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Aim: To develop new therapies for prostate cancer, disease heterogeneity must be addressed. 
This includes patient variation, multi-focal disease, cellular heterogeneity, genomic changes 
and epigenetic modification. This requires more representative models to be used in more 
innovative ways. Methods: This study used a panel of cell lines and primary prostate 
epithelial cell cultures derived from patient tissue. Several assays were used; alamar 
blue, colony forming assays, γH2AX and Ki67 immunofluorescence and comet assays. 
Ptychographic quantitative phase imaging (QPI), a label-free imaging technique, combined 
with Cell Analysis Toolbox software, was implemented to carry out real-time analysis of 
cells and to retrieve morphological, kinetic and population data. Results: A combination of 
radiation and Vorinostat may be more effective than radiation alone. Primary prostate cancer 
stem-like cells are more resistant to etoposide than more differentiated cells. Analysis of QPI 
images showed that cell lines and primary cells differ in their size, motility and proliferation 
rate. A QPI signature was developed in order to identify two subpopulations of cells within 
a heterogeneous primary culture. Conclusion: Use of primary prostate epithelial cultures 
allows assessment of therapies whilst taking into account cellular heterogeneity. Analysis of 
rare cell populations and embracing novel techniques may ultimately lead to identifying and 
overcoming treatment resistance.
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INTRODUCTION

Tumor heterogeneity and therapy resistance are 

two sides of the same coin; because there is tumor 
heterogeneity, therapy resistance is inevitable. There 
are many different kinds of heterogeneity [Figure 1], 
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and so developing new treatments is an increasingly 
complex task. Not only do we have to consider the 
differences between patients, giving rise to the need 
and hope of patient stratification, but we also have to 
consider that the tumor that has been biopsied may 
be the larger more detectable one but not necessarily 
the most aggressive one. Alongside that, we have our 
dependence on hormone treatments for metastatic 
prostate cancer, whilst knowing that there are tumor 
cell subpopulations that are not responsive or develop 
acquired resistance to those treatments[1]. There is a 
poor choice of chemotherapy available for prostate 
cancer and it is typically a last resort, although some 
progress is being made in this area[2]. Even with all 
these known variations, only in recent years has the 
true complexity of prostate cancers emerged[3-6] with 
genomic and transcriptomic sequencing[7] as well as 
clonal tracking[8-10]. So, if we set out to test current 
treatments or develop novel therapies for prostate 
cancer, we must consider our current drug pipeline 
from bench to bedside; what models are used, do they 
take into account the different layers of heterogeneity 
and are they fit for purpose?

Here, we present a study that highlights the variation 
in results that can be acquired when using different 
cell line models, and also in comparison to primary 
prostate epithelial cells cultured from patient tissue. 
We consider how to tackle the cellular heterogeneity 
within tumors by assessing cell subpopulations rather 
than a heterogeneous mixture, as well as introducing 
a new technique that might be instrumental in 
assessing drug response whilst simultaneously taking 
into account cell heterogeneity.

METHODS

Culturing of cell lines
PNT1a, PNT2-C2 and LNCaP cells were cultured 
in Roswell Park Memorial Institute medium (RPMI) 
with 10% fetal calf serum. BPH-1 cells were cultured 
in RPMI with 5% fetal calf serum[11]. PC3 cells were 
cultured in Hams-F12 media with 7% fetal calf serum. 
P4E6 cells were cultured in Keratinocyte Serum-Free 
medium (KSFM) with supplements (bovine pituitary 
extract 50 mg/mL and human recombinant epidermal 
growth factor 5 ng/mL) and with 2% fetal calf serum[12]. 
To all media, Glutamine (2 mmol/L) was added. No 
antibiotics were used in the media. Cells were grown 
in an incubator at 37 oC in a humidified atmosphere 
containing 5% CO2.

Culturing of primary prostate cells
Tumor tissue was obtained by targeted needle biopsy 
following radical prostatectomy. Following collection 
from the hospital, tissue was digested overnight in 
collagenase, followed by a trypsin digest. Primary 
prostate epithelial cells derived from patient tissue 
were cultured in stem cell media (SCM). SCM 
contains KSFM plus supplements (bovine pituitary 
extract 50 mg/mL and human recombinant epidermal 
growth factor 5 ng/mL) with the addition of 2 ng/mL 
stem cell factor, 100 ng/mL cholera toxin, 1 ng/mL 
granulocyte macrophage colony-stimulating factor and 
2 ng/mL leukemia inhibitory factor. Cells were cultured 
on Biocoat collagen I 10 cm dishes with irradiated 
Sandoz inbred strain, thioguanine- and ouabain-
resistance (STO) feeder cells. A detailed method of 
the whole procedure has been published[13]. Patient 
samples used in this study are listed in Table 1.

Figure 1: Heterogeneity in prostate cancer. When considering the task of improving current prostate cancer treatments or developing novel 
therapies, multiple types of heterogeneity have to be taken into account. These include patient tumor heterogeneity, multi-focal disease, 
intra-tumor cellular heterogeneity, genomic heterogeneity including mutations and gene fusions and finally epigenetic heterogeneity with 
inherent differences between cell populations but also the possibility of therapy-induced epigenetic changes
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Selection of stem cells, transit amplifying cells 
and committed basal cells
Following trypsinisation of primary cultures, cells 
were first selected using collagen adherence. stem 
cells (SC) and transit amplifying (TA) cells are 
α2β1integrinhi and committed basal (CB) cells are 
α2β1integrinlo. A stringent selection of TA cells can 
be achieved with 5 min adherence to collagen I. 
Any non-adherent cells can be passed on to another 
plate, then any cells not adhered after 20 min are 
the committed basal cells. A slightly less stringent 
selection of TA cells can be achieved with a 20 min 
adherence where any non-adherent cells represent 
the committed basal population. This latter selection 
can be used when trying to achieve maximum stem 
cell (α2β1integrinhi/CD133+) yield. To select stem 
cells, positive selection using a CD133 microbead kit 
(Miltenyi Biotec) was used[14].

Ethics approval and patient consent
Patient samples were collected with ethical 
permission from Castle Hill Hospital (Cottingham, 
Hull) (ethics number: 07/H1304/121). Use of patient 
tissue was approved by the Local Research Ethics 
Committees. Patients gave informed consent and all 
patient samples were anonymized.

Alamar blue assay
The alamarBlue® reagent (ThermoFisher scientific) 
was used as an assessment of cell viability. Briefly, 
cells were plated at 5,000 cells per well in a 96-well 
plate and treated with drug. Radiation of cells was 
carried out prior to plating. The alamar blue assay 
was carried out 24-72 h post-treatment. Cells were in 
200 μL and a 1:10 dilution of alamar blue reagent was 
added. Fluorescence was measured on a plate reader 
2 h after addition of reagent.

Colony forming assay
Selected cells (SC and TA) were plated at 100-500 
cells per well on a collagen I-coated 6-well plate and 
treated with 30 μmol/L etoposide or an appropriate 
dilution of DMSO for 45 min at 37 oC, washed twice 
with phosphate buffered saline (PBS) and fresh SCM 
was added to each well. Cells were kept at 37 oC and 
SCM was changed every second day. An appropriate 
amount of irradiated feeder cells were added to keep 
the wells confluent. After 6-14 days SCM was removed 
and cells were washed once with PBS then stained 
with crystal violet (1% crystal violet, 10% ethanol 
in PBS) for 20 min, and after a final PBS wash, the 
number of colonies was determined. Colonies with 
< 32 cells and ≥ 32 cells (5 population doublings) 
were counted. Colony forming assays were also 
carried out with radiation and Vorinostat treatment. 
For combination treatments, cells were treated with 
0.625, 2.5 or 10 μmol/L of Vorinostat for 30 min then 
treated with a range of radiation doses.

Treatments with radiation and drugs
An RS2000 X-Ray Biological Irradiator was used, 
which contains a Comet MXR-165 X-Ray Source 
(Rad-Source Technologies Inc. GA, USA). A range 
of radiation doses were administered with a dose 
rate of 0.02 or 0.08 Gy/s. Addition of Vorinostat 
(Cambridge Bioscience) was carried out at three 
concentrations: low, 0.625 μmol/L; medium, 
2.5 μmol/L; high, 10 μmol/L.

Comet assays
The comet assay was carried out as previously 
described[15,16]. Briefly, drug-treated cells were 
resuspended in 25 μL of PBS and mixed with 225 μL 
of low melting point agarose. Following mixing, the 
cells and agarose were spread onto a glass slide that 
had been pre-coated with 1% agarose in PBS. A clean 
coverslip was placed on top until the cell-agarose 
mixture had set. Slides were placed in lysis buffer 
overnight and then incubated in alkaline solution for 
40 min at 4 oC then electrophoresed at 23V/300 mA 
in the alkaline solution for 40 min on ice. This was 
followed by two washes in neutralising buffer. SYBR 
Gold was applied at a concentration of 1:10,000 in TE 
buffer to stain the DNA. Following collection of images 
on a fluorescent microscope (Nikon Eclipse TE300), 
comets were quantified using CometScore freeware 
(TriTek Corp, VA, USA).

Immunofluorescence
Immunocytochemistry was carried out to stain selected 
populations for DNA damage [γH2AX - anti-phospho-
Histone H2A.X (Ser139) clone JBW301, Millipore, 
UK], proliferation (Ki67 - ab15580, abcam) and a cell 

Table 1: Patient samples

Sample Operation Patient age 
(years) Diagnosis

209/12 LA RP 64 Normal
329/13 R RP 53 Normal
434/14 LM RP 68 Normal
048/11 RP - Gl6 (3+3)
018/11 RP - Gl7
035/11 RP - Gl7 (3+4)
054/11 RP 58 Gl7 (3+4)
665 RP 53 Gl7 (3+4)
049/11 RP - Gl7 (3+4)
087/11 RP 68 Gl7 (3+4)
031/10 RP - Gl7 (3+4)
034/11 RP - Gl7 (3+4)
517/15 RM RP 65 Gl7 (3+4)
329/13 L RP 53 Gl7 (3+4)
209/12 RA RP 64 Gl7 (4+3)
545/15 LB RP 69 Gl7 (4+3)
307/13 LB RP 65 Gl7 (4+3)
545/15 RM RP 69 Gl7 (4+3)

RP: radical prostatectomy
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marker (CD49b - anti-human CD49b:RPE, Serotec 
MCA743PET). Primary cells were plated at 10,000 
cells per well in collagen I coated 8-well chamber slides 
or in the case of rare stem cells, all stem cells collected 
were plated on the slide. Staining of γH2AX was carried 
out as described previously[15]. Fixation for CD49b and 
Ki67 staining was with 4% paraformaldehyde, with no 
permeabilisation step when staining CD49b and with 
permeabilisation using 0.3% Triton X-100 for Ki67 
staining. Alexa Fluor secondary antibodies (goat anti-
mouse and goat anti-rabbit) with fluorescent tags were 
used at a concentration of 1:1000.

Flow cytometry
Flow cytometry was used to measure expression 
levels of CD49b on primary cells. All cell populations 
(WP, TA and CB) were harvested and resuspended 
in 300 μL MACs buffer. Control (REA control (I)-
APC) and target (CD49b-APC human clone REA188) 
antibodies were used (Miltenyi Biotec). Ten μL of 
antibody was added and incubated with rotation for 
10 min at 4 oC. Cells were washed, resuspended in 
MACs buffer and analyzed by flow cytometry including 
a cell only control to set gates.

Image capture using ptychography and image 
analysis using cell analysis toolbox
Quantitative phase imaging (QPI) was carried out 
using a VL21 Live Cell Imaging System (Phase 
Focus Limited, Sheffield, UK), which utilises a 
method known as ptychography in image formation. 
The high contrast images generated by the system 
are label-free and exempt from focal drift, allowing 
extended time-lapse imaging[17-19]. The high-contrast 
nature of the images facilitates automated individual 
cell segmentation and tracking with the Cell Analysis 
Toolbox® software, which outputs extensive and 
specific feature measurements for each cell. As a 
result, data analysis can include information on cell 
populations in addition to individual cell information 
such as cell morphology and cell kinetics.

Statistical analysis
Alamar blue assays were performed in triplicate and 
data presented as % cell viability with percentage 
standard error. Significance calculations were carried 
out using the unpaired, nonparametric Mann-Whitney 
U-test. The P values indicating statistical significance 
are displayed (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.001).

RESULTS

A combination of Radiation and Vorinostat treatment 
on a panel of cell lines and on primary prostate cells 

shows a varied response and reduces colony forming 
ability of primary prostate cells more effectively than 
either treatment alone.

A previous investigation had shown that prostate 
cancer stem-like cells were more radio-resistant than 
progenitor (TA) cells and more differentiated (CB) 
cells from primary prostate epithelial cells cultured 
from patient tissue[15]. Pre-treatment with a low dose 
of a histone modifier, Trichostatin A, resulted in radio 
sensitisation of the stem-like cells, which was observed 
as an increase in DNA damage and a decrease in 
colony forming ability. To follow on from this, a clinically 
approved histone modifier, Vorinostat, was tested in 
combination with radiation treatment. First, a panel of 
cell lines including normal prostate (PNT1a), benign 
(BPH-1), localized cancer (P4E6) and metastatic 
cancer (PC3), were tested using alamar blue assays to 
measure viability following treatment with a combination 
of seven drug concentrations (0.156/0.3125/0.625
/1.25/2.5/5/10 μmol/L) and six radiation doses (2, 5, 
10, 25, 50, 75 Gy) with measurements taken at 24, 
48 and 72 h. The percentage viability of each of the 
highest doses alone and in combination in the cell line 
panel is shown in Figure 2A-C. There is a significant 
decrease in viability in all cell lines with the combination 
treatment compared to drug only, however the effect 
on PC3 cells is minimal, whilst the effect on the cell 
line derived from the localized cancer, P4E6, is most 
significant. Viability of primary prostate epithelial cell 
cultures (n = 6) was then measured following single 
and combination treatments [Figure 2D and E]. 
There was a significant reduction in viability with the 
combination treatment in normal and cancer cells, 
however the cancer cells showed less of a reduction in 
viability. We have previously shown that radiation can 
cause senescence of primary prostate epithelial cells 
rather than cell death, and so the small reduction in 
viability as measured by alamar blue could be because 
the cells are senescing rather than dying[20]. Therefore, 
we tested the effect of three drug doses with and 
without 2 Gy of radiation on colony formation [Figure 2F]. 
As previously seen, 2 Gy of radiation results in a 50% 
surviving fraction. We used 0.625, 2.5 and 10 μmol/L 
of Vorinostat, with and without 2 Gy radiation. Drug 
alone only reduced the surviving fraction by 10%-50% 
with patient variability observed. The combination 
treatments reduced surviving fraction by 65%-95%.

Cancer stem-like cells from patient tumor tissue are 
more resistant to etoposide than the progenitor cells 
due to a quiescent phenotype.

Previous studies had identified the cancer stem-
like cells of primary prostate epithelial cell cultures 
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as being more radiation-resistant[15]. One report 
showed that stem-like cells from the Du145 cell line 
were more resistant to etoposide[21]. However, there 
is currently no experimental evidence determining 
the effect of chemotherapeutic agents specifically on 
primary prostate cancer stem-like cells. Therefore, 

the colony forming ability of selected subpopulations 
of primary prostate epithelial cells, including stem-like 
cells and TA cells, were analyzed following treatment 
with etoposide [Figure 3A]. Cancer stem-like cells 
showed increased ability to form colonies compared 
to TA cells post-treatment. Since etoposide is known to 

Figure 2: A combination of radiation treatment and Vorinostat has varied effects on viability and colony forming ability in a panel of cell 
lines and primary prostate epithelial cells. PNT1a, BPH-1, P4E6 and PC3 cells were treated with Vorinostat (10 µmol/L) or radiation (75 
Gy) or both and measured using alamar blue assay at 24 h (A), 48 h (B) and 72 h (C) post-treatment. Primary epithelial cultures from six 
patients, normal (2 samples) (D) and prostate cancer (4 samples) (E) were treated with Vorinostat (10 µmol/L) or radiation (75 Gy) or both 
and measured using alamar blue assay at 24 h post-treatment. Each symbol represents a different patient sample; (F) primary epithelial 
cultures from four patients were treated with 2 Gy radiation or three concentrations of Vorinostat (low: 0.625 µmol/L, medium: 2.5 µmol/L, 
high: 10 µmol/L) or both and assessed for colony forming ability 10-14 days after growth. Colony forming ability is presented as % surviving 
fraction
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cause DNA damage, this was measured in two ways, 
comet assays [Figure 3B] and γH2AX foci [Figure 3C]. 
Both methods of measurement showed that stem-like 
cells sustained less DNA damage following etoposide 
treatment. Finally, Ki67 staining was carried out, and 
this indicated that TA cells were more proliferative 
(50%-90% Ki67-positive cells) than stem-like cells 
(10%-60% Ki67-positive cells), with patient variability 
being observed [Figure 3D].

Use of QPI to compare growth and proliferation of cell 
lines to primary prostate epithelial cells cultured from 
patient tissue.

What these results and previous studies have shown 
us is that the model that is used can strongly impact 

the conclusions. This is why we advocate the use of a 
panel of cell lines, with an understanding of the origin 
of those cell lines, such that the relevance of the result 
can be best understood. Cell lines are excellent tools to 
establish methods and make an initial determination of 
mechanism of action and effectiveness of a compound. 
However, our hypothesis is that use of patient-derived 
primary prostate epithelial cell cultures is more clinically 
relevant and is more representative of intra-and inter-
tumor heterogeneity[13,15,22,23]. Cell lines are usually 
characterized by expression of certain markers, for 
example whether they are androgen receptor positive 
or negative[24,25]. However, an alternative strategy to 
compare the different cell types might be to look at cell 
behavior. In order to do this we used a ptychographic 

Figure 3: Prostate cancer stem-like cells (SC) sustain less DNA damage and form more colonies than progenitor cells following etoposide 
treatment, which correlates with less proliferation. Cancer SC and transit amplifying (TA) cells were selected from primary prostate epithelial 
cell cultures, treated with 30 µmol/L of etoposide and assessed for (A) colony forming ability, (B) comet assay, (C) γH2AX foci formation 
and (D) Ki67 expression. Each symbol represents a patient sample
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QPI label-free imaging technique. We used a panel of 
cell lines from a variety of sources, PNT2-C2 (normal), 
BPH-1 (benign), P4E6 (localized cancer), PC3 (bone 

metastasis), LNCaP (lymph node metastasis) and 
compared them to a primary culture [Figure 4A]. A 
72-h time-lapse experiment was performed (images 

Figure 4: Label-free quantitative phase imaging (QPI) shows that primary prostate cultures divide less frequently than cell lines but 
undertake significantly more movement in 2D culture. A panel of prostate cell lines was grown alongside a primary prostate epithelial 
culture in a 6-well dish and time-lapse imaging was carried out. (A) Brightfield images of each cell type; (B) QPI images of each cell type 
with cell segmentation outlines (colored lines) and cell tracking ID (colored numbers) shown; (C) 2D representation of tracking of each cell 
type (X-axis, x position; Y-axis, y position); (D) 3D representation of tracking of each cell type (as for 2D but including a Z-axis, time); (E) 
close up view of the 3D rendition showing the trace of two cells spinning round each other; (F) mean cell area is plotted for each cell type. 
Each dot represents a single cell track; (G) mean speed is plotted for each cell type. Each dot represents a single cell track; (H) the total dry 
mass of each frame of the time-lapse video is plotted, which is indicative of cell growth and proliferation
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collected every 6 min). Segmentation and tracking of 
every cell was carried out, during which each cell track 
is assigned an identification number [Figure 4B]. The 
movement of every cell was tracked and measured over 
time, and tracks were observed as 2D [Figure 4C] and 
3D representations [Figure 4D]. The representations 
demonstrate that the automated tracking procedure 
used by the Cell Analysis Toolbox (CAT) software is 
capable of following individual cells. For example 
with BPH-1 cells a doublet of cells circled round and 
round each other, which is observed as a spiral over 
time [Figure 4E]. Morphological measurements (e.g. 
area, thickness, volume, radius, sphericity) and kinetic 
measurements (speed, displacement, meandering 
index) can be extracted from CAT. Of note, cells in the 
primary cultures are significantly larger on average 
than all the cell lines [Figure 4F]. In addition, most of 
the cell lines were much less motile than the primary 
culture apart from P4E6, which is the closest cell 
line to a primary culture [Supplementary Video 1]. 
Even though the primary cells are significantly more 
motile, which can be measured as mean speed of a 
track [Figure 4G], they actually show slower growth 
and proliferation than the cell lines. Indeed, there is a 
range of growth and proliferation rates in all cell lines 
measured. The growth and proliferation rate is one 
example of a unique QPI measurement that takes into 
account the whole population rather than individual 
cells and in this case is represented as total dry mass 
over time[17] [Figure 4H].

Ptychographic label-free imaging can distinguish 
between cell populations in heterogeneous primary 
epithelial cell cultures.

Although ptychographic QPI can measure detailed 
morphological and kinetic measurements to distinguish 
between different cell populations, the power of 
the technique is to harness these individual cell 
measurements to take into account cell heterogeneity. 
We sought to determine whether QPI can distinguish 
between cell populations within a primary prostate 
epithelial cell culture. We already know that within 
these cultures, which have a predominantly basal 
epithelial cell phenotype, there are three subtypes; 
rare stem-like cells - CD133+/α2β1integrinhi, TA cells - 
CD133-/α2β1integrinhi and CB cells - α2β1integrinlo. First, 
we enriched for TA and CB cells using rapid collagen 
adherence to select the TA cells (which also contains 
the rare stem cell population). Immunofluorescence 
staining highlights the high expression of α2β1integrin 
in TA cells and the low expression in CB cells 
[Figure 5A]. Staining of the whole population shows 
a mixture of cells with different fluorescent intensities. 
Staining the cells with CD49b and analyzing by flow 

cytometry also shows the separation of the two 
populations [Figure 5B]. After selection, QPI was 
carried out [Figure 5C] and an analysis using the CAT 
was completed. A QPI signature was established for 
each cell type [Figure 5D and E], indicating that CB 
cells had a larger mass and size [Figure 5D and E] 
than the TA cells. The TA cells had a higher value 
relating to cell sphericity compared to the CB cells 
[Figure 5F] Significantly, once these parameters were 
established, a heterogeneous (unselected) culture of 
primary prostate epithelial cells was analyzed. The 
area measurement from the ptychographic signatures 
of each cell type was applied to the images of the 
mixed culture and the software was able to identify TA 
and CB cells within the culture [Figure 5G].

DISCUSSION

These studies highlight that the use of a single cell line 
is insufficient to make a conclusion about efficacy and 
mechanism of action of a treatment. In addition, using a 
panel of cell lines may also not be a great improvement 
because results from experiments in cell lines have 
been seen here and in other studies to be quite different 
from primary cells[26-28]. Cells in primary cultures have 
compensatory signaling pathways that have been lost 
in cell lines, and so an inhibitor that works well in cell 
lines may be less effective or ineffective in primary 
cultures[28]. This is one explanation for such high 
attrition rate in the drug pipeline; weak, incomplete, 
unrepresentative or inappropriate models. Also, it 
has previously been shown that the DNA methylation 
profile is quite different in cell lines compared to 
primary cells and indeed between different primary cell 
subpopulations[29,30], thus impacting how cells respond 
to various treatments. Indeed, epigenetic changes 
can also be induced in response to treatments such 
as radiation, which relates to radioresistance and 
radiosensitization[31]. The use of primary cells from 
both normal and cancerous patient tissue as part of 
the drug pipeline may be at least part of the solution. 
Indeed, use of this model, in vitro primary cell culture, 
was critical in the development of an oncolytic 
adenovirus for prostate cancer[32-34], which is currently 
in clinical trials.

Results presented here and previous studies 
looking at cancer stem-like cells[15] suggest that a 
combination treatment of Vorinostat and radiation 
may be more effective in treating prostate cancer 
than radiation alone. Since Vorinostat is already 
clinically-approved[35], a move to clinical trials for 
the combination treatment could be swift. However, 
before this could happen, a prognostic indicator and/
or a measurement output, other than overall survival, 
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to show any differential response of the combination 
treatment would be required. This could be something 
similar to the PORTOS score; predictor of response 

to postoperative radiotherapy in prostate cancer[36]. 
Alternatively, a pre-treatment prognostic gene 
signature could be of use to decide which patients 

Figure 5: Signatures of two populations of cells within primary prostate cultures can be characterized from quantitative phase imaging (QPI) 
data and used to identify different cell populations within heterogeneous cultures. (A) Immunofluorescence of CD49b in a mixed culture of 
cells, transit amplifying (TA) cells and committed basal (CB) cells; (B) flow cytometry of TA and CB cells using the CD49b surface marker; (C) 
QPI images of TA and CB cells showing cell segmentation outlines (colored lines). Data from QPI analysis of each cell type was measured 
including (D) mean cell dry mass, (E) mean cell area and (F) cell sphericity; (G) analysis of a mixed culture of cells with gates applied to 
separate out the two cell populations on the basis of cell area. Data from the whole population (WP) and each cell type was measured and 
plotted as mean cell area and mean cell dry mass
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would benefit from a new combination treatment[37]. 
We carried out a preliminary analysis to measure gene 
expression, using “DNA damage signaling pathway” 
polymerase chain reaction arrays, in primary cultures. 
Cell subpopulations (SC/TA/CB) selected and 
enriched from primary cultures derived from different 
disease states (benign prostatic hyperplasia, Gleason 
7 prostate cancers and high Gleason prostate cancers) 
were used, both untreated and treated with radiation 
(2 Gy). The results illustrated variation between 
patients, between disease state, and between each 
cell type (SC, TA, CB). Exploring the heterogeneity of 
gene expression between disease states and between 
cell types with and without treatment may ultimately 
lead to novel drug targets being exploited[38,39].

This is the first report of chemotherapy resistance of 
cancer stem-like cells from primary prostate epithelial 
cultures. This study only shows the resistance to 
etoposide, however we anticipate that this would 
also be true for other chemotherapeutic drugs that 

act as cell cycle inhibitors since it appears that the 
reduced proliferation rate of the stem cells is acting 
as a resistance mechanism. This result also highlights 
the need to enrich and/or sort for subpopulations of 
cells within the patient cell cultures[22] to observe the 
response of rare populations of cells, since they can be 
masked when looking at the whole population.

The use of QPI illustrates behavioral differences 
between cell lines and primary cells. By making 
measurements encompassing morphological, kinetic 
and population data a cell signature for each cell type 
can be established. One significant observation is the 
larger size of primary cells. Also, the different growth 
and proliferation rates of the cell lines and primary 
cells will impact the length of time for drugs to take 
effect. In addition, it will be of interest to explore the 
meaning behind the increased cell motility of the 
primary cultures. Since, ptychography is able to identify 
heterogeneous populations within a culture, the hope 
for this technique is to use analysis post-treatment to 

Figure 6: Consequences of treatment; paths to resistance or death. Inducing cell death in cancer cells is not a single pathway and initial 
treatments may push cells to many different outcomes. To overcome cell thresholds and safeguards and push cells towards cell death, 
other stimuli may be required. This could involve sensitisers to make the initial treatment more effective or it could include inhibitors to 
prevent activation of cell survival mechanisms. Heterogeneity of response dictates that combination treatments are likely to be more 
effective
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observe cell behavior in real-time and to detect any 
inherently resistant cells within the heterogeneous 
primary cultures.

Going forward, using primary prostate epithelial 
cultures, as part of the lab to clinic pipeline, has 
many advantages including patient variation, current 
and follow-up pathology, correlation with patient 
outcome, representation of modern disease, close-
to-patient, clinically relevant and less adapted to 
tissue culture conditions than cell lines. The model is 
also flexible since the cultures with typically a basal 
phenotype can be pushed to differentiate and express 
luminal markers[40,41] and 3D spheroid culture is also 
possible[42]. Even in the 2D culture, microenvironment 
studies can be carried out using the STO feeder 
cells as a stromal mimic. This technique has been 
used to elegant effect, where STO feeder cells were 
engineered to express human IL-4, and this resulted 
in an increase in clonogenic potential of primary 
prostate epithelial cells through the STAT6 signaling 
pathway[43].

Several recent studies using primary prostate 
epithelial cultures have shown the heterogeneity of 
response to current and novel treatments including 
autophagy[20,26], necrosis[27], cell differentiation[44,45], 
apoptosis, DNA damage[15,27], cell cycle arrest and 
senescence[20] [Figure 6]. Several of these can act as 
a crossroads for a cell resulting in cell survival or cell 
death and if we are able to predict which response 
may occur then we may be able to manipulate it 
towards cell death. It is not appropriate to totally 
rely on endpoint assays; we cannot be satisfied with 
a 90% reduction in cell viability without questioning 
what is happening in the other 10% of cells, and 
indeed characterizing these cells relative to the 
whole population. If we can identify mechanisms of 
resistance in bulk populations as well as rare cell 
populations we will be more able to design biologically 
relevant combination treatments. In addition, there 
shouldn’t be too much reliance on a single model. 
All models have their advantages and limitations; the 
important thing is to acknowledge them rather than 
to ignore them. In terms of primary prostate cultures, 
heterogeneity provides an advantage to testing 
therapies rather than a confounding factor. If we are 
able to use techniques such as QPI to measure each 
individual cell as a data point we should be able to 
tease apart the variation in cell responses to different 
treatments as well as identifying and characterizing 
resistant cells. Ultimately, the hope is that this 
could lead to more targeted use of current drugs 
as well as better testing of novel treatments prior to 
clinical trials.
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