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Abstract
The electromagnetic (EM) target situation map can visualize the situation and locations of multiple EM targets in the
three-dimensional (3D) space. It is vital for the spectrum activity monitoring, radiation source localization, frequency
resource management, and so on. Traditional studies focused on the radio environment map construction, and the
characteristics such as locations of EM targets are not accurate due to reconstruction deviation and environmental
noise. This paper presents a 3D EM target situation map construction scheme based on multiple unmanned aerial
vehicle collaboration. Firstly, an improved maximum and minimum distance clustering-based algorithm is proposed
to estimate the number and rough location of EM targets directly by utilizing the original sparse sampling data. Then,
to improve the accuracy of situational awareness, a re-weighted map fusion algorithm is used to update the raw EM
characteristics results. Finally, we calculate the self-information of different targets and optimize the previous location
results. Compared with other conventional methods, numerical results demonstrate that the proposed method has
higher mapping accuracy under the same low sampling rate.

Keywords: Multi-UAV collaboration, 3D electromagnetic target situation map, clustering algorithm, re-weighted fu-
sion
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1. INTRODUCTION
With the rapid development of wireless communication, plenty of radio, mobile phones, navigation and other
equipment and systems have been integrated into the electromagnetic (EM) network, resulting in an increas-
ingly complex EM environment [1–4]. The spatial distribution of EM targets is one of the important character-
istic pieces of information in EM space. An electromagnetic target situation map (ETSM) can quantitatively
characterize and visualize the quantity, position, power, and other information of EM targets [5]. It effectively
solves the monitoring and locating of multiple EM targets in complex scenarios.

Take the traditional radio environment map (REM) as an example, whose composition process is also known
as spectrum mapping. The construction process of REM accounts for the variations in the spatial distribution
of EM environments in practical applications, making a realistic description of the EM environment possible.
A complete REM construction system can achieve the perception, reconstruction, storage, and visualization
of EM environment information [6]. The REM system is primarily composed of four main modules: measure-
ment capable devices (MCDs), prior information database, cognitive engine, and storage and retrieval unit [7].
Depending on the type of platform used in MCDs, the REM mapping systems can be divided into three cate-
gories: space-based, ground-based, and air-based. Among these, space-based mapping systems, such as Kleos
Space in France andHawkEye360 in theUnited States, use artificial satellites to gather global spectrum informa-
tion. Researches on ground-based mapping systems are more mature currently, most of which use handheld
spectrum analyzers, spectrum monitoring vehicles, and spectrum sensing sensors arranged in interested ar-
eas to obtain ground spectrum information. The German unmanned aerial vehicle (UAV) monitoring system
Colibrex LS OBSERVER AMU is a typical air-based mapping system; however, the measurement range is ex-
tremely limited due to its tethered structure. Du et al. proposed an aerial spectrum situational mapping system
based on UAV platform, which can achieve the construction of air-ground spectrum situational maps [8–10].

The restoration of EM environment based on sparse sampling spectrum data, i.e., map completion, is the key
component of the above system. The completion methods for REMs can be classified into two categories: data-
driven and model-driven [11]. Data-driven methods mainly include spatial interpolation algorithms, matrix
(tensor) completion algorithms, and machine learning-based methods. Inverse distance weighted (IDW) [12],
also known as Shepard method, is a classic spatial interpolation technique with fast completing speed and
high smoothness. To solve the problem of completing multidimensional spectrum data, tensor-based comple-
tion methods are proposed [13]. Hashimoto et al. propose a spatial interpolation with convolutional neural
networks (SICNN) method based on deep learning [14]. Above all, these data-driven methods can directly
estimate the spectrum data of unsampled positions without any prior knowledge, but usually require a large
amount of observation spectrum data and with lower accuracy. The models in model-driven methods mainly
refer to the propagation loss (PL) model of wireless channels. Classic model-driven methods contain active
transmitter location estimation-based method (LIvE) [15], Received Signal Strength Difference (RSSD)-based
method [16], etc. However, both LIvE and RSSD assume that there is only one EM target in the monitored area,
which cannot solve the spectrum completion problem in complex environments. Compared with data-driven
methods, model-driven methods usually have superior completion accuracy; however, they require prior in-
formation such as the position, number of EM targets, and the precise channel propagation model [17–19]. In
recent years, multi-channel spectrum sensing studies based on deep learning neural networks have begun
to emerge, but such methods are overly dependent on datasets and often ignore the actual EM propagation
rules [20–22].

In order to obtain precise information about EM targets, it is necessary to address the localization problem
of EM targets [23]. At present, source-free positioning methods represented by Direction of Arrival (DOA)
and Time Difference of Arrival (TDOA) have been applied in various studies [24,25]. However, these methods
require multiple antenna signal receiving devices and have high hardware costs. Thus, single antenna localiza-
tion methods based on Received Signal Strength (RSS) have been paid much more attention in recent years.
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Liu et al. used an UAV system equipped with a single antenna to collect data and achieved rapid localization
in urban scenes based on RSS method [26]. On the other hand, due to the correlation and similarity between
spectrum data, clustering methods such as K-means, DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise), Gaussian Mixture Model (GMM), etc. are widely used in RSS-based localization [27]. With
the development of deep learning, neural network structure is introduced into clustering algorithms. Aim-
ing to solve the problem of large-scale high-dimensional spectrum data that are difficult to handle through
traditional clustering methods, a semi-supervised K-means algorithm is proposed [28]. However, the above
clustering methods did not consider the propagation characteristics of EM waves, making it difficult to accu-
rately classify spectrum data and obtain the position of EM targets.

Overall, the main contributions of this paper are summarized as follows:

•AnEM target awareness systembased on collaborativemultipleUAVs (multi-UAVs) is designed for collecting
spectrum data, which solves the issue of sampling errors that are prone to occur in complex environments or
at high altitudes. And a mathematical model of the three-dimensional (3D) ETSM combined with actual EM
propagation rules is constructed.

• A map fusion algorithm based on re-weighting is proposed. The algorithm enhances the reconstruction re-
sults of data-drivenmethod bymodeling the fusing process as a least absolute shrinkage and selection operator
(LASSO) regression problem.

• An improved maximum and minimum distance (MMD)-based EM target staged-location method is pro-
posed. By optimizing the characteristic parameter of MMD with a proper PL model, the rough positions of
EM targets can be fast derived based on raw spectrum data. The ultimate location result is modified with fused
spectrum data.

The rest of this paper is organized as follows. Section 2 gives the composition of the collaborative multi-UAV
system and the 3D ETSM model. In Section 3, the details of the proposed 3D ETSM construction scheme
are given and demonstrated. Simulation results and analysis are provided in Section 4. Finally, we make a
summary and conclusion in Section 5.

2. SYSTEM MODEL
2.1. Collaborative multi-UAV system
In recent years, UAVs have been widely used in various communication systems due to their advantages of
high maneuverability, low risk, and low cost. However, it is challenging to build lightweight systems because
of load and storage capacity limits. The proposed hardware EM target awareness system is shown in Figure 1.
It consists of three parts: autonomous control of UAVs, aerial spectrum measurement, and fuse-construction
of EM target situation. The details of each part are as follows.

The UAV platform subsystem includes a Global Positioning System (GPS) receiving module, an integrated
communication and remote control module, a flight control module, and an image module. Via information
exchanges through the integrated communication and remote control module, the GPS receiving module re-
ceives GPS position information obtained from the ground. The flight control module controls the flight of
UAVs. The image module transmits the collected images to the ground processing terminal. Note that an UAV
platform subsystem is equipped with a spectrum measurement subsystem.

The spectrum measurement subsystem includes a spectrum receiver, measurement antenna, and microcom-
puter. It is responsible for collecting and analyzing spectrum information.
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Figure 1. UAV-assisted system of EM target awareness.

The ground processing terminal sends the information gathered from the integrated communication and re-
mote transmission module to the ground station. The ground station is equipped with a software platform to
integrate, process, analyze the sampling data, and construct the 3D ETSM of the interested area.

2.2. 3D ETSM model
In this paper, multi-UAVs loaded spectrum measurement modules are used to obtain the initial spectrum
data, and the collaborative sampling model is shown in Figure 2. In order to simplify the data volume to be
processed in the following steps, the monitored area is divided into 𝑁 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 cubes, and each cube
is numbered as (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧). Assuming that the grid scale of the cubes is 𝑚, ETSM of the entire area can be
modeled as a third-order tensor 𝝋 ∈ R𝑁𝑥×𝑁𝑦×𝑁𝑧 .Then, in a 3D Cartesian coordinate system, center point of
each cube can be expressed as

𝑆(𝑥, 𝑦, 𝑧) = ((𝑛𝑥 − 0.5) × 𝑚, (𝑛𝑦 − 0.5) × 𝑚, (𝑛𝑧 − 0.5) × 𝑚). (1)

According to the distribution of obstacles, the ground terminal sends GPS information through the integrated
communication and remote control module for route planning of UAVs. Each UAV conducts uniform sparse
sampling of spectrum data along the pre-set trajectory respectively, i.e., RSS values are observed at 𝑅 positions,
which can be expressed as a transposed matrix 𝝋 = [𝜑1, ..., 𝜑𝑅]T. Assume that the number of UAVs is 𝐺, and
the number of sampling points for the 𝑔-th UAV is 𝑅𝑔 . The sampling rate of the ETSM system can be defined
as

𝑆𝑅aver =
1
𝐺

𝐺∑
𝑔=1

(𝑅𝑔/𝑁). (2)
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Figure 2. Multi-UAV collaborative sampling model.

3. 3D ETSM CONSTRUCTION WITH MULTI-UAV COLLECTED DATA
The construction scheme of 3D ETSM is shown in Figure 3. We first propose an improved MMD-based clus-
tering algorithm to obtain a preliminary estimate of target positions. Then, we design a map fusion algorithm
to reconstruct the fused spectrum map. Finally, we modify the preliminary estimation of target positions and
obtain the precise positions.

3.1. MMD-based electromagnetic target rough location
An improved MMD-based clustering algorithm is proposed in this section for the approximate localization of
EM targets. MMD is a pattern recognition probing-based clustering technique, which is based on Euclidean
distance and takes objects as far as possible as the cluster center. Therefore, compared with K-means method,
it prevents the chance of cluster centers being too close to each other when selecting initial values [17]. In
addition to finding the number of the initial clustering centers rapidly, this method can increase the efficiency
of spectrum data partition.

The basic MMD algorithm first starts with a sample object as the first cluster center, then selects a sample that
is the farthest from the first cluster center as the second cluster center. Afterwards, other cluster centers are
determined based on the maximum distance in succession, until no new cluster centers are generated. Finally,
classify the samples into the nearest class according to the principle of minimum distance, and the division
of the dataset is completed. However, in actual scenarios, the RSS value may be affected by the transmission
distance, reflection, refraction, diffraction, and dispersion of EM waves during propagation, etc. [29]. Addition-
ally, the attenuation of EM wave strength during transmission varies greatly with distance. The basic MMD
method only considers the distance factor to cluster RSS data within the monitored area and cannot locate EM
targets.

To accomplish the estimation of the EM target position within the monitored area, we improve the MMD
algorithm by the PL rules in this paper. Given that the 3D ETSM of the monitored area contains 𝑁 cubes, we
consider the average RSS value within each cube representing a region as the RSS value at the center of that
cube, denoted as 𝑃𝑛 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝑛 = 1, 2, ..., 𝑁 . Since the prior knowledge of EM targets is unknown, we take
the total sampling spectrum data of multi-UAVs as the input dataset, and select an arbitrary sampling cube
𝑆𝑖 (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 1, 2, ..., 𝑅′ as the first clustering center 𝑍1(𝑥1, 𝑦1, 𝑧1), where 𝑅′ is the total number of sampling
points corresponding to the multi-UAV system. To ensure that the next selected cluster center has a higher
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Figure 3. Overview of 3D ETSM construction.

possibility of being the location of the EM target, the path loss difference calculation is chosen to replace the
distance calculation in the clustering algorithm. Path loss between the k-th clustering center and the i-th cube
can be expressed as

Δ�̂�𝑘𝑖 = |Δ𝑃𝑘𝑖 − 𝐿𝑖 | , 𝑘 < 𝑁, (3)

where

Δ𝑃𝑘𝑖 = |𝑃𝑘 − 𝑃𝑖 | , (4)

which denotes the difference of RSS between the k-th clustering center and the i-th cube. 𝐿𝑖 is the path loss of
EM wave strength in free space, which can be calculated as

𝐿𝑖 (dB) = 32.45 + 20 lg( 𝑓 ) + 20 lg(𝑑𝑘𝑖), (5)

𝑑𝑘𝑖 =
√
(𝑥𝑍𝑖 − 𝑥𝑖)2 + (𝑦𝑍𝑖 − 𝑦𝑖)2 + (𝑧𝑍𝑖 − 𝑧𝑖)2, (6)

where 𝑓 is the frequency of EM targets, 𝑑𝑘𝑖 is the Euclidean distance between the k-th clustering center and
the i-th cube. Next, calculate the path loss from all other sampling points to 𝑍1, if

Δ�̂�𝑘1 > max
𝑖

{Δ�̂�𝑖1}, (7)
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Algorithm 1: MMPLD

1 Input: iteration counter k=0, sampled data P.
2 Output: EM target positions 𝝓 = [𝜙1 , ..., 𝜙𝐾 ]T

3 Initialization: set of clustering centers Z = ∅
4 Randomly select an arbitrary sampling point from 𝑺 as the first clustering center 𝑍1 and add it to Z.
5 For 𝑘 = 1 to the desired number of EM targets, do:

a. Initialize the maximum path loss difference max
𝑖

{Δ�̂�𝑖1 } = 0

b. For each sampling point 𝑆𝑖 in 𝑺, do:
i. If 𝑆𝑖 is not assigned to any cluster center yet, then:
- Calculate the path loss difference 𝑃𝑘𝑖 between 𝑆𝑖 and all cluster centers in Z by Equation (7)

ii. If Δ�̂�𝑘1 > max
𝑖

{Δ�̂�𝑖1 }, then:
- Update max

𝑖
{Δ�̂�𝑖1 } = Δ�̂�𝑘1

- Set the current sampling point 𝑆𝑖 as the next cluster center candidate
c. Add the next cluster center candidate to Z
d. Assign all sampling points in 𝑺 to the nearest cluster center based on the path loss difference

6 Return 𝝓 = [𝜙1 , ..., 𝜙𝐾 ]T

then, 𝑆𝑘 is taken as the second clustering center 𝑍2. Then, the (k+1)-th clustering center can be determined by

𝑍𝑘+1 = 𝑍 𝑗 ,

𝑠.𝑡. Δ�̂�𝑝 𝑗 = max{min(Δ�̂�1𝑖 ,Δ�̂�2𝑖 , ...,Δ�̂�𝑘𝑖)}, (8)
(𝑝 = 1, 2, ..., 𝑘),

where Δ�̂�𝑘𝑖 denotes the path loss from the k-th clustering center to the i-th cube. For fast convergence, when
Δ�̂�𝑝 𝑗 ≤ 𝜃 · Δ�̂�12, the calculating process ends, where Δ�̂�12 is the path loss from 𝑍1 to 𝑍2. 𝜃 is a clustering
parameter that determines the number of clusters, usually determined by probing. All sampling points are
divided based on the differences of path losses according to K-Nearest Neighbor (KNN) principle, and the
clustering centers are considered as EM targets; i.e., the rough position estimation result 𝝓 = [𝜙1, ..., 𝜙𝐾 ]T

of EM targets is obtained. In this case, the improved MMD algorithm is recalled as Maximum Minimum
Propagation Loss Difference (MMPLD) method. Algorithm 1 summarizes the process of MMD-based EM
target rough location.

3.2. Re-weighting-based situational fusion
In this section, we design a map fusion algorithm based on re-weighting to enhance the accuracy of spec-
trum data, which can significantly improve the accuracy of ETSM construction and further localization of EM
targets.

3.2.1 spectrum reconstruction based on IDW
Since the sampling data are sparsely distributed in the monitored area, we first get the initial spectrum maps
corresponding to each single-UAV by IDW.

Classic IDWmethod assumes that the influence of the sampling value of a known point on the estimated value
of an unknown point depends on the distance between the sampling point and the unknown point. To obtain
the RSS value �̂�𝑆0 of the unknown cube 𝑆0, the weight coefficient𝜔𝑛 is calculated by using the weighted average
of RSS data 𝑃𝑆𝑛 , 𝑛 = 1, 2, ..., 𝑁 of its nearest 𝑁 known cubes 𝑆𝑛, which can be expressed as

𝜔𝑛 =
𝑑
𝑝
𝑛

𝑁∑
𝑖=1
𝑑
𝑝
𝑖

, (9)

http://dx.doi.org/10.20517/ces.2024.08


Page 8 of 15 Peng et al. Complex Eng Syst 2024;4:15 I http://dx.doi.org/10.20517/ces.2024.08

where 𝑑𝑛 is the distance between 𝑆0 and 𝑆𝑛, parameter 𝑝 controls the decrease rate of the weight coefficient
𝜔𝑛 with distance, which usually taken as -2. The IDW method is called inverse distance squared weighting
method at this time. Thus, the RSS value of the unknown point 𝑆0 can be calculated by

𝑃0(𝑥0, 𝑦0, 𝑧0) =
𝑁∑
𝑛=1

𝜔𝑛𝑃𝑛 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛). (10)

Traditional IDW method only considers the effect of distance, ignoring the influences of other factors (e.g.,
frequency) on the RSS in actual EM propagation environment. In order to improve the performance of the
traditional IDW, the weight coefficient can be improved based on the PL model as

𝜔𝑛 =

(
10 lg

(
4𝜋 𝑓 𝑑𝑛
𝑐

))−2

𝑁∑
𝑛=1

(
10 lg

(
4𝜋 𝑓 𝑑𝑛
𝑐

)−2
) , (11)

where 𝑓 is the frequency of the received signal, 𝑐 is the speed of light, and 𝑑𝑛 =
√
(𝑥0 − 𝑥𝑛)2 + (𝑦0 − 𝑦𝑛)2 + (𝑧0 − 𝑧𝑛)2

is the Euclidean distance from the 𝑛-th sampling point (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) to the interpolated point (𝑥0, 𝑦0, 𝑧0). Define
𝜒𝑛 as the tensor of the 3D ETSM and assign the RSS value of the sampled point 𝑃𝑖 and the RSS value of the
unknown point 𝑃𝑛 obtained by IDW inference to the map tensor 𝜒𝑛. Then, calculating Equations (10) and
(11), multiple independent spectrum maps based on sparse sampling of single-UAVs are completed for the
next fusion processing.

3.2.2 Fusion model based on LASSO regression
In order to reduce the limitation of the information provided by single-UAVs, a LASSO regression fusion
model is proposed to process the above initial maps.

We define the initial maps corresponding to 𝐺 UAVs as (M1,M2, ...M𝐺), and the map obtained by the 𝑔-th
UAV can be vectorized as spectrum data to be fused asm𝑔 ∈ R𝑁 . The fused data are defined as 𝜺𝑔 ∈ R𝑁 , which
are initialized to zero vectors. By applying the ℓ1 - norm to describe the spatial correlation degree of the fused
data, the LASSO regression problem can be expressed as

arg min
𝜺𝑔

(
𝐺∑
𝑔

(
m𝑔 − I𝑁𝜺𝑔

)2 + 𝜏
𝜺𝑔1

)
, (12)

where I𝑁 is the identity matrix, 𝜏 is the penalty coefficient,
𝜺𝑔1 can be calculated as

𝜺𝑔1 =
𝐺∑
𝑔

��𝜺𝑔 ��. (13)

Combined with the EM propagation model, when the targets are observed with different strengths, the per-
formance of Equation (13) can be enhanced by exploiting another weighting function. Large weights are used
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to discourage nonzero entries, while small weights are used to encourage zero entries. Then, the weighting
function v𝑁 can be expressed as

v(𝑖)
𝑁 =


(
𝐺∑
𝑔

(
𝜺(𝑖−1)
𝑔

)2
)−1/2

, if
𝜺𝑔1 > 0,

1/𝜌, if
𝜺𝑔1 = 0,

(14)

where v(𝑖)
𝑁 denotes the re-weighting coefficient for the 𝑖-th iteration, and 𝜌 is a constant slightly greater than zero.

By introducing the re-weighting term v𝑁 in Equation (14), the optimization problem proposed in Equation
(12) can be rewritten as a re-weighting fusion model as

arg min
𝜺𝑔

(
𝐺∑
𝑔

(
m𝑔 − I𝑁𝜺𝑔

)2 + v𝑁 · 𝜏
𝜺𝑔1

)
, (15)

which can be solved by Least Angle Regression (LARS) [30]. Finally, we can obtain the ultimate fused spectrum
situation map E by

E = ivec

(
1
𝐺

𝐺∑
𝑔

𝜺𝑔

)
, (16)

where ivec( · ) is the inverse of vectorization. By calculating Equation (16), the fused RSS data 𝝋 for position
optimization can be obtained.

3.3. Position optimization of electromagnetic targets
In this section, the localization results in Section 3.1 are modified based on the fused map data. Since the
number of EM targets is 𝐾 , taking the 𝑘-th estimated target as an example, we extend a distance of the total
length outward by 10% along the x-axis, y-axis and z-axis, respectively. We use this range as a candidate range
Υ𝑘 . The sampled data 𝝊𝑘 = [𝜐𝑘1 , ..., 𝜐𝑘𝑛 ]T ∈ C𝑁𝑘 contained in the range Υ𝑘 is used to locate the accurate
position of the EM target in that range. 𝜐𝑘𝑛 corresponding to 𝜙𝑖𝑛 satisfies

𝜙𝑖𝑥 − 0.1 · 𝐿𝑥 ≤ 𝜑𝑘𝑛𝑥 ≤ 𝜙𝑖𝑥 + 0.1 · 𝐿𝑥 ,
𝜙𝑖𝑦 − 0.1 · 𝐿𝑦 ≤ 𝜑𝑘𝑛𝑦 ≤ 𝜙𝑖𝑦 + 0.1 · 𝐿𝑦 ,
𝜙𝑖𝑧 − 0.1 · 𝐿𝑧 ≤ 𝜑𝑘𝑛𝑧 ≤ 𝜙𝑖𝑧 + 0.1 · 𝐿𝑧,

(17)

Taking the central point of a certain 𝜙𝑘 cube as the origin point, we first extend a distance of the total length
outward by 10% along the x-axis, y-axis and z-axis, respectively. Then, we get a correction range for 𝜙𝑘 .

If there are other candidate targets within the range, the completed data within the range need to be corrected
by

�̂�𝑘𝑛 = 𝜐𝑘𝑛 −
𝜆2(

4𝜋 · 𝑑
(
𝜙𝑖

′, 𝜑𝑘𝑛
) )2 , (18)
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where 𝜙𝑖′ is the location of other candidate targets within the range, 𝜑𝑘𝑛 is the location of the cube to be
modified in the range that corresponds to 𝜙𝑖 , and 𝜐𝑘𝑛 is the fused data at a certain grid.

Next, the amount of self-information can be measured by calculating the entropy in the range for measur-
ing [31],

𝝊𝑘 =
[ ⌊

10 lg �̂�𝑘1

⌋
,
⌊
10 lg �̂�𝑘2

⌋
, ... ,

⌊
10 lg �̂�𝑘𝑛

⌋ ]T
. (19)

We take the fused data of the grids at the top 70% of the information entropy as the effective sampling data for
correcting the position of the EM targets. The localization results can be updated by recalculating Equation
(8); i.e., initial positioning result 𝝓 = [𝜙1, ..., 𝜙𝐾 ]T is modified to 𝝓′ =

[
𝜙′1, ..., 𝜙

′
𝐾

]T. Finally, the EM target
localization is annotated on the fused map, and the ultimate 3D ETSM is constructed.

4. SIMULATION RESULTS AND ANALYSIS
In this section, the performance of the proposed 3D ETSM construction method is analyzed and verified
under the campus scenario. The satellite map of the monitored area is shown in Figure 4. To validate the
performance of the proposed method in complex environments while maintaining clarity, we only show the
simulation results of the example region (ER). The ER includes various environmental factors such as grass,
trees, and buildings that affect signal propagation. This allows us to verify the performance of the proposed
method in complex environments. Moreover, the smaller range of the area helps to display the results more
clearly. Assuming that the ER is 100 m × 100 m × 50 m. The 3D area is divided into 10 × 10 × 10 cubes, and
each cube is 10 m × 10 m × 5 m. We utilize Radio Frequency (RF) transmitters to simulate EM targets. We
can choose any frequency of interest to obtain the 3D ETSM at that frequency. Since many wireless devices
currently operate in the 2.4 GHz band, we set the working frequency of each signal RF transmitter as 2.4
GHz. The other simulation parameters are shown in Table 1, where the positions of the RF transmitters are
randomly selected. In other words, EM targets may be placed in various locations such as grasslands, roads,
indoors, rooftops, etc. The transmitting power of different RF transmitters can be set arbitrarily. To more
clearly display the simulation results, we set the transmitter power as 30 dBm in the simulation. The numbers
of RF transmitters and UAVs in ETSM construction performance can also be set arbitrarily. Considering the
limitations of existing equipment for future measurements, we set them to 5 and 3, respectively.
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Figure 4. 3D ETSM construction scenario.

Table 1. The main simulation parameters

Parameters Value

The monitored area 100 m × 100 m × 50 m

ETSM tensor size 10 × 10 × 10

Granularity of ETSM tensor 10 m × 10 m × 5 m

Number of RF transmitters (𝐾) 5, 7, 9, 11

Transmitting power 30 dBm

Transmitting frequency ( 𝑓 ) 2.4 GHz

Sampling rate, number of RF transmitters,
and number of UAVs in ETSM construction performance

𝑆𝑅aver = 0.1, 𝐾 = 5, 𝐺 = 3

The heights of UAVs 5 m, 10 m, 20 m

Positions of RF transmitters (x, y, z)
(91 m, 68 m, 13.9 m), (79 m, 293.5 m, 47 m),
(236.5 m, 127.5 m, 34.6 m), (327.5 m, 423.5 m, 18.7 m),
(459 m, 166.5 m, 3 m)

As shown in Figure 5 (left), the ideal ETSM is calculated by Ray Tracing (RT) method. Assuming that three
UAVs sample the ideal map along different paths, with the sampling rate of each UAV set to 10%, an original
spectrum map obtained by a random single-UAV is shown in Figure 5 (middle). The ultimate 3D ETSM
constructed by our method is shown in Figure 5 (right). As shown in Figure 5, one single-UAV system cannot
accurately recover the ETSM, especially when the distance between two adjacent EM targets is too close. The
performance of the ultimate ETSM is superior to that of the single-UAV system. This is because we fuse the
observation data frommulti-UAVs and eliminate outliers. When using the observation data from a single-UAV
to construct the map, the presence of outliers in the data affects the accuracy of map construction.

Next, taking a two-dimensional plane at a certain height in the 3D ETSM as an example, the process and
performance of the staged EM target positioning method are demonstrated in Figure 6. Firstly, we set three
EM targets at the same XoY plane, which is re-divided into 50 × 50 grids, and size of each grid is 2 m × 2 m.
The ideal map of the XoY plane is shown in Figure 6 (left). Then, maintain the sampling rate as 10%, rough
positions based on raw data are shown in Figure 6 (middle), and the ultimate result is shown in Figure 6 (right).
The red spiders denote the estimated positions of EM targets. Results show that the accuracy of the estimated
EM target positions based onMMPLD can be improved by the fused ETSM, which effectively reducesmistakes
in the first step of localization. This is because the RSS values used for localization become more accurate after
fusion.
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Figure 5. Simulation results of 3D ETSM construction: (left) Ideal 3D ETSM; (middle) Original 3D ETSM obtained by random single-UAV;
(right) Ultimate 3D ETSM.

Figure 6. Simulation results of target positioning: (left) Ideal 2D plane; (middle) MMPLD-based rough positioning; (right) Ultimate posi-
tioning result.

The root mean squared error (RMSE) is introduced to evaluate the accuracy of 3D ETSM construction, as
given by

𝑅𝑀𝑆𝐸ETSM =

√√√
1
𝑁

𝑁∑
𝑛=1

|𝑃est(𝑛) − 𝑃ide(𝑛) |, (20)

𝑅𝑀𝑆𝐸ET =
1
𝐾

𝐾∑
𝑘=1

√𝜙𝑘 − 𝜙𝑘2
, (21)

where 𝑅𝑀𝑆𝐸ETSM denotes the accuracy of spectrummap recovery, and 𝑃est and 𝑃ide are the estimated and the
ideal RSS values in dBm at the n-th cube, respectively. 𝑅𝑀𝑆𝐸ET denotes the accuracy of EM target positioning;
𝐾 is the total number of EM targets; 𝜙𝑘 and 𝜙𝑘 are the estimated and the real position of the k-th EM target,
respectively. 𝑅𝑀𝑆𝐸s of the result in Figure 4 are listed in Table 2; this highlights that the proposed spectrum
data fusion algorithm provides greater performance improvements.

In the simulations, the accuracy of the proposed 3D ETSM construction is compared with IDW, alternating
direction method of multipliers (ADMM) [13], and iterative completion method of difference of measurement
(ICDM) [32]. Figure 7 (left) shows the RMSEs of spectrum map recovery versus signal-to-noise ratios (SNRs)
at 10% sampling rate. The localization performance is also compared with several multi-objective localiza-
tionmethods, including orthogonal matching pursuit (OMP) [33], Bayesian compressed sensing (BCS) [34], and
adaptive grid multiple targets localization (AGMTL) [35]. Figure 7 (right) shows the RMSEs of target locations
versus SNRs at 10% sampling rate. When the SNR increases from -10 dB to 20 dB, the RMSEs of spectrum
map recovery and target location of different methods all decrease. This is because we use the fusion algorithm
based on re-weighting, eliminating some outliers generated in the process of spectrum completion.
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Figure 7. (left) The RMSEs of spectrum map recovery of all the methods versus SNRs; and (right) the RMSEs of target locations of all the
methods versus SNRs.

Table 2. RMSEs of 3D ETSM construction

Type 𝑅𝑀𝑆𝐸ETSM (dBm) Type 𝑅𝑀𝑆𝐸ET(m)

ETSM before fusion 7.6 rough positioning 2.62
ETSM after fusion 2.24 ultimate positioning 1.33

5. CONCLUSIONS
This paper has proposed a 3D ETSM construction method based on multi-UAV collaboration. Through situ-
ational fusion based on re-weighting, complementation of spectrum information has been achieved by multi-
UAVs, and the fault tolerance of the ETSM construction system has increased. Furthermore, a staged EM
target positioning algorithm based on MMPLD has been proposed for EM target perception. The algorithm
rapidly locates multiple EM targets while retaining a certain degree of computing complexity. Compared with
existing methods, the simulation results have demonstrated that the proposed 3D ETSM construction method
effectively improves the accuracy of spectrum map construction and EM target localization. However, due to
the experimental constraints, we only discuss and compare the simulation performance in this paper. In the
future research, we will further carry out more field experiments and verify the performance of the proposed
construction method.
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