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Abstract
Porous carbon materials (PCMs) are preferred as electrode materials for supercapacitor energy storage 
applications due to their superior characteristics. However, the optimal performance of these electrodes requires 
trial and error experimental exploration due to the complexity of influencing factors. To address this limitation, we 
develop a machine learning (ML) combined experimental validation approach to predict, screen and interpret ideal 
PCMs for supercapacitors. Four ML models are used for predicting the specific capacitance (SC) properties of 
PCMs and the light gradient boosting machine (LGBM) model exhibits the best prediction performance with an R2 
value of 0.92. Through comprehensive interpretability analysis of ML, important variables influencing SC properties 
are identified and their impact range is determined. By analyzing the deviation of key values during experimental 
verification, accurate predictions of SC properties of PCMs are made, facilitating precise material screening. 
Additionally, the accuracy and applicability of the ML model predictions are evaluated. This research pioneered a 
key eigenvalue fall-point screening approach based on a combination of ML experiments for accurately predicting 
SC performance and screening of superior energy storage materials, providing a compelling strategy for advancing 
energy storage materials technology.

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/jmi
https://orcid.org/0000-0002-7477-9876
https://dx.doi.org/10.20517/jmi.2024.29
http://crossmark.crossref.org/dialog/?doi=10.20517/jmi.2024.29&domain=pdf


Page 2 of 25 Liu et al. J Mater Inf 2024;4:16 https://dx.doi.org/10.20517/jmi.2024.29

Keywords: Machine learning, capacitance predication, feature importance, Shapley additive explanation, 
interpretability, fall-point screening

INTRODUCTION
Supercapacitors play a pivotal role in advancing renewable energy technologies, thanks to their energy 
storage capacity[1]. The energy storage capacity of supercapacitors is primarily influenced by the electrode 
materials employed[2,3]. In the ongoing development of supercapacitors, various materials including porous 
carbon materials (PCMs), metal oxides, carbides, nitrides, and conductive polymers have been optimized to 
enhance energy storage capacity. Among these materials, PCMs remain the predominant choice as 
electrode active materials due to their power capability, long-term cycle stability, wide operating 
temperatures, and high coulomb efficiency[4-6]. Previous studies have highlighted the importance of 
designing ideal materials with the necessary properties to improve the capacitive performance of 
supercapacitors[7-9]. The key to the enhancement of capacitance performance is to improve the electric 
double-layer capacitance [affected or determined by specific surface area (SSA) and pore structure] and 
pseudo-capacitance induced by the redox reaction of heteroatoms [such as nitrogen (N), oxygen (O), or 
sulfur (S)]. Large surface area and appropriate pore structure of PCMs play a crucial role in providing 
significant interfacial areas, ionic mobility paths and charge transfer, thereby enabling the achievement of 
high specific capacitance (SC) and rapid charge/discharge rates[10-13]. N or O, in particular, has been 
extensively researched due to its beneficial effects and relatively straightforward doping process. Specifically, 
N-doping into carbon matrix is the most promising approach to promoting the pseudo-capacitance 
performance and O-doping can improve the electrical conductivity and surface wettability, providing 
additional pseudo-capacitance. However, the complexity of synthesizing nitrogen or oxygen-doped PCMs 
leads to challenges in accurately identifying and controlling electrochemically active nitrogen or oxygen 
configurations. The current empirical trial and error approach involving the synthesis, characterization, 
testing, and analysis of various PCMs is time-consuming and resource-intensive. Optimizing or simplifying 
these processes is essential for efficiently screening PCMs and advancing the development of high-
performance carbon electrode materials, necessitating the exploration of new process optimization 
methods.

Machine learning (ML) technology has become a valuable tool in accelerating material development and 
predicting performance[14-16]. By analyzing data from previous research, ML methods can simulate and 
predict the relationship between input characteristics and output variables, identifying key features of 
porous carbon-based electrodes for supercapacitors[17-19]. Various ML prediction models, such as artificial 
neural networks (ANN)[20,21], random forest (RF)[22], and eXtreme Gradient Boosting (XGBoost)[23], have 
been used to predict the capacitive properties of PCMs. Researchers have successfully employed ML models 
to design high-performance supercapacitors by analyzing the relationship between capacitors and structural 
features of PCMs. XGBoost was found to deliver the best predictive performance among the ML models 
tested. Additionally, studies have shown that specific structural features, such as SSA (Smic/SSA) and pore 
size (PS), significantly contribute to the capacitive performance of porous structures[24]. Through the use of 
ML models such as k-nearest neighbors’ regression (KNN), decision tree regression (DTR), Bayesian ridge 
regression (BRR), and ANN, Saad et al. have accurately predicted the capacitance of graphene-based 
supercapacitor electrodes based on physicochemical characteristics and electrochemical measurements[25]. 
The ANN model, in particular, has demonstrated exceptional prediction accuracy, with the SHapley 
additive explanation (SHAP) framework revealing the significant influence of nitrogen and oxygen atomic 
percentages in doped graphene on the ANN model. Recent research has predominantly focused on 
predicting the capacitive performance of supercapacitors based on the structural characteristics of carbon 
electrode materials. However, there is a lack of comprehensive studies that consider the impact of doping 
species, porous carbon structure characteristics, and operational factors on capacitance performance. 
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Rahimi et al. elucidated the synergistic effect of N/O functional groups and microstructures of porous 
carbon on supercapacitor performance using a multilayer perceptron neural network (MLP-NN) model[26]. 
The model demonstrated high accuracy in predicting porous carbon performance with minimal error. 
Through genetic algorithm optimization, the optimal SC of porous carbon was predicted to be 550 F·g-1 
(1 A·g-1) in a three-electrode system. Sun et al. investigated the influence mechanism of 14 feature 
parameters on the energy storage characteristics of active biochar using various ML models[27]. They 
identified key influencing characteristic parameters through functionality and partial correlation analysis, 
shedding light on the preparation of active biochar for supercapacitors. It can be seen that as an alternative, 
ML models can be utilized not only to analyze massive datasets gathered from experimental procedures, 
revealing quantitative relationships between key features of electrode materials and their impacts[28], but also 
to interpret device performance based on theoretical modeling in non-equilibrium conditions. Furthermore, 
ML technology offers a valuable tool for the design of materials to get the utilization it deserves.

Therefore, based on the laboratory’s previous experimental research on the preparation of nitrogen-oxygen 
co-doped PCMs derived from lignite (N, O co-doped PCMs) and the availability of literature data, this 
study selected the N, O co-doped PCMs as the representative carbon electrode material for supercapacitors. 
Seventeen key parameters related to physio-chemical and operational properties were gathered from recent 
literature and lab data on the preparation of porous carbon-based supercapacitor electrodes. Four ML 
models - linear regression (LR), RF, XGBoost, and light gradient boosting machine (LGBM) - were 
employed to investigate the impact of these parameters on the energy storage characteristics of N, O co-
doped PCMs through computer simulations. The most effective prediction model was determined, and 
important features for accurately predicting supercapacitor characteristics were identified using 
characteristic analysis and partial dependence correlation analysis. A novel method for analyzing predicted 
and actual supercapacitor deviations of electrode materials was proposed. Experimental verification and 
model optimization were used to achieve performance prediction and accurate screening of N, O co-doped 
PCMs, along with the falling areas analysis method for key characteristics. This study presents an 
interpretable model for understanding the relationship between key characteristics and capacitive properties 
in N, O co-doped PCMs, providing a means to predict and screen these materials for high-performance 
supercapacitors.

MATERIALS AND METHODS
Dataset collection, processing, and feature selection
To predict energy storage characteristics of N, O co-doped PCMs, more than 400 raw datasets were 
collected based on N, O co-doped PCM samples. The partial database was based on our previous work. The 
required data were extracted from the experimental results of the studies carried out on N, O co-doped 
PCMs utilized in the electrode of supercapacitors. Moreover, the SC data at different current densities (0.5 
and 1.0 A·g-1) were abstracted from the published SCI journal papers, which were added to the original 
database. The data-gathering information on N, O co-doped PCM samples includes microstructure 
features, N or O content, N/O functional group intensity, and operational parameters. A total of 17 input 
features were gathered to predict the dataset of energy storage characteristics of N, O co-doped PCMs: the 
oxygen content (O%), nitrogen content (N%), as well as various functional groups containing N or O, 
including N-6, N-5, N-Q, the ratio of the carbonyl-O group (C=O, O-I), the ratio of hydroxyl-O/ether-O 
group (C-OH/C-O-C, O-II), the ratio of carboxyl-O group (-COOH, O-III), the SSA of N, O co-doped 
PCMs, micropore surface area (Smic), micropore surface area proportion (Smic/SSA), total pore volume (Vt), 
micropore volume (Vmic), pore size distribution (PSD), micropore volume proportion (Vmic/Vt), and the 
potential window (PW, V), and the current density (CD, A·g-1) obtained from a SC test. The SC was selected 
as the output feature variable. All raw data from previous experimental and literature studies were 
performed in a 6 M KOH aqueous solution with a three-electrode system. Ultimately, 275 defect-free 
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datasets were screened with detailed values of inputs to ensure a more accurate evaluation and all modeling 
was conducted under the same electrolyte and system details.

As a first step of the analytical procedure, all considered variables were evaluated by the Pearson correlation 
coefficient (PCC), which was calculated by

(1)

Where x and y represent independent input and dependent output variables, and x and y are their mean 
values (x includes different features of N, O co-doped PCMs electrode and y for SC). The value of R can be 
between 1 and -1, where a positive or negative value means a positive or negative correlation, and 0 
indicates a nonlinear correlation. The PCC was utilized to measure the linear dependence between all 
variables and applied to check the co-occurrence of the collinearity value between any two input variables 
and to detect the linear correlation between the independent/dependent (or input/target) variables[29]. The 
statistically significant levels are based on the correlation coefficient which is used to evaluate the linear 
relationship between the two variables and is calculated by

(2)

where the P-value is calculated via degrees of freedom (equal to N-2) and serves to assess whether the 
calculated correlation coefficient indicates the potential influence of the input/output variable. In this 
context, N denotes the total number of data points in the samples.

ML model selection and training
The data-driven approach in this study encompasses database development, ML model training, and the 
application of the trained model to screen N, O co-doped PCMs for supercapacitors. It also involves 
analyzing complex structure-activity relationships in characteristic variables and supercapacitor 
performance metrics. The ML work is executed using Python 3.9.7 software and the versions of all 
simulation tools are Jupyter Notebook 6.4.5, SHAP 0.41.0, and LGBM 4.3.0. Four classical ML prediction 
models such as LR, RF, XGBoost, and LGBM extensively were widely utilized to assess the intricate response 
relationships among various factors and the enhanced capacitance characteristics of of N, O co-doped 
PCMs. LR is one of the basic ML algorithms that is very efficient for linear datasets, small datasets, and 
simple relationships, but challenging for nonlinear datasets or highly complex data[15]. RF is an algorithm 
based on ML that constructs and integrates decision trees, effectively addressing nonlinear regression issues 
among variables. It employs a technique referred to as “randomness” to generate a collection of decision 
trees, making it particularly well-suited for predictions based on small datasets[30]. XGBoost is an efficient 
and scalable variant of the gradient boosting machine (GBM) algorithm. XGBoost has been widely used in 
data mining, recommendation systems and other fields due to its high efficiency, flexibility and 
portability[23]. For XGBoost, to avoid over-fitting, an additional regularization term is added to the loss 
function to smooth the final learned weights. However, for data with nonlinear relationships, XGboost may 
not fit the model well, and it is difficult to adjust the parameters. LGBM is a framework for implementing 
the traditional gradient boosting decision tree (GBDT) algorithm, and an optimized algorithm based on 
XGBoost accelerates the training speed of the GBDT model without compromising accuracy. LGBM 
demonstrated higher accuracy, faster training speeds, a lower memory footprint, and the ability to handle 
large-scale data than traditional GBDT Tree models[31].
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In terms of ML models, various models might demonstrate superior or inferior performance based on the 
specific dataset under examination. While researchers frequently assess a model’s fit to the training data as 
an indicator of its generalization capability, they also consider other factors beyond just the generalization 
error to gain a comprehensive understanding. To address this, the datasets were split into training and 
testing sets, where 80% was designated for training and 20% for testing.

ML models are capable of managing intricate relationships among dependent and independent variables, 
and they assess model quality through repeated cross-validation to prevent overfitting. The optimization 
process was performed using the k-fold cross-validation method with a 5-fold value to enhance the models’ 
predictive performance.

Model evaluation
The quantitative assessment of different ML models to compare the prediction accuracy and quantify the 
prediction performance was carried out by utilizing the correlation coefficient (R2) and root mean square 
error (RMSE) between the desired output and the estimated output provided by the ML model[32]. The 
corresponding R2 and RMSE values were given by

(3)

(4)

where Yi
e is the experimental actual value, and Yi

p represents the predicted value. Yave
e stands for the mean of 

the experimental values.

Feature importance and partial correlation analysis
To investigate the complex effects of input feature factors on the SC of N, O co-doped PCMs, the feature 
importance of the model with good prediction performance was analyzed. SHAP plays a crucial role in 
enhancing the transparency and interpretability of this widely used ML methodology[33]. In particular, the 
SHAP framework provides a systematic way to understand the complex mechanisms underlying the 
preferred model. It provides valuable insights into the impact of different input variables on model 
predictions. Hence, the SHAP was applied to calculate the Shapley value of each feature. SHAP values are 
provided based on how much each feature influences the resulting output. This revealed comprehensive 
relationships in how features contribute to the whole dataset between input variables and determined how 
they influence individual variables in the overall prediction. In addition, in order to further systematically 
display the relationship between variables and reflect the degree of influence of all features on prediction, we 
use single-feature and dual-feature interactive partial correlation graphs to perform partial correlation 
analysis on the preferred model[34].

Verification experiment and deviation analysis
Preparation of N, O co-doped PCMs
Low-rank lignite was taken from the Inner Mongolia Autonomous Region (China) and demineralized with 
hydrofluoric acid (HF, about 20 wt.%) and hydrochloric acid (HCl, about 1 M) until the ash content was less 
than 1% to realize ash-free coal (named demineralization coal). Graphitic carbon nitride (g-C3N4) was first 
calcined by melamine as a precursor at 550 °C (heating rate: 5 °C·min-1) for 2 h, then naturally cooled to 
room temperature to obtain the product. Other reagents include Potassium carbonate (K2CO3, Sinopharm 
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Chemical), potassium hydroxide [(KOH, ≥ 85%, Sinopharm Chemical), HF (40 wt.%), Shanghai Aladdin 
Reagent Co., ltd.], HCl (36 wt.%, Sinopharm Chemical), polyvinylidene difluoride (PVDF, Shanghai 
Aladdin Reagent Co., ltd.), N-methyl pyrrolidone (NMP, Shanghai Aladdin Reagent Co., ltd.), and acetylene 
black (Shanghai Aladdin Reagent Co., ltd.) were used directly without further purification. Deionized water 
was provided by our laboratory and used in all experiments. To further verify the accuracy and universality 
of ML prediction and consider the important influence of heteroatom dopants and activators in the 
synthesis of PCMs, N, O co-doped PCMs (named NOPC-x, x represents the number of different PCMs) 
were synthesized by regulating the mass ratio of carbon precursor, nitrogen dopant and catalyst based on 
NOPC-x synthesis procedure. Taking the pyrolysis temperature at 800 °C as an example, the pyrolysis 
procedure and conditions were the same as the above NOPC-x synthesis process, and the mass ratios of 
demineralized lignite, g-C3N4, and K2CO3 were set as 1:0:0, 1:1:0, 1:1:0.25, 1:1:0.5, 1:1:0.75, 1:1:1, 1:1:1.15, 
1:1:2, respectively. It should be noted that “0” means without adding g-C3N4 or K2CO3. Finally, the resulting 
products were named NOPC-x, which x corresponds to numbers 1 to 8.

Characterization
N2 adsorption-desorption was characterized using an ASAP 2020 PLUS HD88 analyzer (Micromeritics, 
USA) to obtain the SSA, PSD, and pore textures of all samples. The obtained sample (about 100 mg) was 
degassed at 160 °C for 8 h to remove impurities and water and then tested at 77 K with liquid nitrogen as 
adsorbate. The composition and structure characteristics of all samples were analyzed by X-ray 
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) equipped with an Al Kα radiation source. 
The binding energies were calibrated internally using the surface contamination C 1s binding energy of 
284.8 eV.

Electrochemical measurement
For capacitance performance evaluation, galvanostatic charge-discharge (GCD) electrochemical 
measurements were analyzed using a three-electrode system at the CHI760E (Shanghai Chenhua) 
electrochemical workstation. In the three-electrode system, the Pt plate and Hg/HgO were used as counter 
and reference electrodes, respectively. The electrochemical performance of electrode materials was tested in 
a 6 M KOH aqueous electrolyte solution. In addition, working electrodes for testing were prepared before 
all electrochemical tests began. Specifically, the preparation of the working electrode was shown in the 
following process: a uniform homogeneous electrode slurry paste was obtained by mixing 80% active 
material with carbon black (10%) and PVDF (10%) with NMP as the solvent. The highly uniformity mixture 
was coated onto a carbon cloth (1 cm × 1 cm) and dried at 80 °C overnight in a vacuum oven. The weight of 
the loaded active material on the dried electrode sheet was 1.28 mg. GCD curves were observed at different 
current densities (0.5 and 1.0 A·g-1) when conducting constant current charge and discharge experiments 
under the voltage range of -1~0 V. The gravimetric SC (C, F·g-1) was calculated in a three-electrode system 
using

(5)

where the im (A·g-1), ΔV (V), and t (s) represent the specific discharge current, the potential change, and the 
discharge time of the electroactive materials, respectively.

Under the condition of frequency range 0.01-100 kHz and amplitude 5 mV, the impedance curve data of the 
verified experimental sample were obtained by electrochemical AC impedance test, and the charge transfer 
resistance (Rct) and equivalent series resistance (Res) were calculated by fitting the equivalent circuit.
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Deviation analysis
The characteristics of pores and microstructure features obtained from testing, the intensity of N/O doping 
and functional groups, and different CD values are used as values of input variables. On the basis of the 
optimal ML model, the SC performance was predicted under two CD values of 0.5 and 1 A·g-1, respectively, 
and the predicted results were compared with the actual test results to verify the reliability of the prediction 
model. The deviation of the experimental and prediction results was further elucidated by a detailed analysis 
of experimental characterization data.

RESULTS AND DISCUSSION
Figure 1 provides a visual representation of the process of predicting SC through various ML models and
traditional experimental validation. By likening it to a football match, the advantages of using ML for
interpreting, predicting, and screening PCMs for supercapacitors are highlighted, showcasing its superiority
over traditional experimental methods for material optimization. In general, the optimization of N, O co-
doped PCMs to obtain high SC performance requires a complete experimental process; specifically, the
football player (Experimental verification, EV) needs to go through the synthesis (S), characterization (C),
and electrochemical testing (T) to achieve goals (means high SC performance). Three football player designs
in reverse indicate that the continuous optimization of the three links can achieve the high SC of N, O co-
doped PCMs, and also represents the time-consuming and laborious experiment process. The football
player named ML, with the help of three players based on previous data studies: element composition (EC),
pore characteristics (PF), and test environment (TC), can accelerate the screening and prediction of high-
performance N, O co-doped PCMs. More deeply, we carried out ML-assisted study on intensively digging
in the relationship between element composition, pore structure characteristics, operating conditions and
SC performances. Through comprehensive interpretability analysis of ML, important variables influencing
SC properties are identified and their impact range is determined. By analyzing the deviation of key values
during experimental verification, accurate predictions of SC properties of N, O co-doped PCMs are made,
facilitating precise material screening. Additionally, the accuracy and applicability of the ML model
predictions are evaluated.

Descriptive statistical analysis
Microstructural properties, compositional properties, and testing conditions related to N, O co-doped
PCMs were summarized using box-normal plots [Figure 2A-L and Supplementary Figure 1A-F]. The
distribution of each variable aligns well with previous findings from meta-analysis [Supplementary Table 1].
Average and standard deviation (SD) values represent the dispersion of each feature, and minimum and
maximum values describe the range of variables. Additionally, interquartile ranges are provided to offer
supplementary location measures. Overall, all variables exhibited a normal distribution except for the PW.
The voltage window predominantly ranges from 0.8 to 1.0 V [Supplementary Figure 1A], primarily due to
the constraints imposed by the water decomposition voltage of 1.23 V[35-37] in most water system
supercapacitors, resulting in a narrow working window (≤ 1.0 V). CD [Figure 2B] is used as another
parameter to test the SC, with values ranging between 0.5 and 50 A·g-1. This parameter is mainly determined
by the conventional test operation setting, and the SC of the corresponding test is adjusted to demonstrate
the rate performance of the material. Pore structure characteristics play a crucial role in determining the
structural properties of PCMs, which in turn affect their performance in the electrical double-layer 
capacitors (EDLC). The SSA and Vt of the prepared PCMs varied from 8 to 3,430 m2·g-1 and 0.02 to
2.59 cm3·g-1, respectively [Figure 2C and D]. This facilitates rapid ion transport by reducing the pathways for
ion diffusion, and the abundant pore volume further aids in ion diffusion[38]. The pore parameters
[Supplementary Figure 1B-F] provide further insight into the pore structure characteristics. The PSD shown
in Supplementary Figure 1B, ranging mainly between 1-5 nm, indicates a distribution skewed towards large
micropores and small mesopores, which is beneficial for enhancing SC. Smic [Supplementary Figure 1C] and
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Figure 1. Schematic diagram of N, O co-doped PCMs search and theoretical predictions and experimental validation for SC. PCMs: 
Porous carbon materials; SC: specific capacitance.

Vmic [Supplementary Figure 1E], compared with total surface area and total pore volume, were prominently 
higher than the mesopore properties in the majority of the PCMs. The ratio of Smic/SSA [Supplementary 
Figure 1D] typically ranged from 78% to 100%, while Vmic/Vt [Supplementary Figure 1F] varied from 62% to 
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Figure 2. Box-normal plots of the data distributions for each parameter of collected data. (A) SC of PCMs; (B) Current density (CD) 
tested in a three-electrode system; (C) SSA of PCMs; (D) Total pore volume (Vt) of PCMs; (E and F) Contents of nitrogen (N), oxygen 
(O) in PCMs; (G-I) Contents of N-containing functional groups [pyridine nitrogen (N-6), pyrrole nitrogen (N-5), and graphitic nitrogen 
(N-Q)]; (J-L) Contents of O-containing functional groups [carbonyl-O group (C=O, O-I), hydroxyl-O/ether-O group (C-OH/C-O-C, O-
II), and carboxyl-O group (-COOH, O-III)]. SC: Specific capacitance; PCMs: porous carbon materials; CD: current density; SSA: specific 
surface area.

98%. The pore structure characteristics, particularly the surface area and volume of micropores, play a 
significant role in increasing the porosity of heteroatom-doped PCMs’ structures. The microporous 
structure is more conducive to active site generation and heteroatom doping. Analysis of the elemental 
composition revealed that N and O were present as heteroatom doping types in the PCMs. The O content 
ranged from 3.57% to 41.48% [Figure 2E], while the N content ranged from 0.43% to 21.06% [Figure 2F], 
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with an average N content of 4.00% and a maximum of 21.06%. This distribution reflects the current 
research focus on high N content doping. The incorporation of heteroatoms can modify the physical and 
chemical properties of porous carbon, impacting factors such as electrical conductivity and wettability, as 
well as inducing surface electroactive materials that influence capacity. Nitrogen doping in carbon materials 
can enhance electrical conductivity and properties. The presence of N or O functional groups in PCMs is 
crucial for pseudo-capacitance and overall supercapacitor characteristics. Figure 2G-L shows mean values 
for different nitrogen and oxygen groups (N-6 value of 1.22, N-5 value of 1.55, N-Q value of 0.81, O-I value 
of 2.67, O-II value of 5.43, O-III value of 2.33, respectively), suggesting potential incompatibilities among 
multiple dopants in PCMs. This highlights the need to consider various functional group factors in model 
development.

To analyze the dataset, PCC was computed between various features and capacitive performance [Figure 3]. 
The size of circles in Figure 3 indicates correlation, with larger circles representing greater correlation. 
Notably, the results indicate that the correlations between feature characteristics and capacitance properties 
are relatively low (PCC < 0.5), suggesting that capacitance performance is influenced by complex processes 
involving multiple factors and their interactive effects, rather than being explained by a simple linear 
function. SC showed positive or inverse correlations with most independent variables, while CD exhibited a 
negative correlation with SC, with a correlation coefficient of -0.33. Darker colors or larger circles in 
Figure 3 denote stronger correlations between variables, whereas lighter colors indicate weaker correlations. 
Figure 3 highlights that areas with darker colors are primarily found in regions associated with SSA, Vt, Smic, 
and Vmic. Using all features to build a model may diminish model performance due to multicollinearity 
among variables. Nonetheless, taking into account the parameters that characterize pores offers a deeper 
insight into the differences between different pore materials. Therefore, they were preserved in the database 
despite a significant interrelation among them. Additionally, the relationship among other characteristic 
variables is minimal, suggesting that they operate independently. This improves the model’s ability to 
generalize and reduces the occurrence of overfitting. Thus, six features (Smic/SSA, Vmic/Vt, Smic, Vt, SSA, PSD) 
with higher correlation values between porous structural features and SC were selected for modeling. In 
addition, most input parameters show a weak correlation with SC, which indicates that it is difficult to 
explore the quantitative influence of input parameters on the energy storage characteristics of PCMs 
through statistical analysis. Therefore, it is of great significance to build predictive ML models.

Model comparison and optimization
In order to ensure the accuracy of the model, we compared several models written in Python. Four 
traditional ML models (i.e., LR, RF, XGBoost, and LGBM) were adopted to accurately predict the 
capacitance of N, O co-doped PCM supercapacitors. The scatter plots in Figure 4 display the predicted 
capacitance versus the real experimental capacitance of N, O co-doped PCM-based supercapacitors in the 
testing set. The predictive performance of each model was assessed using R2 and RMSE metrics. Among the 
four models, LGBM showed the highest determination coefficient (R2) of 0.92, with a relatively low RMSE of 
2.79 [Figure 4D]. RF ranked second with an R2 of 0.82 and RMSE of 37.08 [Figure 4B]. LR performed the 
least accurately with an R2 of 0.44 [Figure 4A]. The predictive performance ranking of the ML models for N, 
O co-doped PCM supercapacitors is as follows: LGBM > RF > XGBoost > LR [Figure 4]. Figure 4A-D 
illustrates the disparities between the anticipated and experimental values across the four selected models 
utilized. The X-axis denotes the actual SC value, while the Y-axis illustrates the predicted values of SC 
calculated by each model. The closer the predicted value is to the actual value, the nearer the mark is to the 
bisecting line. Consequently, the gap between the mark and the bisecting line indicates the extent of error in 
the prediction. Figure 4A displays a more scattered distribution of points compared to other models, 
suggesting systematic errors in the prediction of LR model. The R2 value for the optimal test set stands at 
0.99, with the training set registering an R2 value of 0.92, signifying superior prediction performance of the 
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Figure 3. Heatmap analysis between all features and SC. The dimensions and hues of the circles in the illustration indicate the strength 
and direction of the correlation. They are distinguished by color codes: brown denotes positive effects, while dark blue indicates 
negative effects. SC: Specific capacitance.

LGBM model over other models. Overall, within this dataset, LGBM demonstrated the most accurate 
predictive capability during both training and testing phases, attributed to algorithmic variances and data 
range influences. From the point of view of ML model selection, LGBM gradually improves the predictive 
power of the model in the regression task by building a series of weak learners (usually decision trees). It 
optimizes the model by minimizing the loss function so that it can make accurate predictions of continuous 
target variables. Compared to traditional GBDT, LGBM uses a number of optimization techniques to 
improve performance. In addition, LGBM provides an early stop mechanism to avoid overfitting and 
improve training efficiency. Consequently, based on the model optimization outcomes, LGBM is designated 
as the preferred prediction model for subsequent simulation analyses.

Feature importance analysis
The importance of the characteristic variables was first considered, and their effects on the predictor 
variables were then analyzed. A higher importance value indicates a stronger influence on the output 
variable. In Figure 5A, we present the ranking of key factors determining the SC of PCMs. The results reveal 
that elemental composition and pore characteristics contribute to approximately 44.2% and 31.8% of PCMs, 
respectively, while 24.1% of the PCMs is attributed to the test condition [inset Figure 5A]. This implies that 
altering the test condition may have a limited impact on enhancing SC. The electrochemical test data in the 
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Figure 4. Modeling the performance of N, O co-doped PCMs for single-target prediction using (A) LR, (B) RF, (C) XGBoost, and (D) 
LGBM. PCMs: Porous carbon materials; LR: linear regression; RF: random forest; LGBM: light gradient boosting machine.

Figure 5. Feature importance analysis. (A) Order of relative contribution among variables; and (B) SHAP values of feature importance of 
targets (SC) obtained from LGBM model. SHAP: SHapley additive explanation; SC: specific capacitance; LGBM: light gradient boosting 
machine.
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database are usually tested at different CDs, so the relationship between SC and CD can be constructed 
according to this. Therefore, CD ranks first in the ranking of model importance. Conversely, another test 
parameter, such as PW, exhibited a minor effect, largely due to the limited potential range of its aqueous 
supercapacitors. When excluding the influence of CD and PW data selection, the inherent characteristics of 
the raw porous material emerged as the most critical factors influencing capacitance prediction. Among 
these characteristics, O-II%, Smic/SSA, Vmic, N-6%, Vt, O-I%, N%, O-III%, N-Q%, and SSA characteristics 
were the top ten variables significantly affecting SC performance. Feature importance was quantitatively 
analyzed to predict the relative contribution of each feature parameter in the LGBM model. The resulting 
SHAP values [Figure 5B], revealed that high CD values had a significant negative impact on SC prediction, 
whereas they positively impacted the SC prediction. The PW data showed a relatively narrow data range, 
leading to a more pronounced impact. Elemental properties such as oxygen and nitrogen and their type and 
content were identified as important factors. SHAP can be utilized to visualize the dependence of the model 
output (e.g., SC) on the value of each descriptor. The O-II% content of PCMs is positively related to SC 
[Figure 5B], particularly when it is below the SHAP value of 10, while negatively correlated to SC when the 
SHAP value of 10. Similarly, the distribution trends of O-I% and O-III% in PCMs follow a similar pattern in 
the SHAP analysis. These trends are due to the increase in active sites on carbon materials with the 
introduction of oxygen-containing functional groups, leading to enhanced charge transfer and improved 
interaction with electrolyte ions, thereby boosting wettability and pseudo-capacitance. However, excessively 
high levels of oxygen-containing functional groups can decrease SC due to factors such as blocked pore 
structure, increased ion transport resistance, and leakage current. The impact of oxygen-containing 
functional groups on PCMs is greater when the SSA and PSD are smaller. Adverse effects become more 
pronounced when oxygen-containing functional groups are present in excessive amounts[39]. The pore 
characteristics of PCMs were identified as significant parameters in predicting SC. Among these 
characteristics, the Smic/SSA and Vmic were found to be more influential than SSA, with the former two 
showing the highest importance after CD and O-II% [Figure 5A]. The SHAP values corresponding to these 
characteristics exhibited a notable positive correlation. The pore structure was observed to have an impact 
on SC, with higher values of Vmic or Vt associated with increased SC (as indicated by the yellow color in 
Figure 5B). Furthermore, both lower and higher values of Smic/SSA were found to positively influence the 
ML model (LGBM), indirectly suggesting that a higher mesoporous or macro-porous surface area is linked 
to enhanced SC. The abundance of mesopores directly impacts electron transfer rates, leading to a 
shortened diffuse length and reduced diffusing resistance of ions in PCM supercapacitors. The increased 
number of N-doping plays a crucial role in enhancing their energy storage capabilities. When considering 
different percentages of N-doping, lower values generally have a negative impact on the ML model (LGBM), 
while higher values have a positive impact. However, the specific nitrogen-containing functional groups 
exhibit varying effects on the SC. For instance, both lower and higher values of N-6% or N-Q% negatively 
affect the ML model (LGBM), whereas overall N-5% shows a positive correlation with SC. The intricate 
impact of different types of nitrogen functional groups on the SC is attributed to the unpredictable 
conversion between nitrogen configurations during the synthesis of nitrogen-doped carbon materials, and 
the mixing of nitrogen species in the resulting PCMs, hindering the identification of electrochemically 
active nitrogen configurations for specific reactions. Most nitrogen-doped carbon materials undergo 
thermal treatment during synthesis, either through post-synthetic or in situ-doping methods. Thermal 
treatment above ~600 °C leads to nitrogen loss and uncontrollable conversion among nitrogen 
configurations, while treatment below ~600 °C yields poorly conductive nitrogen-doped carbon materials, 
limiting their electrochemical performance. Given that the pseudo-capacitance of PCMs is positively 
dependent on the N-5%, it can be inferred that N-5 species serve as highly active pseudocapacitive sites for 
nitrogen-doped carbon materials[40]. Therefore, exploring and coordinating the relationship between the 
input features could enhance the SC of the PCMs.
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Partial dependence analysis
The analysis of feature importance is utilized to demonstrate how a single variable affects the prediction 
target. One-dimensional partial dependence plots are then used to further explore how a single feature 
impacts the model prediction. Specifically, Figure 6 and Supplementary Figure 2 depict the one-dimensional 
partial dependence plots between each important feature and the target value SC. Within the range of 
0-50 A·g-1 [Figure 6A], CD exhibited a notable negative correlation with SC, aligning with the feature 
importance analysis. This is primarily due to higher CD leading to the attenuation of SC, which somewhat 
influenced the correlation analysis. PW showed a weak correlation with SC below 0.95 [Figure 6B], 
indicating that variations in the lower electric potential range did not lead to significant changes in SC. 
However, as PW approached 1 V, it exhibited a significant negative correlation with SC, further supporting 
the findings of the feature importance analysis. Figure 6C-G showed the effect of pore structure of PCMs on 
capacitance. The model in Figure 6C assumes that as the PSD value approaches 5, PCMs may achieve a 
higher SC during the SC prediction process. Conversely, for larger PSD values, this likelihood decreases.

Similarly, the Vmic/Vt in Figure 6D ranging from 0.5 to 0.8 and the Smic/SSA in Figure 6E between 0.5 and 0.9 
also indicate the potential for obtaining a high SC. Both Vt [Figure 6F] and SSA [Figure 6G] demonstrated 
similar positive effects with SC, with a significant increase in predicted SC as the input values increased. SSA 
values ranging from 500 to 2,500 m2·g-1 and Vt values between 0.5 and 1.5 cm3·g-1 were compared to Vmic 
values ranging from 0.5 to 1 cm3·g-1 [Supplementary Figure 2A] and Smic values between 500-2,000 m2·g-1 
[Supplementary Figure 2B]. These comparisons revealed a stronger correlation with SC, indicating that 
manipulating the micro/mesoporous SSA ratio and optimizing pore structure significantly influenced the 
energy storage characteristics of PCMs. In the analysis of doping characteristics of the original PCMs in the 
given parameters, a high feature importance is attributed to N%, while O% is ranked lower but still holds 
significance. Both variables exhibit a positive correlation with SC [Figure 6E and H], in line with prior 
studies. Notably, N% exhibits a stronger influence on SC than O%. This disparity can be attributed to the 
distinct impact of nitrogen dopants in the synthesis process on the energy storage of PCMs, while the O-
doping primarily relies on the carbon precursor itself, resulting in a limited range of oxygen content due to 
pyrolysis loss.

The relationship between nitrogen content and SC is illustrated in Figure 6H, showing that higher nitrogen 
content leads to increased SC. Conversely, Figure 6I demonstrates that excessive oxygen content can hinder 
SC enhancement. When considering N, O co-doped PCMs, it is essential to take into account not only the 
content of N or O but also types in which they exist after doping to accurately predict the SC of PCMs. 
Overall, higher input values of various functional groups result in higher SC predictions [Figure 6J-O]. 
However, within a lower range for different N or O containing functional groups, the SC value is predicted 
to fluctuate upward with the increase of each functional group value. This variation is mainly due to the 
significant effect of N or O doping on the energy storage characteristics of PCMs. Increasing such as N-5 
[Figure 6K], O-I [Figure 6M], and O-II [Figure 6N] within a certain range effectively enhances the 
capacitance performance. The introduction of N imparts the carbon layer with an electron donor property, 
creating a rich electrochemical active site for the pseudocapacitive reaction. Notably, N-6 and N-5 species 
are identified as highly active pseudocapacitive sites for nitrogen-doped carbon materials[40]. The analysis of 
N-Q partial correlations in Figure 6L confirms that traditionally the limited nitrogen doping level (1-3 wt%) 
usually hinders the exertion of positive effect from playing out and only stops at increasing the conductivity. 
Conversely, carbon materials with enriched N-species are of great desire to release the restricted properties, 
usually showing better electrochemical performance[41]. To this end, it can be inferred that high nitrogen 
doping may be beneficial to the prediction of high SC. The partial correlation analysis of O-I [Figure 6M], 
O-II [Figure 6N], and O-III [Figure 6O] indicates that the correlation with SC varies with increasing 
content. This suggests that a moderate doping content of oxygen-containing functional groups is beneficial 
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Figure 6. One-dimensional partial dependence plots of (A) CD, (B) PW, (C) PSD, (D) Vmic/V t, (E) Smic/SSA, (F) V t, (G) SSA, (H) N%, (I) 
O%, (J) N-6, (K) N-5, (L) N-Q, (M) O-I%, (N) O-II%, and (O) O-III%. CD: Current density; PW: potential window; PSD: pore size 
distribution; SSA: specific surface area.
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for SC[42]. Additionally, Figure 6M-O demonstrates the positive effect of high oxygen doping characteristics 
or oxygen-rich functional groups of PCMs on predicting high SC.

In the actual preparation process of PCMs, achieving a balance or regulation of the intricate effects of pore 
characteristics and doping characteristics for SC can be challenging. The relationship between each variable 
of pore characteristics and doping characteristics has not been thoroughly explored. To gain a deeper 
understanding of the interactive influence between these features, two-dimensional partial correlograms 
were constructed for in-depth analysis [Figure 7, Supplementary Figures 3 and 4]. The interaction between 
pore structure-related features was analyzed, and the relevant results were presented in Supplementary 
Figure 3. In Supplementary Figure 3, positive effects were observed within a specific SSA distribution range 
of 500-2,500 m2·g-1. Synthesizing carbon materials with an SSA of around 1,000 m2·g-1 was recommended for 
high SC characteristics, particularly when Vt exceeded 0.68 cm3·g-1. Supplementary Figure 3B indicated that 
a Vmic exceeding 0.82 cm3·g-1, falling within the Vt range, was beneficial for boosting SC. Additionally, a PSD 
around 2.72 nm was suggested for enhancing capacitance [Supplementary Figure 3C]. Supplementary 
Figure 3D highlighted two distinct blue areas, each representing suitable pore volume proportions and 
PSDs. The corresponding Vmic/Vt ratios ranged from 0.55 to 0.61 or from 0.79 to 0.98, respectively. Notably, 
increasing Vmic and Smic significantly impacted capacitance enhancement [Supplementary Figure 3E], with a 
more pronounced effect observed at high Vmic and Smic values, likely due to a rise in adsorption sites. 
Similarly, the blue areas in Supplementary Figure 3F were significant, emphasizing the need for a 
comprehensive assessment when selecting the optimal interval. The total SC value reached its peak when 
the mass fractions of Vmic/Vt and Smic/SSA varied from 0.55-0.61 and 0.63-0.82. Simultaneously, the SC value 
of Vmic/Vt fell within the maximum region in Supplementary Figure 3F. The analysis of interactions 
indicated that pore parameters significantly influenced capacitance prediction. It is advised to control SSA 
within the range of 500-2,500 m2·g-1 and Vmic exceed 0.82 cm3·g-1, while maintaining a desirable PSD around 
2.72 nm during the preparation of PCMs. Additionally, adjusting the Vmic/Vt to 0.55-0.61 or 0.79-0.98 may 
be beneficial when the Smic/SSA falls within the range of 0.56-0.82. Considering the positive impact of N or 
O content and species on the pseudo-capacitance of PCMs, it is crucial to elucidate the relationship between 
doping content and doping species to enhance SC. Supplementary Figure 4A-F illustrates the interaction 
effects of N content and N-containing functional group relative capacitance prediction. The predicted SC of 
PCMs exhibited the best effect when the N-6% fell between 0.47%-0.83% for low N-doping (N% < 5%) or 
range 0.18% to 0.83% for high N-doping (N% > 5%). Furthermore, the bidirectional increase of N-5 contents 
and N contents was observed to positively impact SC enhancement [Supplementary Figure 4B], with high 
nitrogen and high N-5 content correlating with higher capacitance prediction. This suggests that N-5 
species function as highly active pseudocapacitive sites for nitrogen-doped carbon materials. Additionally, a 
moderate N-Q was found to contribute to achieving high SC [Supplementary Figure 4C], with the optimal 
N-Q distribution falling within the range of 0.38% to 1.2% for both low nitrogen (< 5%) and high nitrogen 
(> 5%) regions.

The interactive influence analysis of N-containing functional groups was shown in Supplementary Figure 
4D and F. The optimal ranges for N-6%, N-5%, and N-Q% were found to be 0.47%-0.83%, 2.48%-8.18%, and 
0.38%-1.2%, respectively, aligning with the insights from the one-dimensional partial dependence plots. 
Two-dimensional partial dependence diagrams illustrating the relationship between the content of O and 
O-containing species were presented in Supplementary Figure 4G-L. The mass ratio of O-I% ranged from 
3.2% to 5.5% in Supplementary Figure 4G, indicating the best SC effect. Supplementary Figure 4H and I 
revealed that higher proportions of O-II% (5%-10%) and O-III% (5%-10%) were associated with increased 
SC in total O-doping. Supplementary Figure 4J-L depicted interactions among various O-containing 
functional groups. Detailed analysis showed that O-I% ranged from 2.16% to 5.05%, O-II% from 3.31% to 
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Figure 7. Two-dimensional partial dependence plots of (A) O-II% and Smic/SSA, (B) O-II% and Vmic, (C) O-II% and N-6%, (D) N% and 
O%, (E) SSA and N%, (F) SSA and O%, (G) N-5% and Vmic, (H) N-5% and Smic, (I) N-5% and PSD. SSA: Specific surface area; PSD: pore 
size distribution.

11.23%, and O-III% from 3.33% to 9.64%, suggesting potential for enhanced SC. O-II% had a more 
significant impact on SC compared to O-I% and O-III%, consistent with feature importance analysis results. 
While moderate doping and suitable pore structure are crucial for achieving high SC, the significant impact 
of doping content and species on SC necessitates consideration of their interactions with pore conditions. 
Therefore, we delved into the interaction between typical doping characteristics and pore-related features. 
Beginning with the top five features based on importance ranking, we conducted interactive analysis. Two-
dimensional partial dependence diagrams depicting the relationship between O-II% with Smic/SSA, Vmic, and 
N-6 % were illustrated in Figure 7A-C. With the increase of O-II% content, the landing area of Smic/SSA 
ranges from 0.56 to 0.96 [Figure 7A], while the Vmic ranges from 0.82 to 1.27 cm3·g-1 [Figure 7B], indicating 
higher SC for PCMs. This is primarily attributed to the significant ratio of Smic/SSA and Vmic, which play a 
major role in improving capacitive charge storage. The rise in O-II% content enhances the pseudo-
capacitance active sites in reversible alkaline electrolytes, ultimately leading to an increase in SC. Figure 7C 
demonstrates that an increase in O-II% has a greater impact on SC compared to an increase in N-6%. When 
the O-II% content in PCMs is below 4.5%, incorporating a suitable amount of N-6% can enhance the SC. 
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However, with high O-II% content, maintaining N-6% within the range of 0.18%-1.38% is more likely to 
achieve high SC. The impact of O-II% outweighs that of N-6% in the feature importance analysis, a finding 
further supported by the two-dimensional interaction diagram. Additionally, the presence of doping 
elements must be carefully considered to fully elucidate the significant influence on SC enhancement. The 
interaction diagram of N% and O% in Figure 7D reveals that high N-doping content results in better SC 
than low N-doping within a moderate O-doping range. In scenarios of low and high N-doping, higher or 
lower O-doping levels do not necessarily translate to higher SC; however, O-doping in the range of 10%-
15% or 6.45%-9.3% can contribute to SC improvement. This suggests that N-doping has a more positive 
impact than O-doping, aligning with the feature importance analysis results. The presence of N and O 
elements may participate in the Faraday reaction, and the combined effects of N-doping and O-doping are 
advantageous for enhancing capacitance. The drop point region of Figure 7E indicates that higher SC is 
observed at a SSA ranging from 500-2,500 m2·g-1 with lower nitrogen (2.13%-2.51%) or higher nitrogen 
doping (5.5%-21.06%). This suggests that the combined effect of N-doping and SSA is beneficial for 
enhancing SC. When the SSA is below 500 m2·g-1, changes in N-doping content have a significant impact on 
SC, while variations in O-doping content within the range shown in Figure 7F have a relatively minor 
influence on the SC. Moreover, within the SSA range of 800-2,500 m2·g-1, an optimal level of O-doping can 
lead to higher SC. The N-5 functional group, a representative species of N-doping, is considered highly 
efficient for enhancing SC. Consequently, the interaction between pyrrole nitrogen and pore characteristics 
was investigated. Interactions between N-5% and Vmic, Smic, and PSD are illustrated in Figure 7H-J, revealing 
that PCMs with higher Vmic generally yield higher SC. Additionally, increasing N-5% further enhances SC. 
In Figure 7H, a larger Smic, a higher N-5%, also corresponds to a higher SC prediction. When the PSD falls 
within the range of 0.64-5.11 nm and N-5% content is below 2.48%, increasing PS and doping content 
collectively promote SC enhancement. Conversely, when the N-5 doping level exceeds 2.48%, PSD exerts a 
greater influence on SC improvement. In summary, through feature importance analysis, univariate 
dependency graph and two-dimensional interactive influence analysis, key features for preparing N, O co-
doped PCMs with high SC were identified. These include Smic/SSA (0.63-0.82 or 0.89-0.96), Vmic/Vt (0.55-
0.61 or 0.79-0.98), SSA (500-2,500 m2·g-1), PSD (0.64-5.11 nm), lower N% (2.13%-2.51%) or higher N-doping 
(5.5%-21.06%), O% (below 15%), N-5% (2.48%-8.18%), and O-II% (3.31%-11.23%).

Experimental validation, prediction and deviation analysis
Through feature importance analysis, univariate dependence graph and two-dimensional interaction 
analysis, the key feature range for preparing N, O co-doped PCMs with high SC performance was 
determined. Ideal values of SSA (1,965 m2·g-1), Smic/SSA (0.74), Vmic/Vt (0.91), PSD (2.11 nm) were achieved 
based on LGBM by considering multi-physiochemical and test features. Also, the obtained values of N%, 
O%, N-5%, and O-II% were 17.57 at%, 14.5 at%, 5.34 at%, and 3.98 at%, respectively. On this basis, 
combined with the actual sample test conditions, considering the three-electrode system under the 
condition of 6 M KOH, the LGBM-based model predicts that the maximum SC of N, O co-doped PCMs is 
469 F·g-1 at 0.5 A·g-1 in a PW of 1.0 V. The capacitance value obtained by the optimization process is 
somewhat different from the value predicted by the previous ML[14,26,42], which may be related to the database 
collected and the model used. Furthermore, the rationality of the constructed model and the selection of 
features require further validation through experiments to ensure accurate prediction. Validation 
experiments on eight NOPC samples at 0.5 A·g-1 and at 1.0 A·g-1 displayed GCD profiles in Figure 8A and B. 
The GCD curves exhibit a linear shape with slight deviations, indicating a blend of electrical double-layer 
and pseudo-capacitor energy storage mechanisms attributed to porous and N, O co-doped pseudo-
capacitor sites. The SC values of the prepared NOPC samples, as predicted by the LGBM model 
[Figure 8C]. Test results reveal actual SC values ranging from 228.4 and 357 F·g-1 at 0.5 A·g-1 and from 142.6 
to 330.3 F·g-1 at 1.0 A·g-1. A comparison between predicted and actual values indicates some deviation, 
particularly as CD increases, leading to fluctuations in prediction accuracy. The prediction accuracy of SC 
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Figure 8. Capacitance performance (SC) assessed through a three-electrode configuration. (A) GCD profiles of eight NOPC samples at
0.5 A·g-1 and (B) at 1.0 A·g-1 in electrochemical experiments; (C) Test and predicted values of SC about eight NOPC samples in
verification experiments and prediction accuracy. SC: Specific capacitance; GCD: galvanostatic charge-discharge; NOPC: nitrogen, 
oxygen co-doped porous carbon materials..

ranges between 80% and 98%, differing from the R2 (test set). This discrepancy is primarily attributed to
significant deviations in SSA, Vt, N% or O% of the prepared samples from the predicted eigenvalue range,
directly impacting the energy storage performance of N, O co-doped PCMs and resulting in biased results.
For this purpose, Brunauer-Emmett-Teller (BET) and XPS characterization tests were used to analyze the
pore structure and composition structure of PCMs (NOPC samples), respectively. The nitrogen adsorption-
desorption isotherms were shown in Supplementary Figure 5A. The sharp increase of adsorption volume
(P/P0 < 0.05) and hysteresis loop (P/P0 = 0.45-0.9) indicated that there were abundant micropores and
mesopores in each sample synthesized by verification experiment, revealing the hierarchical porous
structure of PCMs. The PSD curves estimated using density functional theory (DFT) confirmed the
significant micropore distribution and some mesopores [Supplementary Figure 5B and C]. Among the
samples from NOPC-1 to NOPC-8, the micropores of PCMs are mainly concentrated at about 0.6, 
0.9 and 1.3 nm, accompanied by abundant mesopores in the range of 2-4 nm. More detailed pore  
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parameters such as  SSA,  Smic, PSD,  V t, Smic/SSA,  Vmic/V t, and Vt of NOPC samples were summarized in
Supplementary Table 2. In all synthesized NOPC samples, Smic/SSA distribution was 0.25-0.932; Vmic/Vt

distribution was 0.111-0.969; SSA ranged from 12 to 1,192 m2·g-1; PSD was in the narrow range of 1.79-3.00
nm. The specific elemental compositions and their chemical states or functional group species of the
experimentally verified samples (NOPC samples) were revealed using XPS tests. In the full XPS spectrum of
NOPC samples, there are three absolute peaks at 284.8, 399.7 and 532.7 eV, which belong to the peaks of C,
N, and O, respectively [Supplementary Figure 6A], indicating the successful co-doping of N and O
elements. Further, the doping forms of N and O elements in the carbon skeleton were shown in
Supplementary Figure 6B-D. Among them, The nitrogen doping forms are as follows, containing
pyridine nitrogen (N-6, 398.69 eV), pyrrole nitrogen (N-5, 400.03 eV) and graphitic nitrogen (N-Q, 401.28
eV), respectively. O-doped forms are as follows: carbonyl-O group (C=O, O-I, 531.04 eV), hydroxyl-O/
ether-O group (C-OH/C-O-C, O-II, 532.49 eV), and carboxyl-O group (-COOH, O-III, 533.51 eV)[43]. The
specific elemental compositions and their species doped by N and O were summarized in Supplementary
Table 3. In particular, the doped content of N elements ranges from 1.82% to 17.9%, the doped content of O
elements ranges from 3.04% to 9.46%, the content of N-5 species ranges from 0.51% to 5.49%, and the
distribution of O-II species ranges from 0.83% to 3.43% in the actual synthesized NOPC samples. Combined
with the analysis of capacitance performance in Figure 8C, the lowest capacitance performance of NOPC-1
in the actual experimental sample may be related to its low N and O doping (the N and O element in this
sample is derived from the carbon precursor low-rank lignite itself). The nitrogen doping content of other
samples is above 5%, and the oxygen doping content is about 5% or higher, which means higher capacitance
performance. Lowest SSA and Vt in NOPC-3 may be related to high N-doping, high O-doping and low
addition of activators without sufficient activation. Data deviation analysis between experimental features
and predicted important features such as Smic/SSA, Vmic/Vt, SSA, PSD, N%, O%, N-5%, and O-II% was
presented in Figure 9. Further application of local displayed shapes to explain certain prediction deviations
is shown in Supplementary Figure 7. Various characteristic indicators of NOPC-1 in Figure 9, such as O-
II%, SSA, N%, and N-5%, deviated from the predicted range of important features, yet achieved prediction
accuracies of 98.42% (0.5 A·g-1) and 94.2% (1.0 A·g-1), respectively, with slight deviations from the laboratory
values compared to the predicted capacitance. Local SHAP analysis showed that the prediction bias of
NOPC-1 is negatively affected by O-II% and the change of CD has a positive effect on the prediction. At
different current densities, the features have different effects on the prediction. This is mainly due to the fact
that the collected data is not completely satisfactory, and may be due to some special data outside the model
prediction range resulting in inaccurate forecasts. Notably, the Smic/SSA, Vmic/Vt, and SSA eigenvalues of
NOPC-3 exhibited significant deviations from the predicted range, leading to a larger deviation compared
to the capacitance prediction. Local SHAP analysis showed that Smic/SSA and Vmic/Vt had positive effects, so
Smic/SSA and Vmic/Vt may be the main causes of prediction bias in the actual NOPC-3. Prediction
discrepancies for NOPC-6 and NOPC-7 were primarily attributed to the low O-II% content, as supported
by the feature importance ranking of O-II%. In contrast to NOPC-6, the prediction accuracy of NOPC-7
improved with increasing CD (A·g-1), largely due to the influence of SSA, which enhances ion and charge
adsorption and conversion. In the local shape analysis, O-II% showed a major negative effect in NOPC-6,
and O-II% and SSA showed a major negative effect as the CD (A·g-1) changed. Further analysis indicated an
average testing accuracy of approximately 90% for all NOPC samples, which is basically consistent with the
model R2 value. However, the unexpectedly high accuracy and minimum difference in the NOPC-1 sample
suggest that the overall composition of the PCMs also plays a role, emphasizing the need to consider the
effects of the PCMs themselves, synthesis parameters, and electrochemical test parameters when integrating
the prediction range of important feature analysis. Nyquist curves, equivalent circuit diagrams and fitting
curves of all NOPC samples were further shown in Supplementary Figure 8A-D. All curves are semicircular
in the high-frequency region, oblique in the mid-frequency region, and almost vertical in the low-frequency
region. The Rct and Res calculated by fitting were presented in Supplementary Table 4. Specifically, the Rct
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Figure 9. Deviation analysis of experimental feature indexes in the range of prediction key features (Smic/SSA, Vmic/V t, SSA, PSD, N%, 
O%, N-5%, and O-II%). SSA: Specific surface area; PSD: pore size distribution.

ranges from 0.003 to 2.62 Ω, and the Res ranges from 0.58 to 3.37 Ω. NOPC-1 showed that the highest Rct 
and Res may be related to its underdeveloped pore structure resulting in its lowest SC performance. All 
other samples have small semicircles and low Rct, indicating faster ion diffusion and charge transfer 
dynamics. The Res from NOPC-2 to NOPC-8 all showed low values, indicating that the prepared materials 
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have good electrical conductivity, which is related to the introduction of graphitized carbon in the prepared 
samples [Supplementary Table 3], and may be beneficial to the increase of SC. Considering that the overall 
conductivity of the carbon material was found to be the result of interactions among multiple factors, 
texture and surface chemistry were probably the most relevant, and the conductivity as selected features in 
ML (Rct and Res properties based on electrochemical impedance tests) had an impact on the next stage of 
the prediction process[44,45]. Validation experimental results demonstrated that the model could be further 
optimized by incorporating appropriate synthetic parameters and more comprehensive electrochemical test 
features, but accuracy enhancement would require additional ML processes. Compared with traditional 
experimental methods, the limited amount of data may not be able to fully cover all situations. This shows 
that ML models should still be used in conjunction with practical applications, and underscores the 
importance of collecting high-quality data in predicting applications of high-performance porous carbon-
based energy storage materials.

Challenges and prospects
Compared with traditional experiments, the ML model adopted in this study and the proposed method can 
save experiment cost and time, while providing accurate predictions. Our work provides new insights into 
the screening and prediction of N, O co-doped PCMs, and this can help accelerate the development of high-
performance carbon materials.

However, there are some limitations to this study:

(1) Any model has its own advantages and inherent limitations for predicting the target. The LGBM 
regression model learns the relationship between features and target variables from the data when trained, 
so the performance of the model may suffer when encountering test data with a significantly different 
distribution than the training data. LGBM cannot predict the target value beyond the feature range of 
training data, and is sensitive to skewed data. It is also affected by feature engineering and preprocessing.

(2) Some special values in the literature dataset have some influence on the prediction performance of the 
model because they are out of the data distribution range, which leads to the deviation of the prediction 
results.

(3) The characteristics used in this study mainly involve the elemental composition, pore structure and 
capacitance test conditions of N and O co-doped PCMs, while other characteristics or electrochemical tests 
such as conductivity, defects and electrode preparation process parameters may affect capacitance through 
different mechanisms, and the pyrolysis and activation processes are not considered. In the actual material 
preparation process, there are complex process combinations that affect the composition characteristics, so 
it is necessary to consider different process parameters and further refine the characteristic parameters to 
predict their effects.

Future research should collect characteristic parameters based on experimental synthesis, characterization 
and test results as much as possible to expand data quantity and improve data quality. In addition, it is 
necessary to establish a reliable prediction model on the basis of the existing analysis results and try to 
develop a new model to further improve the science, accuracy, and practicability of the model. For other 
feature parameters collected, the input parameters should be adjusted in time, and the ML prediction model 
should be built by using similar processes. Meanwhile, the model should be updated and optimized in real 
time, and finally establish a system for carbon-based energy storage materials’ prediction.
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CONCLUSIONS
In summary, four ML models, LR, RF, XGBoost, and LGBM, were utilized to predict the SC property of N, 
O co-doped PCMs. The prediction results indicated that the LGBM model outperformed the other three 
algorithm models, achieving an R2 value of 0.92 on the prediction set. Through SHAP analysis, one-
dimensional partial dependence analysis and two-dimensional interaction diagram analysis, it was 
determined that higher values of Smic/SSA (0.63-0.82 or 0.89-0.96), Vmic/Vt (0.55-0.61 or 0.79-0.98), larger 
SSA (500-2,500 m2·g-1), PSD (0.64-5.11 nm), lower N% (2.13%-2.51%) or higher N-doping (5.5%-21.06%), 
O% (below 15%), N-5% (2.48%-8.18%), and O-II% (3.31%-11.23%) were found to be advantageous for 
enhancing the SC of N, O co-doped PCMs. Experimental validation using NOPC samples was conducted to 
assess the applicability and the accuracy of the preferred LGBM model. Comparison and analysis of the 
deviation based on the fall-point region of key features and experimental feature value facilitate the 
prediction and screening of N, O co-doped PCMs. Functional importance (SHAP, partial correlation 
analysis) based on the best LGBR model provides reasonable explanations for these variables. All in all, the 
ML model developed in this study offers cost and time savings while maintaining accurate predictions. The 
combination of ML model predictions, experimental verification, and deviation analysis of falling data 
proposed in this study presents a novel approach to enhancing the accuracy of SC prediction and accurate 
screening of N, O co-doped PCMs.

DECLARATIONS
Authors’ contributions
Conceived the idea and designed the project: Liu H, Wang Y
Performed data analysis and interpretation: Liu H, Cui Z
Supervised the project: Liu H, Qiao Z, An X
Drafted the manuscript: Liu H
Revised and finalized the manuscript: Liu H, Cui Z, Qiao Z, An X, Wang Y
All authors read and approved the final manuscript.

Availability of data and materials
Supplementary Materials are available from the Journal of Materials Informatics or the authors.

Financial support and sponsorship
The work was supported by the National Natural Science Foundation of China (No. 52371231) and the Key 
R&D Program of Shanxi Province (No.202302040201008).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2024.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202410/jmi4029-SupplementaryMaterials.pdf


Page 24 of 25 Liu et al. J Mater Inf 2024;4:16 https://dx.doi.org/10.20517/jmi.2024.29

REFERENCES
Pohlmann S. Metrics and methods for moving from research to innovation in energy storage. Nat Commun 2022;13:1538.  DOI  
PubMed  PMC

1.     

Pandya DJ, Muthu Pandian P, Kumar I, et al. Supercapacitors: review of materials and fabrication methods. Mater Today Proc 2023;In 
Press.  DOI

2.     

Liu X, Lyu D, Merlet C, et al. Structural disorder determines capacitance in nanoporous carbons. Science 2024;384:321-5.  DOI  
PubMed

3.     

Li J, Xia Z, Wang X, et al. Distinguished roles of nitrogen-doped Sp2 and Sp3 hybridized carbon on extraordinary supercapacitance in 
acidic aqueous electrolyte. Adv Mater 2024;36:e2310422.  DOI  PubMed

4.     

Yang M, Zhou Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv Sci 2017;4:1600408.  
DOI  PubMed  PMC

5.     

Yang J, Su F, Liu T, Zheng X. Heteroatoms co-doped multi-level porous carbon as electrode material for supercapacitors with ultra-
long cycle life and high energy density. Diam Relat Mater 2024;141:110693.  DOI

6.     

Zhang Y, Wang Y, Feng Y, Liu W, Chen F. Amorphous nickel–cobalt phosphate nanosheets optimized by a micron−sized copper 
particle array with ultrahigh specific capacitance for asymmetric supercapacitors. J Alloys Compd 2024;990:174393.  DOI

7.     

Patil S, Bhosale A, Kundale S, Dongale T, Vanalakar S. Enhancing capacitance performance of functional group assisted carbon 
quantum dots derived from turmeric plant waste. Carbon Trends 2024;15:100370.  DOI

8.     

Hajibaba S, Gholipour S, Pourjafarabadi M, et al. Electrochemical sulfur-doping as an efficient method for capacitance enhancement 
in carbon-based supercapacitors. J Energy Storage 2024;79:110044.  DOI

9.     

Wood KN, O’Hayre R, Pylypenko S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability 
applications. Energy Environ Sci 2014;7:1212-49.  DOI

10.     

Dong K, Wang J, Guo F, et al. Facile synthesis of O and P co-doped hierarchical porous carbon nanosheets from biomass for high-
performance supercapacitors. Diam Relat Mater 2023;140:110531.  DOI

11.     

Zheng Y, Chen K, Jiang K, Zhang F, Zhu G, Xu H. Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) 
carbon materials for supercapacitors. J Energy Storage 2022;56:105995.  DOI

12.     

Lu Y, Liang J, Deng S, et al. Hypercrosslinked polymers enabled micropore-dominant N, S Co-doped porous carbon for ultrafast 
electron/ion transport supercapacitors. Nano Energy 2019;65:103993.  DOI

13.     

Zhou M, Vassallo A, Wu J. Data-driven approach to understanding the in-operando performance of heteroatom-doped carbon 
electrodes. ACS Appl Energy Mater 2020;3:5993-6000.  DOI

14.     

Jha S, Yen M, Salinas YS, Palmer E, Villafuerte J, Liang H. Machine learning-assisted materials development and device management 
in batteries and supercapacitors: performance comparison and challenges. J Mater Chem A 2023;11:3904-36.  DOI

15.     

Thakkar P, Khatri S, Dobariya D, Patel D, Dey B, Singh AK. Advances in materials and machine learning techniques for energy 
storage devices: a comprehensive review. J Energy Storage 2024;81:110452.  DOI

16.     

Rahimi M, Abbaspour-Fard MH, Rohani A. A multi-data-driven procedure towards a comprehensive understanding of the activated 
carbon electrodes performance (using for supercapacitor) employing ANN technique. Renew Energ 2021;180:980-92.  DOI

17.     

Jha S, Bandyopadhyay S, Mehta S, et al. Data-driven predictive electrochemical behavior of lignin-based supercapacitors via machine 
learning. Energy Fuels 2022;36:1052-62.  DOI

18.     

Pan R, Gu M, Wu J. Data-driven optimization of carbon electrodes for aqueous supercapacitors. J Chem Eng Data 2024.  DOI19.     
Su H, Lin S, Deng S, Lian C, Shang Y, Liu H. Predicting the capacitance of carbon-based electric double layer capacitors by machine 
learning. Nanoscale Adv 2019;1:2162-6.  DOI  PubMed  PMC

20.     

Adekoya GJ, Adekoya OC, Ugo UK, Sadiku ER, Hamam Y, Ray SS. A mini-review of artificial intelligence techniques for predicting 
the performance of supercapacitors. Mater Today Proc 2022;62:S184-8.  DOI

21.     

Yang H, Fang L, Yuan Z, et al. Machine learning guided 3D printing of carbon microlattices with customized performance for 
supercapacitive energy storage. Carbon 2023;201:408-14.  DOI

22.     

Pan K, Liu Q, Zhu L, et al. Integrated data mining for prediction of specific capacitance of porous carbon materials for flexible energy 
storage devices. J Energy Storage 2023;73:109072.  DOI

23.     

Liu P, Wen Y, Huang L, et al. An emerging machine learning strategy for the assisted-design of high-performance supercapacitor
materials by mining the relationship between capacitance and structural features of porous carbon. J Electroanal Chem
2021;899:115684.  DOI

24.     

Saad AG, Emad-Eldeen A, Tawfik WZ, El-Deen AG. Data-driven machine learning approach for predicting the capacitance of 
graphene-based supercapacitor electrodes. J Energy Storage 2022;55:105411.  DOI

25.     

Rahimi M, Abbaspour-Fard MH, Rohani A. Synergetic effect of N/O functional groups and microstructures of activated carbon on 
supercapacitor performance by machine learning. J Power Sources 2022;521:230968.  DOI

26.     

Sun Y, Sun P, Jia J, et al. Machine learning in clarifying complex relationships: Biochar preparation procedures and capacitance 
characteristics. Chem Eng J 2024;485:149975.  DOI

27.     

Chenwittayakhachon A, Jitapunkul K, Nakpalad B, et al. Machine learning approach to understanding the ‘synergistic’ 
pseudocapacitive effects of heteroatom doped graphene. 2D Mater 2023;10:025003.  DOI

28.     

Yang X, Yuan C, He S, Jiang D, Cao B, Wang S. Machine learning prediction of specific capacitance in biomass derived carbon 
materials: effects of activation and biochar characteristics. Fuel 2023;331:125718.  DOI

29.     

https://dx.doi.org/10.1038/s41467-022-29257-w
http://www.ncbi.nlm.nih.gov/pubmed/35318345
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941066
https://dx.doi.org/10.1016/j.matpr.2023.10.148
https://dx.doi.org/10.1126/science.adn6242
http://www.ncbi.nlm.nih.gov/pubmed/38635707
https://dx.doi.org/10.1002/adma.202310422
http://www.ncbi.nlm.nih.gov/pubmed/38102494
https://dx.doi.org/10.1002/advs.201600408
http://www.ncbi.nlm.nih.gov/pubmed/28852607
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566231
https://dx.doi.org/10.1016/j.diamond.2023.110693
https://dx.doi.org/10.1016/j.jallcom.2024.174393
https://dx.doi.org/10.1016/j.cartre.2024.100370
https://dx.doi.org/10.1016/j.est.2023.110044
https://dx.doi.org/10.1039/c3ee44078h
https://dx.doi.org/10.1016/j.diamond.2023.110531
https://dx.doi.org/10.1016/j.est.2022.105995
https://dx.doi.org/10.1016/j.nanoen.2019.103993
https://dx.doi.org/10.1021/acsaem.0c01059
https://dx.doi.org/10.1039/d2ta07148g
https://dx.doi.org/10.1016/j.est.2024.110452
https://dx.doi.org/10.1016/j.renene.2021.08.102
https://dx.doi.org/10.1021/acs.energyfuels.1c03270
https://dx.doi.org/10.1021/acs.jced.4c00071
https://dx.doi.org/10.1039/c9na00105k
http://www.ncbi.nlm.nih.gov/pubmed/36131961
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419274
https://dx.doi.org/10.1016/j.matpr.2022.05.079
https://dx.doi.org/10.1016/j.carbon.2022.08.083
https://dx.doi.org/10.1016/j.est.2023.109072
https://dx.doi.org/10.1016/j.jelechem.2021.115684
https://dx.doi.org/10.1016/j.est.2022.105411
https://dx.doi.org/10.1016/j.jpowsour.2021.230968
https://dx.doi.org/10.1016/j.cej.2024.149975
https://dx.doi.org/10.1088/2053-1583/acaf8d
https://dx.doi.org/10.1016/j.fuel.2022.125718


Liu et al. J Mater Inf 2024;4:16 https://dx.doi.org/10.20517/jmi.2024.29 Page 25 of 25

Liu X, Ji D, Jin X, Quintano V, Joshi R. Machine learning assisted chemical characterization to investigate the temperature-dependent 
supercapacitance using Co-rGO electrodes. Carbon 2023;214:118342.  DOI

30.     

Kim M, Kang S, Gyu Park H, Park K, Min K. Maximizing the energy density and stability of Ni-rich layered cathode materials with 
multivalent dopants via machine learning. Chem Eng J 2023;452:139254.  DOI

31.     

Sawant V, Deshmukh R, Awati C. Machine learning techniques for prediction of capacitance and remaining useful life of 
supercapacitors: a comprehensive review. J Energy Chem 2023;77:438-51.  DOI

32.     

33.     Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: 31st Conference on Neural Information Processing
          Systems (NIPS 2017); Long Beach, USA. 2017. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a862
          1978632d76c43dfd28b67767-Paper.pdf. [Last accessed on 23 Oct 2024]

Zhang Y, Feng Y, Ren Z, et al. Tree-based machine learning model for visualizing complex relationships between biochar properties 
and anaerobic digestion. Bioresour Technol 2023;374:128746.  DOI  PubMed

34.     

Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Aqueous rechargeable Li and Na ion batteries. Chem Rev 2014;114:11788-827.  
DOI  PubMed

35.     

36.     Tan J, Liu J. Electrolyte engineering toward high-voltage aqueous energy storage devices. Energy Environ Mater 2021;4:302-6.  DOI
Hwang JY, El-Kady MF, Li M, et al. Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution
from both electrode and electrolyte. Nano Today 2017;15:15-25.  DOI

37.     

Hu J, Zhao C, Si Y, et al. Chitosan-derived large surface area porous carbon via microphase separation engineering of pore-regulation 
and nitrogen-doping coupling for high-performance supercapacitors. Renew Energy 2024;228:120598.  DOI

38.     

Qiu C, Jiang L, Gao Y, Sheng L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. 
Mater Design 2023;230:111952.  DOI

39.     

Tian K, Wang J, Cao L, et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat 
Commun 2020;11:3884.  DOI  PubMed  PMC

40.     

Chen T, Luo L, Luo L, et al. High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material 
obtained from bio-waste. Renew Energy 2021;175:760-9.  DOI

41.     

Wang T, Pan R, Martins ML, et al. Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials 
for aqueous supercapacitors. Nat Commun 2023;14:4607.  DOI  PubMed  PMC

42.     

Zhang S, Zhang Q, Ma R, et al. Boosting the capacitive performance by constructing O, N co-doped hierarchical porous structure in 
carbon for supercapacitor. J Energy Storage 2024;82:110569.  DOI

43.     

Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Macías-García A, Gómez-Serrano V. Temperature dependence of the 
electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods. Micropor 
Mesopor Mat 2015;209:90-8.  DOI

44.     

Tawfik WZ, Mohammad SN, Rahouma KH, Salama GM, Tammam E. Machine learning models for capacitance prediction of porous 
carbon-based supercapacitor electrodes. Phys Scr 2024;99:026001.  DOI

45.     

https://dx.doi.org/10.1016/j.carbon.2023.118342
https://dx.doi.org/10.1016/j.cej.2022.139254
https://dx.doi.org/10.1016/j.jechem.2022.11.012
https://dx.doi.org/10.1016/j.biortech.2023.128746
http://www.ncbi.nlm.nih.gov/pubmed/36813050
https://dx.doi.org/10.1021/cr500232y
http://www.ncbi.nlm.nih.gov/pubmed/25211308
https://dx.doi.org/10.1002/eem2.12125
https://dx.doi.org/10.1016/j.nantod.2017.06.009
https://dx.doi.org/10.1016/j.renene.2024.120598
https://dx.doi.org/10.1016/j.matdes.2023.111952
https://dx.doi.org/10.1038/s41467-020-17727-y
http://www.ncbi.nlm.nih.gov/pubmed/32753658
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403304
https://dx.doi.org/10.1016/j.renene.2021.05.006
https://dx.doi.org/10.1038/s41467-023-40282-1
http://www.ncbi.nlm.nih.gov/pubmed/37528075
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393944
https://dx.doi.org/10.1016/j.est.2024.110569
https://dx.doi.org/10.1016/j.micromeso.2014.07.023
https://dx.doi.org/10.1088/1402-4896/ad190c
刘红伟
We have  provided the complete title and DOI.
The revised ref.33 format is as follows:

Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions. In Neural Information Processing Systems 2017, Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, California, USA, May 22, 2017；Curran Associates Inc. Publishers: Red Hook, NY, USA, 2017; pp 4768-4777. https://doi.org/10.48550/arXiv.1705.07874 




https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf



