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Abstract
Aim: We systematically review current clinical applications of artificial intelligence (AI) that use machine learning 
(ML) methods for decision support in surgical oncology with an emphasis on clinical translation.

https://creativecommons.org/licenses/by/4.0/
https://aisjournal.net
https://orcid.org/0000-0002-9831-9110
https://orcid.org/0000-0002-8552-8538
https://dx.doi.org/10.20517/ais.2022.21


Page 2 Wagner et al. Art Int Surg 2022;2:159-72 https://dx.doi.org/10.20517/ais.2022.21

Methods: MEDLINE, Web of Science, and CENTRAL were searched on 19 January 2021 for a combination of AI and 
ML-related terms, decision support, and surgical procedures for abdominal malignancies. Data extraction included 
study characteristics, description of algorithms and their respective purpose, and description of key steps for 
scientific validation and clinical translation.

Results: Out of 8302 articles, 107 studies were included for full-text analysis. Most of the studies were conducted 
in a retrospective setting (n = 105, 98%), with 45 studies (42%) using data from multiple centers. The most 
common tumor entities were colorectal cancer (n = 35, 33%), liver cancer (n = 21, 20%), and gastric cancer (n = 
17, 16%). The most common prediction task was survival (n = 36, 34%), with artificial neural networks being the 
most common class of ML algorithms (n = 52, 49%). Key reporting and validation steps included, among others, a 
complete listing of patient features (n = 95, 89%), training of multiple algorithms (n = 73, 68%), external validation 
(n = 13, 12%), prospective validation (n = 2, 2%), robustness in terms of cross-validation or resampling (n = 89, 
83%), treatment recommendations by ML algorithms (n = 9, 8%), and development of an interface (n = 12, 11%).

Conclusion: ML for decision support in surgical oncology is receiving increasing attention with promising results, 
but robust and prospective clinical validation is mostly lacking. Furthermore, the integration of ML into AI 
applications is necessary to foster clinical translation.

Keywords: Artificial intelligence, machine learning, decision support, surgical data science, surgery, abdominal 
cancer

INTRODUCTION
Cancer is still a major problem in modern medicine[1], with surgery being an important part of curative 
multimodal treatment strategies for solid cancers[2]. Furthermore, operations on abdominal organs can be 
associated with many severe complications[3]. Choices regarding the optimal treatment for individual 
patients are made by multidisciplinary tumor boards that have to follow international guidelines[4-6], but 
even this multidisciplinary approach does not always guarantee treatment success[7].

Attempts to improve curative surgical treatment increasingly involve the use of modern computational 
methods[8]. Digitalization, interconnectivity between technical equipment, and electronic health records 
offer chances to improve patient outcomes. With the introduction of machine learning (ML) and artificial 
intelligence (AI) into medicine, multiple new options for data analysis have arisen and could be used to 
facilitate decisions in surgical oncology[9]. AI is intelligence demonstrated by machines, which may be 
realized by the use of ML, i.e., the study of computer algorithms that can improve automatically through 
experience[10]. While a general AI that can transfer knowledge to other problems similar to human 
intelligence is not yet realized, ML algorithms can be used to solve specific problems[11], such as 
interpretation of electrocardiograms[12], detection of suspicious findings in chest radiographs[13], computer-
assisted colonoscopy[14], and early detection of pancreatic cancer[15].

Regarding a systematic analysis of available evidence in AI and ML for decision support, a recent systematic 
review investigated ML and regression analysis from an epidemiologist’s point of view, focusing on the 
algorithm performance and not on the clinical translation[16]. Another review assessed studies that used AI 
for analysis, detection, prediction, and pathology in gastric cancer[17]. A scoping review described the use of 
ML in metabolic surgery[18]. Other reviews focused on the application of data science methods to surgery[9] 
and general hurdles for clinical translation[19], or the use of ML in abdominal surgery[20] and surgical phase 
recognition[21].
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In contrast, this systematic review gives a detailed overview of AI for decision support in surgical oncology 
based on ML with a focus on clinical applications, methodological soundness, and performance evaluation, 
as well as the key steps for clinical translation.

METHODS
The systematic review was conducted according to the preferred reporting items for systematic reviews and 
meta-analysis (PRISMA, see checklist in Supplementary Table 1)[22] and followed the recommendations of 
the Cochrane Handbook for Systematic Reviews and Interventions[23] and recommendations specific to 
systematic reviews in surgery[24]. A protocol for this systematic review was developed a priori and was 
registered in the PROSPERO database (CRD42021235515).

Eligibility criteria
Studies were selected following the criteria for population, intervention, control, and outcome (PICO 
criteria) described below. Animal studies, meeting abstracts, letters, comments, editorials, non-English 
literature, and publications for which the full text was irretrievable were excluded.

For the population, inclusion criteria were to meet the conditions of all studies on surgical oncology, 
including patients with the following types of cancer: thyroid, esophagus, stomach, colorectal, gallbladder, 
liver, pancreas, kidney, spleen, or sarcomas. Patients were eligible for, received, or followed up after cancer 
surgery. Excluded were other cancer types or a treatment approach that did not involve surgery.

For intervention, inclusion criteria were development, testing, and use of AI based on ML only for decision 
support to aid in diagnosis, prediction of tumor characteristics and prognosis, therapy planning, 
intraoperative, and postoperative problems. Excluded were decision support applications using imaging or 
biomarkers only without taking clinical characteristics into account, ML algorithms used for abdominal 
cancer screening only, and algorithm development without clinical application.

For control, inclusion criteria were based on comparison with other ML algorithms and regression analysis, 
if described. These were not mandatory for inclusion without specific exclusion criteria.

For outcome, inclusion criteria were descriptive characteristics of selected studies and analysis of quality for 
developing meaningful clinical decision support without specific exclusion criteria.

Definition of machine learning and artificial intelligence
There is no consensus on the definition of ML and AI, with some authors using the terms synonymously[25]. 
In this review, ML is defined “as a program that learns to perform a task or make a decision automatically 
from data”, according to Beam and Kohane[26]. Algorithms range from rule-based systems and regression 
analysis, which require more human input, to higher-ranking systems such as random forests or neural 
networks, which require less[26]. As ML has gained more popularity in medicine in recent years, the focus is 
on novel methods for decision support and excluded studies, which dealt with lower ranking regression 
analysis from the current review.

Poole et al. used the term “computational intelligence” as a synonym for artificial intelligence (AI), which is 
intelligence demonstrated by machines that perceive their environment, adapt their actions accordingly, and 
learn from experience[27]. Based on this definition, we focus on learning systems, and, for the purpose of this 
review, we define AI in surgical oncology as a computer application that integrates ML into the clinical 
workflow to support surgical decision making. These applications integrate ML algorithms trained on 
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clinical data and surgical experience in a graphical user interface that allows for quick capture and 
representation of data in the clinical routine or even provides a treatment recommendation.

Information sources and search
The search strategy involved the most relevant medical databases for surgical literature; MEDLINE (via 
PubMed), Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL)[24]. The exact 
search terms can be accessed in Supplementary Note 1. The search was performed on 31 January 2021 for 
papers published between 1 January 2011 and 31 December 2020, because previously published applications 
of ML methods would not have been compared to current methods and would be outdated.

Study selection
After the removal of duplicates, titles and abstracts were screened by one reviewer (Haselbeck-Köbler M) 
for relevance. Positively evaluated reports were further screened by Schulze A, who provided an 
independent decision on whether to perform full-text screening. Selected articles underwent a full-text 
screening by two independent reviewers (Haselbeck-Köbler M and Schulze A). Any disagreement among 
the reviewers was resolved by consensus or a third person (Wagner M).

Data collection process
The data were extracted using a predefined extraction form which was refined after a pilot phase of data 
extraction for the first ten selected articles. Data extraction was performed by Haselbeck-Köbler M and 
Schulze A. Uncertainties were resolved by consensus or consultation of an independent third person 
(Wagner M).

Data were extracted for the bibliographic information of the selected articles, including title, year of 
publication, and first author. Furthermore, tumor entities were extracted, as well as the prediction task for 
which decision support was developed.

For the data used to construct ML algorithms, data origin (e.g., own clinical database or public registry 
database) was extracted, as well as the involvement of different facilities (single center or multiple centers), 
which categories of data were used (demographic, clinical, surgical data, laboratory, radiology, pathology, 
radiomics, and biomarker), and whether all variables used for machine learning were described. Studies 
were only defined as prospective studies if a fully developed ML algorithm for decision support was 
validated on new, incoming patients. Consequently, studies were defined as retrospective if the ML 
algorithms used prospectively collected data for training but were trained retrospectively.

For the decision support, the developed algorithms were extracted, and for the best algorithm, the 
performance metric “area under the receiver operating characteristic curve” (AUC) was extracted. For the 
development process of the algorithms, the total number of patients and, as surrogate measures for 
robustness, number of patients for external validation, process for data splitting or resampling, handling of 
missing values, and whether class imbalance was mentioned and adjusted were extracted. In addition, 
whether the code was available as open source was extracted.

For clinical translation, we extracted whether any kind of interface was developed and whether a demo was 
made accessible online to get an impression of the usability. In addition, whether a treatment 
recommendation was given instead of only a prediction that would not influence clinical decisions was 
extracted. A short summary of each paper was given with further specification of the clinical application.

5180-SupplementaryMaterials.pdf
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Data were extracted on whether the criterion was met. Due to study heterogeneity, quantitative data 
synthesis was not viable because multiple cancer types and different algorithm purposes were evaluated, 
which would not allow comparisons with each other. Additionally, no risk-of-bias assessment was 
conducted, because the aim of this review was not to give clinical recommendations but to outline the 
research field.

Role of the funding source
This work was funded by the National Center for Tumor Diseases (NCT) Heidelberg, Germany, within the 
cancer therapy program “Surgical Oncology”, the German Federal Ministry of Health within the 
“Surgomics” project (grant number BMG2520DAT82), and the German Research Foundation (DFG, 
Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence Strategy [EXC 2050/1, Project ID 
3900696704 - Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)]. The 
funding sources did not influence the study design, collection, analysis, and interpretation of data; writing of 
the report; or the decision to submit the paper for publication.

RESULTS
The results of this systematic review include information about combining the expertise from surgery, 
machine learning, and interaction design to create a clinically usable AI for decision support in surgical 
oncology [Figure 1]. Accordingly, the extracted information was aggregated into a checklist of key steps for 
scientific validation and clinical translation of AI for decision support in surgical oncology based on the 
CHARMS Checklist for a systematic review of prediction models[28], an epidemiological literature review on 
ML prediction models[16], and an extensive discussion among the authors. Table 1 gives an overview of the 
steps together with their fulfillment in the studies included in this review, examples of fulfilling studies, and 
the necessary expertise from surgery, machine learning, and interaction design.

Study selection
In total, 11,876 articles were identified through database searching. After the removal of duplicates and 
initial screening for title and abstract, 195 articles were eligible for full-text screening. In total, 107 articles 
met our eligibility criteria and information was extracted. The other articles were excluded for various 
reasons. A PRISMA flow chart of the selection process is given in Figure 2.

Study characteristics
In total, 107 studies were selected to be assessed in this systematic review; a summary for each of the 
selected studies can be found in Supplementary Table 2. Overall, 105 of 107 studies were conducted in a 
retrospective setting (98%), while only two were conducted prospectively (2%), i.e. they validated the 
retrospectively trained ML algorithms in a prospective cohort. No studies evaluated continuous learning of 
the models, i.e. investigated improvement of algorithm performance with an increasing amount of data 
collected during clinical use of the algorithms. Overall, 45 studies (42%) used data collected in a multicenter 
approach, while 23 studies (22%) used public databases such as SEER[50], ACS NSQIP[51], and SRTR[52]. 
External validation was performed in 13 studies (12%), with a median of 164 patients (IQR = 104-387) 
included in the external validation. Studies used demographic data most often (n = 98, 92%), followed by 
clinical data (n = 92, 86%), pathological data (n = 58, 54%), surgical data (n = 56, 52%), laboratory data (n = 
55, 51%), radiological data (n = 46, 43%), biomarkers/genetics (n = 6, 6%), and radiomics (n = 2, 2%). A full 
list of the variables on which selection and training of ML algorithms were performed was presented by 95 
studies (89%).

5180-SupplementaryMaterials.pdf
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Table 1. Checklist of key steps for scientific validation and clinical translation

Step Description
Fulfilled in 
studies  
(n = 107)

Examples
Necessary 
expertise
[Figure 1]

Full feature set Describe all patient characteristics used for 
building the algorithm, even before the 
selection of features for ML. For optimal 
comprehensibility, state whether the features 
were categorical or continuous, how they 
were transformed and describe at which point 
in time they were assessed and how

89 % (n = 
95)

Stojadinovic et al. 2013 (CRC)[29] + 
Ting et al. 2020 (CRC)[30] + Velez-
Serrano et al. 2017 (pancreas)[31]

Surgery

Handling of missing 
features

Describe how missing features and values in 
the patient data sets were handled, e.g. 
excluded or imputed

34 % (n = 
36)

Bhandari et al. 2020 (kidney)[32] + 
Mourad et al. 2020 (thyroid)[33] + 
Smith and Mezhir 2014 (pancreas)[34]

Machine learning

Split or resampling Describe how the data was split or resampled 
for training, validation and testing

83 % (n = 
89)

Stojadinovic et al. 2013 (CRC)[29] + 
Ting et al. 2020 (CRC)[30] + Velez-
Serrano et al. 2017 (pancreas)[31]

Machine learning

Class imbalance Make sure the data has a balanced outcome, 
or use mathematical measures to optimize 
your dataset in case of imbalance

12 % (n = 
13)

Bolourani et al. 2020 (esophagus)[35] + 
Bhandari et al. 2020 (kidney)[32] + 
Schoenberg et al. 2020 (liver)[36]

Machine learning

Multiple algorithms Compare multiple algorithms to find the 
optimal one for a certain task

68 % (n = 
73)

Nilsaz-Dezfouli et al. 2017 (stomach)[

37] + Ting et al. 2020 (CRC)[30] + Xu et 
al. 2020 (CRC)[38]

Machine learning

Multicenter Collect data for building the algorithms from 
different facilities

42 % (n = 
45)

Bhandari et al. 2020 (kidney)[32] + 
Mourad et al. 2020 (thyroid)[33] + 
Stojadinovic et al. 2013 (CRC)[29]

Surgery

External validation 
set

Make use of an external validation set to 
assess the performance of the algorithm. This 
external validation set is curated from data 
outside the clinical environment in which the 
algorithm was trained

12 % (n = 
13)

Rahman et al. 2020 (esophagus)[39] + 
Kudo et al. 2020 (CRC)[40] + Li et al. 
2020 (CRC)[41]

Surgery

Prospective 
validation

Prospectively validate decision support with 
new patients after training of ML algorithm 
was finished

2 % (n = 2) van Soest et al. 2017 (CRC)[42] + 
Adams and Papagrigoriadis 2014 
(CRC)[43]

Surgery

Treatment 
recommendation

Use ML to provide a treatment 
recommendation. A mere prediction of 
complication rate is not considered a 
treatment recommendation

8 % (n = 9) Ichimasa et al. 2018 (CRC)[44] + Liu et 
al. 2019 (stomach)[45] + Kang et al. 
2020 (pancreas)[46]

Surgery, machine 
learning, interaction 
design

Interface developed Develop a user interface for clinicians and 
provide (online) access for other researchers

11 % (n = 12) 
 

Schoenberg et al. 2020 (liver)[36] + 
Han et al. 2020 (pancreas)[47] + 
Rahman et al. 2020 (esophagus)[39]

Surgery, interaction 
design

Open source Make your code open source online for other 
researchers

3 % (n = 3) Rahman et al. 2020 (esophagus)[39] + 
Zhou et al. 2020 (stomach)[48] + Lei et 
al. 2020 (liver)[49]

Machine learning

CRC: Colon and/or rectum.

Of the selected studies, 73 (68%) used more than one ML algorithm. Neural networks (n = 52, 49%) were by 
far the most popular ML algorithm, only outnumbered by regression analyses (n = 56, 52%), which were 
used as a control method in comparison to ML methods. Neural networks (n = 45, 42%) were also the ML 
method most often deemed best by the authors of the respective studies. For treatment recommendations, 
only nine studies (8%) used ML to explore predictions that would directly influence surgical decision 
making. To visualize these data, Figure 3 summarizes the used ML methods, tumor entities, prediction 
tasks, and the origin of data.

Patient numbers ranged from 45 to 188,336 (median of 565 patients, IQR = 267.5-1729.5). Figure 4 gives an 
overview of the different patient numbers of selected studies grouped by respective tumor entities.



Page 7Wagner et al. Art Int Surg 2022;2:159-72 https://dx.doi.org/10.20517/ais.2022.21

Figure 1. Necessary components for clinically usable artificial intelligence applications (AI). To create a clinically usable artificial 
intelligence application (AI) for decision support in surgical oncology, it is necessary to combine expertise from surgery, machine 
learning, and interaction design.

Figure 2. PRISMA flow chart.
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Figure 3. Summary of study characteristics: (A) Number of machine learning algorithms investigated in selected studies; (B) number of 
cancer entities investigated in selected studies; (C) number of different prediction tasks performed in selected studies; and (D) origin of 
data in selected studies.

Figure 4. Patient numbers of selected studies grouped by tumor entity. Tumor entities subsumed as “Other” are intrahepatic 
cholangiocarcinoma (n = 2), gallbladder cancer (n = 1), kidney cancer (n = 1), and peritoneal carcinomatosis (n = 1).

Methods of data splitting or resampling for validation were a single-random-split (n = 57, 53%), k-fold cross 
validation (n = 21, 20%), bootstrapping (n = 10, 9%), and leave-one-out-cross validation (n = 1, 1%), while 
18 studies (17%) did not describe any. Only 13 studies (12%) acknowledged the problem of class balancing 
explicitly, and 10 (9%) of them described how they addressed it. The developed ML models were evaluated 
with different statistical measurements. AUC (n = 76, 71%) was the most common, followed by sensitivity 
(n = 45, 42%), accuracy (n = 41, 38%), and specificity (n = 41, 38%). Additional measurements encompassed 
positive predictive values (n = 25, 23%) and negative predictive values (n = 19, 18%). Other metrics such as 
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F1-Score (n = 9, 8%) or c-index (n = 7, 7%) were only reported rarely; various others, such as Brier-Score, 
Youden-Index, and Hosmer-Lemeshow-Test, were only reported by single studies.

For visualization and a possible clinical application, five studies (5%) developed a nomogram and twelve 
studies (11%) developed an interactive interface for their chosen ML method, which was accessible online in 
seven cases (7%) at the time of this review. Only three studies (3%) published their code to make the 
methods behind their ML models accessible open source for other researchers.

DISCUSSION
AI for decision support in surgical oncology
Modern medicine generates masses of data every day, generating “big data” not only in terms of volume but 
also in terms of variety (e.g., demographic, clinical pathological, and surgical data), velocity (e.g., 
intraoperative sensor data and vital monitoring on intensive care unit), veracity (e.g., uncertainty of findings 
in radiological imaging), and value (for doctors, nurses, hospitals, insurance companies, etc.)[53]. However, 
the data themselves are useless. They have to be analyzed and interpreted, and ML has proven to be a 
powerful tool[54]. This systematic review gives an overview of the state of the art in use of ML and clinical 
application of AI for surgical oncology. Here, a broad spectrum of tumor entities investigated with various 
endpoints are addressed. In addition, numerous different ML algorithms are compared.

However, major drawbacks are revealed in the systematic analysis of key steps for scientific validation and 
clinical translation. Basic rules of machine learning were followed by most studies, such as feature set 
description and data splitting and resampling. Fewer studies compared multiple algorithms. Only about half 
of the selected studies used data from multiple centers, which is important to increase heterogeneity, reduce 
bias, and improve generalizability[11], as in the case of multicenter clinical trials. Moreover, up until now, 
prospective, external validation of ML algorithms and the development of user interfaces for clinical 
application of AI are limited to very few studies. The following paragraphs give an overview of how studies 
on AI in surgical oncology should be designed to perform an “ideal” ML study in surgical oncology based 
on our findings in this systematic review. These key steps lead to the path of successfully using “big data” in 
surgical oncology. Our checklist thus complements the DECIDE-AI guidelines that focus on early 
evaluation of AI systems as an intervention in live clinical settings[55]

Key steps for scientific validation
To validate ML algorithms during their development, the dataset is usually split into training and test sets. 
Most of the studies described their strategy for this. However, there was an inconsistent use of the terms 
“validation set” and “test set”, which were used as synonyms to build the algorithm. Although in many 
studies internal or external validations were included, they often did not describe the performance 
evaluation to their full extent, as reported similarly by van Soest et al.[42]. The confusing terminology and 
reporting lead to considerable effort in understanding the process of building surgical decision support with 
ML algorithms. Here, a visualization, such as a flow chart, should be used to visualize the complex process 
of development and validation [16]. Another weakness in the selected studies is the lack of reports on class 
imbalance and measures to avoid a wrongful training process. If class imbalance is not accounted for, 
predicting rare events or outcomes such as mortality after surgery may be distorted because, if a dataset is 
not equally distributed, then the ML algorithm may not predict the event but rather the majority class of 
“no event”.

An external validation set or independent test set is curated from data outside the clinical environment used 
for algorithm training and can be used to test the algorithm. External validation is a key step to demonstrate 
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generalizability, i.e. a tool for surgical decision support cannot just be applied to the population it was 
designed for. However, only a few studies included in this review performed external validation.

When assessing the performance of the decision support, AUC was mostly used. Closely linked to the AUC 
are sensitivity, specificity, positive-predictive value, and negative predictive value. Surprisingly, results for 
the latter metrics are reported much less frequently, leading to considerable bias in overestimating the 
performance of ML algorithms in practical clinical applications of AI. A full performance analysis as well as 
a risk of bias analysis was not included in this systematic review as there was a lot of heterogeneity and 
different methods of reporting the algorithms’ performance. Instead, the data extracted on AUC - if 
available - for each of the selected papers can be accessed in Supplementary Table 2. The complete set of 
extracted performance data, including the heterogeneous metrics and methods, is available from the authors 
upon reasonable request. The data extracted on comprehensive performance evaluation for each selected 
paper is available in the Appendix. Furthermore, comparability of the studies was limited by the 
heterogeneity of tumor entities and predicted outcomes of the algorithms.

Multiple algorithms were compared based on about two thirds of selected papers. This approach is of 
utmost importance to investigate which of many different algorithms achieves the best performance for a 
certain prediction task and whether simpler models can achieve even better results than complicated neural 
networks[11,41,56].

In addition, to provide further validation after successfully developing a model, the source code should be 
provided online or in the supplementary material to make the surgical decision support reproducible for 
fellow researchers. Unfortunately, the vast majority of studies failed to provide their code.

Key steps for clinical translation
Most selected studies covered prediction purposes with no direct clinical consequence, such as predicting 
survival when a surgical resection was already performed. Only a few studies predicted certain outcomes 
that are directly linked to treatment consequences and can therefore be regarded as clinically relevant 
decision support. Examples include the prediction of pathological complete response after neoadjuvant 
chemoradiotherapy of rectal cancer that justifies the decision about a watch-and-wait-strategy[57] or the 
prediction of malignant intraductal papillary mucinous neoplasms of the pancreas that justifies the decision 
about surgical resection[46]. It has to be noted that this clinically relevant decision support renders the 
software used a medical product falling under the respective legal regulations.

In addition, the majority of studies described their full feature set before final feature selection. However, 
upon closer inspection, it was not always evident when applied features (laboratory values, results of staging, 
etc.) were assessed. Assessment before or after surgery influences the possible utilization for decision 
support: if features are only available after surgery, their application to support decisions for or against a 
surgical approach is limited.

Despite AI is highly acclaimed in medicine and surgery, there is a lack of tools that allow clinicians to enter 
patient data and then recommend individual treatment paths[8,58,59]. A famous example of that is IBM’s 
Watson for Oncology which gives individual advice for chemotherapy regimes for certain types of cancer. 
While a few studies on IBM’s Watson for Oncology have been published, the comparison with 
multidisciplinary tumor boards lacks the resounding success promised[59-61]. Moreover, even a seemingly 
strong AI can fail simply because certain chemotherapeutics are not available in the country where the 
system was launched[59].

5180-SupplementaryMaterials.pdf
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Apart from that, the promising results reported in selected papers almost always lack a prospective, external 
validation, which is a key requirement for the transition into the clinical routine and external 
generalizability[35]. Often, even a randomized, controlled trial would be necessary to prove the superiority of 
AI-supported decisions compared to those without AI. While in this review, only a few studies on decision 
support in surgical oncology validated their algorithm externally, AI for imaging is two steps ahead, as these 
applications have not only been tested externally and prospectively but also prospectively compared with 
clinicians in randomized controlled trials[62].

This limitation is closely linked to the development of user interfaces that facilitate adoption into the clinical 
workflow[63] and allow other physicians to benefit from the findings[64]. Only when decision support is easy 
to comprehend as well as to operate and allows for integration into the clinical routine can it contribute to 
patient benefit[65,66]. On the contrary, AI and surgical decision support are not to replace physicians but to 
equip them with tools that may improve patient outcomes and time utilization in clinical processes. Despite 
popular claims that AI will solve most problems in medicine, up until now, most algorithms train models 
that only solve one specific problem[11].

Strengths and weaknesses
An extensive literature research of the last ten years was conducted. A large variety of different algorithms 
and databases was covered, yet there was still the possibility that some articles were missed. ML algorithms 
may not necessarily be published in clinical journals but in pre-print services, online code repositories (e.g., 
GitHub), or conferences[58]. It is because of the focus on the clinical translation of ML and AI that these 
services were not explicitly searched. Furthermore, we excluded articles investigating image analysis and 
only focused on surgical decisions instead of radiological decisions. This exclusion criterion may have led to 
the exclusion of surgical imaging methods important for surgical oncology, such as those described[67].

An in-depth bias analysis of the selected studies was not performed because of the heterogeneity of studies 
that rendered further clinical recommendations impossible. Nevertheless, several items, such as the 
description of missing features, presentation of the full feature set for data, strategy for splitting the data, 
class imbalance, and access to the methods online (open source), can be considered as indicators of bias.

In conclusion, this systematic review provides a detailed summary and quality checklist of AI for decision 
support in surgical oncology with a focus on clinical translation. There is increasing activity in this field 
with multiple cancer entities and different ML algorithms investigated to predict various endpoints.

Whereas most studies follow basic rules of machine learning, such as feature set description and data 
splitting and resampling, fewer studies compare multiple algorithms or use data from multiple centers. 
Moreover, until now, there are only very few studies on prospective, external validation and the 
development of user interfaces; however, both are necessary before clinical translation occurs and will pave 
the road for randomized controlled studies comparing surgeons with surgical decision support to those 
without such support.
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