-0001-8030-4714
http://crossmark.crossref.org/dialog/?doi=10.20517/jmi.2023.37&domain=pdf


Page 2 of 14 Ye et al. J Mater Inf 2024;4:5 I http://dx.doi.org/10.20517/jmi.2023.37

INTRODUCTION
Crystal structure prediction (CSP) techniques enable the design of new crystal structures with a given chem-
ical composition. However, the high computational costs of density functional theory (DFT) calculations
limit their applications in molecular systems, whose unit cells usually contain dozens or even hundreds of
atoms. Recently developed machine learning potentials (MLPs), such as the Gaussian approximation poten-
tial (GAP) [1–6], moment tensor potential (MTP) [7–9], and DeepMD-kit package [10–13], can perform DFT-level
calculations at the computational cost of classical force fields. CSP methods, such as Universal Structure Pre-
dictor: Evolutionary Xtallography (USPEX) [14,15] andCrystal structure AnaLYsis by Particle SwarmOptimiza-
tion (CALPSO) [16], combining MLPs [17–23] will undoubtedly become the main approaches in the search for
new materials. The work by Podryabinkin [24] on CSP combining an MLP and an evolutionary algorithm
showed that an accuracy of 11 meV/atom could be achieved in the known structure predictions. It is clear that
MLPs [25] can accelerate CSP by replacing most DFT calculations. Although attempts [26,27] have been made
to use the classical force field as a local optimizer for structure minimization, the parameter set used by the
force field cannot be dynamically adjusted according to the search results and, therefore, cannot guarantee the
predicted structure to be the best one. In contrast, machine learning-based methods can provide predictions
with quality close to that of first-principles calculations at the computational costs of classical techniques and
thus can deal with large-scale [28] systems. In addition, the parameter set can be dynamically updated through a
search–check–train–searchworkflow developed by our group. A similar workflow is used in the active learning
procedure used to train deep-learning potential models, such as the Deep Potential GENerator (DP-GEN) [29]

and Fast Learning of Atomistic Rare Events (FLARE) [30] software, which contains three Exploration–Labeling–
Training iterative steps. In the Exploration step, a sample of trajectories is generated using methods such as
molecular dynamics (MD) simulations and randomly sampling the crystal phase space. The search step in our
workflow is similar to the Exploration of the crystal space group by the USPEX software. In the Labeling step,
and correspondingly in our check step, the ab initio energies are calculated for the configurations generated in
the previous step, and the configurations with a large variance are added to the training dataset. In the last step,
the model is trained, and a new parameter set is generated. In this work, we combined MLP and evolutionary
algorithm to identify new cocrystal structures of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane
(CL-20) [31] and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) [32], aiming to find an optimal balance
between their energy and safety. CL-20 is known for its high detonation power; however, significantly reduc-
ing its sensitivity is a great challenge. Effectively addressing this problem involves combining CL-20 with other
low-sensitivity materials, producing more attractive explosive cocrystal materials [33–37]. A highly promising
CL-20:HMX (2:1) cocrystal was synthesized by Bolton et al.[38]; the cocrystal exhibits superior energetics to
HMX while maintaining comparable impact sensitivity. Many cocrystal structures composed of CL-20 and
HMX are expected to exist because of the large number of crystal structures the single components can form.

As thousands of crystal structures will need to be optimized in one search, using the DFT method as the local
optimizer will require years to complete. The machine learning-based approach will speed up the search and
provide similar accuracy, as the parameter set is dynamically updated after the search is corrected by DFT
calculations. The MLP will “learn” the interactions between molecules and give more accurate predictions. A
workflow combining theUSPEX evolutionary algorithm and theReaxFF-nnMLPwas developed to explore the
configuration space of CL-20 andHMX.Using this approach, we report the discovery of high-density cocrystal
structures of HMX and CL-20 with 1:1 and 1:2 ratios. Furthermore, there are discussions on whether C–
H. . .O hydrogen bond interactions [39] exist in crystal structures; hence, the role of C–H. . .O hydrogen bond
interactions in the cocrystal structures is discussed by analyzing hydrogen bond energies.
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ReaxFF-nn machine learning potential
The ReaxFF reactive force field, originally introduced by van Duin et al. [40], has been extensively used [41,42]

in reactive MD simulations [43–51]. We developed [52] an MLP model labeled ReaxFF-nn based on ReaxFF with
neural networks for bond orders in previous work [53]. This significantly improved various calculations, such
as equations of states, reaction energies, and potential energy surfaces. The total energies for ReaxFF and
ReaxFF-nn are respectively given in:

𝐸𝑅𝑒𝑎𝑥𝐹𝐹
𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑙 𝑝 + 𝐸𝑜𝑣𝑒𝑟 + 𝐸𝑢𝑛𝑑𝑒𝑟 + 𝐸𝑣𝑎𝑙 + 𝐸𝑝𝑒𝑛 + 𝐸𝑐𝑜𝑎+

𝐸𝑡𝑜𝑟𝑠 + 𝐸𝑐𝑜𝑛 𝑗 + 𝐸𝐻𝑏𝑜𝑛𝑑 + 𝐸𝑣𝑑𝑊𝑎𝑎𝑙𝑠 + 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 ,
(1)

𝐸𝑅𝑒𝑎𝑥𝐹𝐹−𝑛𝑛
𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑛𝑛

𝑏𝑜𝑛𝑑 + 𝐸𝑣𝑎𝑙 + 𝐸𝑡𝑜𝑟𝑠 + 𝐸𝐻𝑏𝑜𝑛𝑑 + 𝐸𝑣𝑑𝑊𝑎𝑎𝑙𝑠 + 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 . (2)

where 𝐸𝑏𝑜𝑛𝑑 , 𝐸𝑙 𝑝 , 𝐸𝑜𝑣𝑒𝑟 , 𝐸𝑢𝑛𝑑𝑒𝑟 , 𝐸𝑣𝑎𝑙 , 𝐸𝑝𝑒𝑛, 𝐸𝑐𝑜𝑎 , 𝐸𝑡𝑜𝑟𝑠, 𝐸𝑐𝑜𝑛 𝑗 , 𝐸𝐻𝑏𝑜𝑛𝑑 , 𝐸𝑣𝑑𝑊𝑎𝑎𝑙𝑠 and 𝐸𝐶𝑜𝑢𝑙𝑜𝑚𝑏 correspond
to the bond, lone pair, over coordinate, under coordinate, valence angle, penalty, three-body conjugation,
torsion rotation barrier, four-body conjugation, hydrogen bond, van der Waals and Coulomb energy terms,
respectively [40].

In the current form, as given in Equation (2), neural networks are employed to compute short-range interac-
tions, while long-range interactions, such as Coulomb and van der Waals terms, still use the same formula as
ReaxFF. Because mostMLPs use prespecified static point charges, they focus on short-range interactions [54–56]

and have difficulties dealing with long-range Coulomb interactions, which remain a major challenge for these
potentials at present. An exception is represented by ReaxFF, and, similarly, ReaxFF-nn, which use charges
dynamically calculated by the electronegativity equilibrium [57] method, and further related approaches are
expected to be developed in the future [58].

The corrected bond order 𝐵𝑂 ReaxFF and ReaxFF-nn is respectively calculated by:

𝐵𝑂𝑅𝑒𝑎𝑥𝐹𝐹 = 𝐵𝑂′ · 𝑓1(Δ′
𝑖 ,Δ

′
𝑗 ) · 𝑓4(Δ′

𝑖 , 𝐵𝑂
′
𝑖 𝑗 ) · 𝑓5(Δ′

𝑗 , 𝐵𝑂
′
𝑖 𝑗 ), (3)

where the 𝑓1, 𝑓4, and 𝑓5 terms are given by the ReaxFF formula in Ref. [40],

𝐵𝑂𝑅𝑒𝑎𝑥𝐹𝐹−𝑛𝑛 = 𝐵𝑂′ · 𝑓𝑛𝑛 (Δ′
𝑖 , 𝐵𝑂

′
𝑖 𝑗 ,Δ

′
𝑗 ), (4)

𝑓𝑛𝑛 used by a hidden-layer neural network is calculated by:

𝑓𝑛𝑛 (𝑥) = 𝜎(𝑤𝑜 · 𝜎(𝑤ℎ · 𝜎(𝑤𝑖 · 𝑥 + 𝑏𝑖) + 𝑏ℎ) + 𝑏𝑜). (5)

where 𝑥 = (Δ′
𝑖 , 𝐵𝑂

′
𝑖 𝑗 ,Δ

′
𝑗 ) represents the input vector, Δ′

𝑖 is the sum of the 𝐵𝑂′
𝑖 𝑗 terms of 𝑎𝑡𝑜𝑚𝑖 , and 𝐵𝑂′

𝑖 𝑗

is the uncorrected bond order, as defined in Ref. [40]; moreover, 𝜎 is the logistic activation function 𝜎(𝑥) =
(1 + exp(−𝑥))−1, while 𝑤 and 𝑏 are the weights and biases of the neural networks, respectively.

The bond energies employed by ReaxFF and ReaxFF-nn are respectively given in:

METHODS

http://dx.doi.org/10.20517/jmi.2023.37
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𝐸𝑅𝑒𝑎𝑥𝐹𝐹
𝑏𝑜𝑛𝑑𝑖 𝑗

= 𝐷𝜎
𝑒 · 𝐵𝑂𝜎

𝑖 𝑗 · exp[𝑝𝑏𝑒1 (1 − 𝐵𝑂𝜎
𝑖 𝑗 )𝑝𝑏𝑒2 ] − 𝐷𝜋

𝑒 · 𝐵𝑂𝜋
𝑖 𝑗 − 𝐷𝜋𝜋

𝑒 · 𝐵𝑂𝜋𝜋
𝑖 𝑗 , (6)

𝐸𝑅𝑒𝑎𝑥𝐹𝐹−𝑛𝑛
𝑏𝑜𝑛𝑑𝑖 𝑗

= 𝐷𝜎
𝑒 · 𝑓 𝑒𝑛𝑛 (𝐵𝑂𝜎

𝑖 𝑗 , 𝐵𝑂
𝜋
𝑖 𝑗 , 𝐵𝑂

𝜋𝜋
𝑖 𝑗 ). (7)

where 𝐷𝜎
𝑒 , 𝐷𝜋

𝑒 , 𝐷𝜋𝜋
𝑒 , 𝑝𝑏𝑒1 and 𝑝𝑏𝑒2 are adjusting parameters, and 𝐵𝑂𝜎

𝑖 𝑗 , 𝐵𝑂
𝜋
𝑖 𝑗 , and 𝐵𝑂𝜋𝜋

𝑖 𝑗 are bond order com-
ponents.

In this case, 𝑓 𝑒𝑛𝑛 represents a hidden-layer neural network that calculates the bond energy. The input vector for
this network is the uncorrected bond order 𝐵𝑂𝑖 𝑗 = (𝐵𝑂𝜎

𝑖 𝑗 , 𝐵𝑂
𝜋
𝑖 𝑗 , 𝐵𝑂

𝜋𝜋
𝑖 𝑗 ). The network output, multiplied by a

scalable parameter 𝐷𝜎
𝑒 , gives the bond energy of the pair of atoms 𝑎𝑡𝑜𝑚𝑖 and 𝑎𝑡𝑜𝑚 𝑗 .

Training and testing the potential model
The quality of the dataset used for the MD interaction potential plays a crucial role in determining its accuracy.
To ensure the complete sampling of the phase space ofmolecular structures such as CL-20, 2,4,6-trinitrotoluene
(TNT), 1,1-diamino-2,2-dinitroethylene (FOX-7), cyclotrimethylene trinitramine (RDX) and HMX, we man-
ually collected a large amount of data using methods including ab initioMD simulations, stretching of specific
chemical bonds, scanning covalent bond angles, and equations of state of a crystal structure. After DFT cal-
culations, these data were stored in an atomic simulation environment (ASE) [59] Trajectory object, which can
be interpreted as a time series containing many ASE Atoms objects moving in the configurational phase space.
This data format is easy to prepare because the ASE package includes many DFT calculators, such as Vienna
ab initio simulation package (VASP), Spanish Initiative for Electronic Simulations with Thousands of Atoms
(SIESTA), and Quantum Espresso (QE). After performing calculations through these calculators, the Trajec-
tory file can be generated automatically. One can also perform single-point energy calculations and gather the
trajectory file after the calculations. The training function accepts a dataset variable, which is a Python dict
object that contains all trajectory file names; moreover, the I-ReaxFF package can generate input information
for the training function, such as collecting all bonds and all valence angles of the same type into variables that
store this information. More details on the data preparation can be found in the documentation and examples
of our I-ReaxFF package [53,60].

Figure 1A-C compares the lattice energies calculated by DFT and ReaxFF-nn as a function of the density for
the 𝛽-HMX, 𝜀-CL-20, and 1:1 HMX:CL-20 cocrystal. Scaling the box size in three directions changed the
density from 1.4 to 2.4 g/cm3. Figure 1D and E shows the energies vs. the N–NO2 bond distance calculated
by DFT and ReaxFF-nn. Figure 1F compares the lattice energies of a batch of 100 cocrystal structures of
1:1 HMX:CL-20 generated by the USPEX software. The results demonstrate a good agreement between our
ReaxFF-nn potential model and the DFT calculations. Although active learning algorithms [29,61,62] to collect
data automatically are available, the application to molecular systems requires further tests, and we also plan
to develop an uncertainty-driven active learning algorithm based on the Z-matrix.

After data collection, the ReaxFF-nnmodel was trained using the I-ReaxFF software package, and the overall
precision of this dataset was approximately 94.0%, as calculated by:

𝐴𝑐𝑐𝑢 = 1.0 −
∑ |𝐸𝐷𝐹𝑇 − 𝐸𝑅𝑒𝑎𝑥𝐹𝐹−𝑛𝑛 |∑(𝐸𝐷𝐹𝑇 − 𝐸𝑍𝑃𝐸 )

, (8)

where 𝐸𝑍𝑃𝐸 represents the zero-point energy.

http://dx.doi.org/10.20517/jmi.2023.37
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Figure 1. Lattice energy as a function of density of (A) 𝛽-HMX, (B) 𝜀-CL-20, and (C) 1:1 HMX:CL-20 cocrystal; Energy of molecular
(D) HMX and (E) CL-20 as a function of N–NO2 bond distance; (F) Comparison of DFT- and ReaxFF-nn-calculated lattice energies of
1:1 cocrystal structures randomly generated by USPEX. HMX: 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane; CL-20: 2,4,6,8,10,12-Hexanitro-
2,4,6,8,10,12-hexaazaisowurtzitane; DFT: density functional theory; ReaxFF-nn: reactive force field with neural networks; USPEX: Universal
Structure Predictor: Evolutionary Xtallography.

Table 1. The comparison of lattice constants of 𝜀-CL-20 and 𝛽-HMX from experiment, DFT calculated values, and GULP geometry opti-
mization with potential ReaxFF-nn

𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛽(◦)

𝜀-CL-20, Exp. [27,65] 8.852 12.556 13.386 106.82
𝜀-CL-20, Exp. [66,67] 8.837 12.554 13.289 106.87
𝜀-CL-20, Exp. [68] 8.863 12.593 13.395 106.92
𝜀-CL-20, DFT-D [69] 8.871 12.557 13.477 106.62
𝜀-CL-20, ReaxFF-nn 8.989 12.401 13.428 105.90
𝛽-HMX, Exp. [70] 6.526 11.037 7.364 102.67
𝛽-HMX, Exp. [71] 6.530 11.030 7.350 102.69
𝛽-HMX, Exp. [72] 6.540 11.050 7.371 102.83
𝛽-HMX, DFT-D [69] 6.593 10.860 7.406 102.84
𝛽-HMX, ReaxFF-nn 6.434 10.582 7.876 103.40

CL-20: 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane;
HMX: 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane; DFT: density
functional theory; GULP: General Utility Lattice Program.

To further evaluate the reliability of the ReaxFF-nn potential model, we optimized the crystal structures of 𝛽-
HMX (chair conformation [63]) and 𝜀-CL-20 (the most stable crystal form of CL-20 [27,38,64]). A comparison of
the calculated lattice constants with the experimental data and the first-principles values is presented in Table 1.
The analysis shows that the calculated values obtained using ReaxFF-nn agree well with the experimental and
first-principles data.

RESULTS AND DISCUSSION
Molecular CSPs were carried out using the USPEX package [14,15,73,74]. This package is based on the evolu-
tionary algorithm developed by Oganov, Glass, Lyakhov, and Zhu. Initially, a group of 100 structures was
randomly generated from the appropriate crystal space group. In subsequent generations, the total population
of 100 structures was maintained after operations including heredity, randomization, permutation, rotation,

http://dx.doi.org/10.20517/jmi.2023.37
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Add to
training
dataset

Parameter set

USPEX predictions with
machine learning potential

Figure 2. Schematic illustration of four-step iterative workflow combining USPEX and ReaxFF-nn for searching the appropriate cocrystal
structures and training theMLP. USPEX: Universal Structure Predictor: Evolutionary Xtallography; ReaxFF-nn: reactive force field with neural
networks; MLP: machine learning potential.

and softmutation. The optimal structures of the previous generation were kept as keptbest [15] structures. Each
structure underwent two local relaxation steps using the General Utility Lattice Program (GULP) package [75]

and the ReaxFF-nn potential. The fitness of each structure was determined based on the corresponding energy
calculated by GULP. Following the principles of biological evolution, structures with lower fitness were then
eliminated. Figure 2 illustrates the main search workflow comprising four stages. First, the initial parameter
set is generated by training the model against the existing dataset. Second, the USPEX algorithm is combined
with the ReaxFF-nn MLP (structural relaxation) to search for cocrystals for specific needs, generating a set
of crystal structures. Third, these crystal structures are checked by comparing the corresponding ReaxFF-nn-
and DFT-calculated energies. Finally, structures with a very large difference between the calculated energies
are added to the training dataset. These steps are repeated until a small difference between the ReaxFF-nn and
DFT results or new cocrystal structures meeting the selected requirements have been found.

Prediction of 1:2 HMX:CL-20 cocrystal configurations
After several searches, we obtained some cocrystal structures with lower enthalpy (potential energy) and higher
density. However, to acquire densely packed cocrystals, we set a small pressure in the search process (𝑝 =
0.1 GPa). The obtained structures had to be optimized (relaxed) to zero pressure. The optimization results
using the ReaxFF-nn and DFT (SIESTA [76]) method with the Perdew-Burke-Ernzerhof (PBE) functional and
a double-𝜁 basis set at zero pressure are shown in Supplementary Table 1. Furthermore, an experimentally
synthesized cocrystal structure was optimized by DFT (SIESTA) to serve as a reference, as shown in the first
row of Supplementary Table 1.

Supplementary Table 1 reveals a good agreement between the cocrystal structures optimized by ReaxFF-nn
and DFT (SIESTA), demonstrating the high performance of our MLP model. Combined with the data from
the structures in Supplementary Table 1, the enthalpy and density of the cocrystal structures are shown as bar
graphs in Figure 3. The enthalpy and density values calculated by SIESTA and ReaxFF-nn are shown in red

Check if broken molecule or
big energy difference
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Figure 3. (A) Enthalpy and (B) density vs. crystal index from USPEX of 1:2 HMX:CL-20 optimized by DFT (SIESTA) and MLP (ReaxFF-nn).
USPEX: Universal Structure Predictor: Evolutionary Xtallography; HMX: 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane; CL-20: 2,4,6,8,10,12-
Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane; DFT: density functional theory; SIESTA: Spanish Initiative for Electronic Simulations with
Thousands of Atoms; MLP: machine learning potential; ReaxFF-nn: reactive force field with neural networks.

Table 2. The comparison of the enthalpy, density, and lattice constants from DFT (SIESTA), vdW-DF, and DFT-D3 (VASP) calculations
of the top predicted 1:2 HMX:CL-20 cocrystal structures, respectively

𝐼𝐷 M𝑒𝑡ℎ𝑜𝑑 Enthalpy (eV) 𝜌(𝑔 · 𝑐𝑚−3 ) 𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛼(◦) 𝛽(◦) 𝛾(◦)

C415
PBE -200.580 1.884 11.026 12.052 8.251 84.28 90.71 71.44

vdW-DF -199.732 1.921 10.901 12.014 8.206 83.94 91.13 71.74
PBE-D3 -648.675 1.902 11.095 12.146 8.120 83.39 91.06 70.63

C420
PBE -200.532 1.870 10.866 12.128 8.311 85.03 89.12 72.60

vdW-DF -199.725 1.923 10.829 12.028 8.231 83.92 90.56 71.95
PBE-D3 -648.699 1.871 11.090 12.198 8.198 83.66 90.12 70.89

D477
PBE -200.336 1.868 10.858 12.184 8.323 84.55 88.82 71.93

vdW-DF -199.460 1.920 10.874 11.596 8.656 79.77 82.86 71.18
PBE-D3 -648.573 1.905 10.951 11.759 8.615 79.19 82.90 70.00

E400
PBE -200.373 1.912 10.771 12.231 8.406 100.04 83.61 71.59

vdW-DF -199.361 1.954 10.882 11.950 8.313 99.59 83.25 71.88
PBE-D3 -648.935 1.934 10.891 12.210 8.258 99.28 82.96 71.03

F111
PBE -200.329 1.914 11.234 12.136 8.268 98.71 82.17 68.92

vdW-DF -199.260 1.991 11.239 11.751 8.056 98.00 81.73 71.38
PBE-D3 -648.976 1.937 11.244 12.145 8.099 98.14 82.10 69.64

DFT: Density functional theory; SIESTA: Spanish Initiative for Electronic Simulations with
Thousands of Atoms; vdW-DF: van der Waals Density Functional; VASP: Vienna ab initio
simulation package; HMX: 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane; CL-20: 2,4,6,8,10,12-
Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane; PBE: Perdew-Burke-Ernzerhof.

and turquoise, respectively.

In order to confirm the findings of the search workflow, we chose the five most significant cocrystal configu-
rations with a 1:2 ratio and further optimized them using the van der Waals Density Functional (vdW-DF) [77]

method and DFT-D3 method with the PBE functional and an energy cutoff of 600 eV. These DFT-D3 calcula-
tions were carried out using the VASP [78] software. The results are detailed in Table 2.

Based on the information on the DFT-D3-optimized cocrystal structures from Table 2, the five cocrystal struc-
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A B C

D                                          E                                            F

Figure 4. (A) Experimentally synthesized cocrystal structure [38], and (B–F) 1:2 HMX:CL-20 cocrystal structures after DFT-D3 structure
optimization at zero pressure. The (B–F) structures correspond to IDs C415, C420, D477, E400, and F111 in Table 2, respectively. HMX:
1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane; CL-20: 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane; DFT: density functional
theory.

tures with lower energy and higher density and the structure experimentally synthesized by Bolton et al.[38] are
shown in Figure 4. The optimized cocrystal structures in this picture show the characteristic alternating ar-
rangements of monolayer HMX and bilayer CL-20, consistent with the cocrystal arrangement of the experi-
mentally synthesized structure.

Among the structures with the predicted 1:2 HMX:CL-20 ratio obtained from USPEX andMLP, the structure
F111 shown in Figure 4F had the highest density of 1.914 g/cm3 after DFT optimization and 1.937 g/cm3 after
DFT-D3 optimization. Furthermore, the F111 cocrystal also exhibited the lowest lattice energy.

Prediction of 1:1 HMX:CL-20 cocrystal configurations
A search of 1:1 HMX:CL-20 cocrystal structures was carried out using USPEX and ReaxFF-nn through the
search–check–train–search iterative loop, as illustrated in Figure 2. A low pressure was applied to the candidate
cocrystal cells; in the next step, the generated structures were optimized using the DFT (SIESTA) method with
the PBE functional and a double-𝜁 basis set, as well as with the ReaxFF-nn potential to zero pressure. Supple-
mentary Table 2 shows the structural information on the optimized cocrystals with lower enthalpy and higher
density for the 1:1 ratio at zero pressure. The enthalpy and density of the cocrystal structures after optimiza-
tion, obtained using ReaxFF-nn and DFT, are shown in Figure 5, which enables us to identify structures with
lower enthalpy and higher density.

Similarly, to confirm the findings of the search workflow, we chose the six most significant cocrystal configu-
rations with a 1:1 ratio and further optimized them using the vdW-DF method and DFT-D3 (VASP) method
with the PBE functional and an energy cutoff of 600 eV. The results are detailed in Table 3. We selected the
better cocrystal structures calculated by DFT-D3, as shown in Figure 6. The optimized structures in Figure 6
show characteristic cocrystal structures with alternating arrangements of HMX and CL-20 monolayers. Theo-
retically, this is consistent with the characteristic arrangement of cocrystal structures.

The results show theD558 andD559 structures had the highest density of 1.925 g/cm3 after DFT (SIESTA) op-

http://dx.doi.org/10.20517/jmi.2023.37
https://oaepublishstorage.blob.core.windows.net/9ffba502-424a-42b7-9f31-802ea151ef4c/jmi3037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/9ffba502-424a-42b7-9f31-802ea151ef4c/jmi3037-SupplementaryMaterials.pdf
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Figure 5. Comparison of DFT (SIESTA)- and ReaxFF-nn-calculated (A) enthalpy and (B) density values vs. crystal index of cocrystal struc-
tures with 1:1 HMX:CL-20 ratio generated by USPEX. DFT: Density functional theory; SIESTA: Spanish Initiative for Electronic Simulations
with Thousands of Atoms; ReaxFF-nn: reactive force field with neural networks; USPEX: Universal Structure Predictor: Evolutionary Xtallog-
raphy.

Table 3. Comparison of enthalpy, density, and lattice constants fromDFT (SIESTA), vdW-DF, and DFT-D3 (VASP) calculations of the top
predicted cocrystal structures with 1:1 ratio, respectively

𝐼𝐷 M𝑒𝑡ℎ𝑜𝑑 Enthalpy (eV) 𝜌(𝑔 · 𝑐𝑚−3 ) 𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛼(◦) 𝛽(◦) 𝛾(◦)

D3
PBE -127.447 1.923 8.144 8.491 9.343 98.31 90.83 82.73

vdW-DF -127.416 1.933 8.120 8.457 9.363 98.51 90.71 82.75
PBE-D3 -411.687 1.937 8.141 8.455 9.318 98.49 91.15 82.81

D558
PBE -127.499 1.925 8.205 8.666 9.055 98.10 90.51 83.40

vdW-DF -127.521 1.927 8.217 8.645 9.061 98.04 90.38 83.15
PBE-D3 -411.423 1.898 8.307 8.687 9.063 98.38 90.97 83.29

D559
PBE -127.451 1.925 8.119 8.420 9.443 98.30 90.69 82.56

vdW-DF -127.415 1.933 8.137 8.379 9.442 98.39 90.50 82.22
PBE-D3 -411.459 1.895 8.207 8.462 9.450 98.66 91.22 82.76

F377
PBE -127.545 1.914 8.051 9.604 8.403 81.04 83.05 89.45

vdW-DF -127.591 1.930 8.071 9.637 8.293 80.96 82.72 89.63
PBE-D3 -411.682 1.919 8.180 9.298 8.532 80.58 83.01 88.90

G1766
PBE -127.498 1.900 8.854 8.378 8.709 84.61 86.44 91.46

vdW-DF -127.532 1.918 8.918 8.315 8.647 84.35 85.57 91.32
PBE-D3 -411.547 1.906 8.953 8.319 8.654 84.16 86.57 91.41

H223
PBE -127.354 1.879 11.690 8.364 6.709 91.57 96.94 85.42

vdW-DF -127.259 1.908 11.523 8.387 6.732 91.19 98.93 83.99
PBE-D3 -411.620 1.921 11.448 8.282 6.827 91.40 99.53 83.95

DFT: Density functional theory; SIESTA: Spanish Initiative for Electronic Simula-tions
with Thousands of Atoms; vdW-DF: van der Waals Density Functional; VASP: Vienna ab
initio simulation package; PBE: Perdew-Burke-Ernzerhof.

timization. However, the DFT-D3 calculations with the VASP software gave a different result: theD3 structure
shown in Figure 6A exhibited the highest density of 1.937 g/cm3 and the lowest lattice energy. To our knowl-
edge, there have been no previous theoretical or experimental reports of 1:1 HMX:CL-20 cocrystal structures,
and this is the first report of 1:1 HMX:CL-20 cocrystal structures with a density higher than that of the 𝛽-HMX
(𝑑 = 1.901 g/cm3) [70] crystal.

http://dx.doi.org/10.20517/jmi.2023.37
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A B C

D E F

Figure 6. Cocrystal structures with 1:1 HMX:CL-20 ratio after DFT-D3 (VASP) optimization. Structures (A–F) correspond to IDs D3, D558,
D559, F377, G1766 and H223 in Table 3, respectively. HMX: 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane; CL-20: 2,4,6,8,10,12-Hexanitro-
2,4,6,8,10,12-hexaazaisowurtzitane; DFT: density functional theory; VASP: Vienna ab initio simulation package.
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Figure 7. Relationship between hydrogen bond energy and density of predicted cocrystals. The hydrogen bond energy was calculated using
the ReaxFF-nn potential. ReaxFF-nn: Reactive force field with neural networks.

Hydrogen bond interactions
Hydrogen bond interactions play an important role in the design of molecular crystals; in practice, we found
that increasing the C–H. . .O hydrogen bond contribution to the total energy can apparently raise the rate
of high-density cocrystals. This leads to the conclusion [79] that the C–H. . .O interaction can be employed
to design molecular crystals. Figure 7 shows the relationship between hydrogen bond energy (calculated by
the ReaxFF-nn potential) and crystal density. The figure shows that the C–H. . .O hydrogen bond energy
represents the main part of the total hydrogen bond energy; moreover, an approximately linear relationship
is observed between the hydrogen bond energy and the density of the cocrystals, with a correlation factor
𝜂 = 0.67, which indicates that the C–H. . .O hydrogen bond energy is the key factor in the design of HMX/CL-
20 cocrystals.

http://dx.doi.org/10.20517/jmi.2023.37
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CONCLUSIONS
In this work, we report an evolutionary algorithm and machine learning workflow denoted as search–check–
train–search to explore new cocrystal structures of HMX and CL-20, which are expected to have higher energy
than 𝛽-HMX and lower sensitivity than 𝜀-CL-20. Using the present workflow, several high-density HMX/CL-
20 energetic cocrystal structures with 1:1 and 1:2 HMX:CL-20 ratios were found and validated via DFT and
DFT-D3 calculations. The most valuable finding was the D3 cocrystal structure, which had the highest density
and lowest lattice energy among the 1:1 cocrystal structures. The density ofD3 (1.937 g/cm3) was only slightly
lower than that of 1:2 HMX:CL-20 (1.945 g/cm3) reported by Bolton et al.[38] at room temperature. Another
high-density cocrystal with a 1:1 ratio was H223, which had a similar lattice energy and a density of 1.921
g/cm3. Among cocrystals with 1:2 HMX:CL-20 ratio, F111 had the lowest lattice energy and the highest
density of 1.937 g/cm3. These high-density cocrystal structures can be accessed on the website [80]. In
practice, we found that the C–H. . . O hydrogen bond interactions play an important role in the search for
high-density cocrys-tals. Although these interactions are weak, with an equilibrium hydrogen bond length
of 2.254 ℬ estimated through EOS calculations, they account for the vast majority of the total hydrogen
bond energy of HMX/CL-20 cocrystals. An approximately linear relationship was found between the
hydrogen bond energy and the density of cocrystal structures.
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