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Abstract
Accurately predicting themagnitude and timing of floods is an extremely challenging problem for watershedmanage-
ment, as it aims to provide early warning and save lives. Artificial intelligence for forecasting has become an emerging
research field over the past two decades, as computer technology and related areas have been developed in depth.
In this paper, three typical machine learning algorithms for flood forecasting are reviewed: supervised learning, unsu-
pervised learning, and semi-supervised learning. Special attention is given to deep learning approaches due to their
better performance in various prediction tasks. Deep learning networks can represent flood behavior as powerful
and beneficial tools. In addition, a detailed comparison and analysis of the multidimensional performance of differ-
ent prediction models for flood prediction are presented. Deep learning has extensively promoted the development
of real-time accurate flood forecasting techniques for early warning systems. Furthermore, the paper discusses the
current challenges and future prospects for intelligent flood forecasting.

Keywords: flood forecasting, intelligent prediction, supervised learning, unsupervised learning, semi-supervised learn-
ing, deep learning

1. INTRODUCTION
Flooding, especially in developing countries, is one major cause of fatalities among both humans and animals.
In addition to the loss of life, flooding damages property and destroys crops. Floods can be dangerous to hu-
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mans and animals, and timely flood forecasting can help prevent or mitigate disasters. Therefore, it is essential
to develop prediction models for accurate flood forecasting.

Floods can be defined as the result of water overflowing and submerging land that is normally dry. Flooding
is the phenomenon of a rapid increase in the flow of water due to a sudden surge in the volume of water
in rivers, lakes, and seas. The main natural factors leading to changes in water volume and levels include
heavy rainfall, rapid melt of ice and snow, and storm surges, among others [1]. Generally speaking, the direct
economic damage caused by floods to human beings is comparable to that of other natural disasters such as
earthquakes and hurricanes. Floods are characterized by a wide range of impacts, extreme destructiveness,
and rapidity of disaster [2]. Floods can be categorized into different types based on their causes and severity,
including river floods, flash floods, coastal floods, and urban floods. In addition to these categories, floods can
be classified based on their severity or frequency. Depending on meteorological conditions and geographical
factors, floods are also characterized by elevated seasonal frequency and regional vulnerability.

The global assessment report of the Intergovernmental Panel on Climate Change (IPCC) on natural disasters
shows that 313 natural disasters occurred worldwide in 2020, affecting 123 countries and regions [3]. Among
them, flood disasters had the highest frequency, occurring 193 times, accounting for 61.66% of the total, and
directly affecting a population of 33,215,600 [4]. The worldwide direct economic losses caused by natural dis-
asters amounted to US$173 billion, with storms, floods, wildfires, and earthquakes accounting for 99% of the
losses. For example, the floods that occurred in Henan, China, in 2020 caused a direct economic loss of US$17
billion, the costliest natural disaster worldwide that year, causing losses to the urban economy, agricultural
development, etc. [5]. In some cases, floods can act as triggers for numerous indirect disasters, including geo-
logical disasters such as mudslides and landslides, health disasters such as plagues and viruses, and negative
impacts on the environment and climate [6]. Such secondary disasters generally have long recovery cycles and
high recovery costs, and the hazard of some disasters is irreversible.

Real-time prediction of floods is essential to lay the foundation for mitigating damage to human property and
planning defenses [7]. Datasets and machine learning algorithms are two of the most important factors that
influence the accuracy of the forecasting result. Firstly, selecting the raw data for flood forecasting involves
a careful and systematic process of identifying relevant variables, gathering historical data, preprocessing the
data, selecting relevant features, integrating the data, and splitting it into training and testing sets. Then high-
quality datasets are critical for building accurate and effective machine learning models. These datasets should
be large, diverse, well-labeled, balanced, clean, representative of the problem, and ethically collected. Real-time
flood forecasting uses historical data and information from past events to predict flooding. This is because his-
torical data are easier to collect than real-time data. Once processed, historical data (high-quality datasets)
are then used to create models for predicting where and when flooding may occur in the future. Therefore,
the warnings can be issued to the public so that they can prepare for floods [8,9]. Artificial intelligence (AI)
technology has been employed increasingly by governments to create automated flood forecasting systems [10].
At first, supervised learning technology is used for forecasting because the labeled inputs are easier to process
and achieve good results. As the need for forecasting increases, there is a growing demand to use unlabeled
data, leading to the study of unsupervised learning problems. In some cases, forecasting inputs contain both
labeled and unlabeled data, for which semi-supervised learning is of particular interest in order to reach bet-
ter forecasting. It has been observed that in most situations, conventional supervised learning, unsupervised
learning, and semi-supervised learning approaches cannot maintain good performance as the forecasting fac-
tors involved become complicated, and the size of forecasting features increases. To overcome this challenge,
deep learning approaches have received enough attention recently in the area of forecasting. While machine
learning methods have made a great contribution to forecasting, it remains to be quite challenging when apply-
ing suchmethods to natural disaster prediction, such as floods, which could bemuchmore complicated. In the
past few years, some primary results have been reported in flood prediction by means of a variety of common
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machine learning methods. For example, Spatio-Temporal Attention Long Short Term Memory (STA-LSTM)
model has great performance in basic flood forecasting, but its robustness and generalization have been im-
proved. [11] Nonetheless, with social development and climate change, there has been increasing natural and
human factors affecting flood prediction significantly. Such impacts mainly result from rising temperatures,
snow melt, ice melt, rainstorms, and soil conditions, and the main human factors include high urbanization,
population explosion, and overexploitation of trees. In addition, simple machine learning cannot be suitable
the complex spatio-temporal datasets because natural and human factors are evolving. Furthermore, each
flood prediction algorithm has its own characteristics, such as robustness, generalization, calculating speed,
gradient problems, weight problems, and fitting problems. Therefore, the purpose of this paper is to provide
a comprehensive understanding of the current state of machine learning in flood prediction and to encourage
further research in this area.

Based on the above observations, we believe that it is timely and necessary to conduct a review of the current
application of machine learning in flood prediction, particularly an abundant literature survey in real-time
flood forecasting. While machine learning techniques have been widely applied in various prediction tasks, it
remains challenging to obtain stable prediction performance in the area of flood forecasting, especially due to
the diversity in the spatio-temporal datasets [12]. Given the large amount of literature available, we specifically
analyze and compare the performance of mainstream algorithms currently used in real-time flood prediction.
Of particular interest is how these algorithms perform when faced with huge spatio-temporal datasets; it is of
great importance to understand whether or not they can still maintain high levels of accuracy and robustness.
This aspect has not been shown in previous studies. The contributions of this paper are as follows: (1) Several
practical problems and popular machine learning methods used for flood prediction are presented, and their
advantages and disadvantages with respect to the computational cost, gradient problem, and robustness and
accurateness are discussed in depth; (2) The difficulties in the development of a real-time flood prediction are
exhaustively analyzed in terms of the characteristic of flood prediction, spatio-temporal data, and noise. Based
on this, a complete literature assessment of recent achievements in dealing with these difficulties is done; (3)
The results of this study are summarized, and a number of interesting research trajectories are identified that
may help to further advancement of this field.

The rest of the paper is organized as follows. Section 2 introduces the machine learning techniques related
to flood prediction. Section 3 addresses several common technical issues that arise in machine learning al-
gorithms designed for flood forecasting. Section 4 includes the comparisons of flood prediction models and
some valuable challenges and future work. Finally, Section 5 is the conclusion of this paper.

2. MACHINE LEARNING FOR FLOOD FORECASTING
The performance of a flood forecasting model is heavily influenced by the prediction algorithm used in the
model. This section highlights three common challenges in machine learning and deep learning models and
presents a model that is well-suited for handling large amounts of data.

2.1. Supervised learning
Supervised learning is a form of AI that can support flood prediction [13,14]. Supervised learning algorithms
are used to identify flood levels and give early warning. In the forecasting process, these algorithms are a
boon in determining how to use historical data most quickly and accurately to successfully predict future
disasters [15–17]. Supervised learning requires input from the user - meaning that they need to distinctly state
what they are looking for before they can effectively identify patterns or make predictions about user input
data [18]. There are several supervised learning models that can be used to predict flood events: decision trees,
k-nearest neighbors, support vector machines (SVM), and neural networks [19]. Each model has its advantages
and disadvantages, while SVM is the most commonly used method for flood forecasting [20]. They are easy
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Figure 1. Unsupervised learning block diagram.

to implement and have a high accuracy rate compared to other methods. In addition, they have optimal
performance in high-dimensional spaces.

The training dataset for supervised learning has two attributes (𝑥𝑖 ,𝑦𝑖), where “𝑥” stands for the system super-
vision input and “𝑦” for the system output. Meanwhile, “𝑖” is the training sample indicator for “𝑥” and “𝑦”,
respectively. In supervised learning, a training input “𝑥𝑖” is provided to the learning system, which then pro-
duces an output “�̃�𝑖”. An arbitrator then calculates the difference between the two outputs for comparison with
the ground truth marker “𝑦𝑖”. The discrepancy is referred to as the error signal, which is then transmitted to
the learning system to modify the settings of learners. The learning process aims to generate ideal learning
system parameters with high accuracy by reducing the difference between “�̃�𝑖” and “𝑦𝑖” for all “𝑖” [21,22]. A set
of discrete values or a vector space is represented by the input or output. The arbitrator is not subject to any
unique limitation under the learning paradigm. “𝑦𝑖” - “�̃�𝑖” is typically used to calculate the error signal when
“𝑦𝑖” is taken from a continuous space. The arbitrator typically generates the error signal based on the equality
between 𝑦𝑖 and “�̃�𝑖” if “𝑦𝑖” is one of a set of discrete values. The arbitrator assumes output to be 0 for same “𝑦𝑖”
and “�̃�𝑖” and 1 for the different “𝑦𝑖” and “�̃�𝑖” [22,23].

Flood prediction models rely on historical data gathered from diverse locations worldwide, including Canada,
Pakistan, China, India, and Bangladesh [24]. These models are trained with the collected data to forecast future
flood events, enabling preparedness measures in the face of such events. This allows for preparedness when a
flood event occurs. The supervised learning algorithm is an effective way of accurately predicting future events
based on historical datasets [25]. It is especially useful for protecting lives during dangerous floods and other
natural disasters.

2.2. Unsupervised learning
Unlike supervised learning, there is no supervision to be given in unsupervised learning; for example, it is
usually used to address the datasets that are not labeled. The aim of unsupervised learning is to infer the
underlying structure of the datasets provided, in which some evident groups can be identified [26,27].

In unsupervised learning, a computer program learns without any labeled input, as shown in Figure 1. Models
for real-time flood prediction rarely incorporate unsupervised learning. This is due to the subjectivity and
absence of specific analytical goals, such as response prediction, that characterize unsupervised learning. Eval-
uation of the results of unsupervised learning techniques is also hard because there is no commonly accepted
method for cross-validation or testing the results across several datasets.

2.3. Semi-supervised learning
Semi-supervised learning is a type of machine learning based on supervised learning with semi-supervised
data. It is an extension of supervised learning and unsupervised learning. In semi-supervised learning, the
algorithm learns the model using labeled data and unlabeled data, as shown in Figure 2. Therefore, semi-
supervised learning is a useful tool in situations with a shortage of labeled data [28,29]. As such, unlabeled data
can help create better classifiers if there are enough data available and certain distributional assumptions about
the data are accurate [30,31]. Moreover, since many machine learning applications exist, developers always try
to improve the algorithms by developing new ideas. One of these ideas is semi-supervised learning, which
makes it easy to train models for different tasks without having access to all the training data.
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Figure 2. Semi-supervised learning block diagram.
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Figure 3. Inductive semi-supervised learning diagram.

According to the statistical learning theory, it can be further divided into inductive semi-supervised learning,
as shown in Figure 3 and transductive semi-supervised learning, as shown in Figure 4 [32]. The full data col-
lection contains two different sorts of sample sets. Let 𝐷𝐿𝑎𝑏𝑒𝑙𝑒𝑑 = {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛} denote the labeled sample
set and 𝐷𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = {𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝑋𝑡𝑒𝑠𝑡} the unlabeled sample set, and suppose 𝐶𝐷𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ≫ 𝐶𝐷𝐿𝑎𝑏𝑒𝑙𝑒𝑑 . For
inductive semi-supervised learning, denote 𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛} the training set, and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛

and 𝑋𝑡𝑒𝑠𝑡 are both unlabeled sets and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ≠ 𝑋𝑡𝑒𝑠𝑡 . For transductive semi-supervised learning, 𝐷𝑡𝑟𝑎𝑖𝑛 =
{𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛} is the training set, and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛 is unlabeled and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 𝑋𝑡𝑒𝑠𝑡 . In other words,
the purpose of training the model is just to use the model to classify 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛. In general, the main differ-
ence between inductive semi-supervised learning and transductive semi-supervised learning is whether the
prediction samples encountered during training are the same as the samples to be classified.

Based on the learning scenario, semi-supervised learningmethods can also be classified in accordance with the
problems, e.g., classification, regression, clustering, and dimensionality reduction [33,34]. Most studies on semi-
supervised learning have focused on the classification, asmostmachine learning research does. In particular, in
this case, there are typically four types of problems: discriminant learning, generative learning, disagreement-
based learning, and semi-supervised graph learning [35]. The two typical problems are stated as follows:

1. Generative Learning is an early type of semi-supervised learning that is involved a cyclic process and a
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Figure 4. Transductive semi-supervised learning diagram.

maximum likelihood parameter estimation procedure. The two main steps are given as follows:
Step 1: Compute the posterior probability of unlabeled data 𝑃𝜃 = (𝐶1 |𝑥𝑢), Initialization is:

𝜃 = {𝑃(𝐶1), 𝑃(𝐶2), 𝜇1, 𝜇2,
∑

} (1)

Step 2: Update the algorithm

𝑃(𝐶1) =
𝑁1 +

∑
𝑥𝑢 𝑃(𝐶1 |𝑥𝑢)
𝑁

(2)

𝜇1 =
1
𝑁1

∑
𝑥𝑟∈𝐶1

𝑥𝑟 + 1∑
𝑥𝑢 𝑃(𝐶1 |𝑥𝑢)

∑
𝑥𝑢

𝑃(𝐶1 |𝑥𝑢)𝑥𝑢 ... (3)

Then, back to step 1.
In equation (1), 𝜃 means initialization, and the posterior probability of unlabeled data depends on model 𝜃.
The 𝑁 means the total number of examples, and the 𝑁1 means the number of examples belonging to 𝐶1.

2. Low-density Separation (also known as Self-training) works as follows:
In Figure 5, given the 𝑋𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = {(𝑥𝑟 , �̂�𝑟 )}𝑅𝑟=1 and the 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = {𝑥𝑢}𝑈𝑢=1, we could get the 𝑋𝑝𝑠𝑒𝑢𝑑𝑜 =
{(𝑥𝑢, 𝑦𝑢)}𝑈𝑢=1 after apply the train model to 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 as step 2. Steps 1–4 can be continued until the antic-
ipated class labels from step 2 no longer meet a specified probability threshold or until there are no more
unlabeled data.

Due to the wide variety of semi-supervised learningmethods, eachmethod has a corresponding dataset due to
different principles. To evaluate each method fully, there are many evaluation indicators in semi-supervised
learning, including accuracy, true positive rate (TPR), false positive rate (FPR), and Receiver Operating Char-
acteristic (ROC) [37], etc. The accuracy is a very common evaluation indicator, so the TPR, FPR, and ROC are
detailed below:

1. True positive rate (TPR): is described as the proportion of true positive outcomes among all positive sam-
ples.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑢𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑎𝑠𝑒
(4)

A point is said to be True Positive (TP) if this point lies above the Upper Control Limit (UCL) after the
damage, which is defined according to a certain damage condition. Conversely, a point is said to be False
Negative (FN) if this point lies under the UCL after the damage. Then the UCL signifies the degree of
confidence in the training period, as shown in Figure 6.

2. False positive rate (FPR): is described as the proportion of false positive outcomes among all negative sam-
ples.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
=

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑠𝑒
(5)
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Figure 6. True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).

A point is defined to be False Positive (FP) if this point lies above the UCL before the damage, while a point
is said to be True Negative (TN) if it lies under the UCL.

3. Receiver Operating Characteristic (ROC): a ROC curve is plotted by the TPR against FPR at various thresh-
old settings. When the ROC curve is closer to the upper-left-hand corner of the ROC space, the model is
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more accurate. On the contrary, when the ROC curve is closer to the uninformative line, the model is less
accurate as Figure 7.

2.4. Deep learning
Even though the flood is a common phenomenon because it is a natural disaster that occurs in many countries
every year, predicting it is rather difficult. Simple machine learning methods and models are not effective in
solving complex flood forecasting problems. As a result, deep learning approaches have been centered by both
scientists and governments to solve the flood prediction conundrum [38]. These approaches help them make
accurate predictions and save lives. Roughly speaking, deep learning can be viewed as a subset of machine
learning, which is usually employed to process a large amount of data. As such, it makes it possible to train
powerful computer programs so as to perform specific tasks, as shown in Figure 8. One of the applications
of deep learning can be seen in flood prediction, where a deep learning model can be trained to predict the
occurrence of floods using the data collected over many years [39]. For this purpose, the National Weather Ser-
vice (NWS) collects weather data from thousands of local stations across the country. They also collect data
from satellite photos aiming to measure the extent of the floods and the damage levels. Using this information,
deep models can be created to predict where, how much, and what type of flood conditions will happen sub-
sequently. The results of the prediction are then forwarded to the local governments for pre-emptive planning
purposes. This allows authorities to respond quickly to unexpected floods by shutting down streets or opening
up new paths through flooded areas.

Although humans are constantly faced with a large amount of perceptual data, they can always obtain impor-
tant information that is worth noting in a deft way. Imitating the efficiency of the human brain in accurately
representing information has long been a core challenge in AI research. Research on the mammalian brain
was based on anatomical knowledge: the time when sensory signals traveled from the retina to the prefrontal
cortex, which then transferred to the motor nerves, was used to determine how the brain represented infor-
mation. Inferences were made regarding the cerebral cortex not directly displaying the data but allowing the
received stimulus signals to pass through a lamellar network model and then obtaining the observed rules.
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Thus, the human brain does not project images directly onto the retina but rather processes information by
aggregating and decomposing it to recognize objects. In order for the visual cortex to function properly, it
must reproduce the image on the retina and feature the perceptual signal [40]. By retaining useful structural
information about objects and reducing the amount of data processed by the visual system, this hierarchy of
human perception reduces the amount of data that the visual system processes. In addition to capturing es-
sential features in structurally rich data, deep learning can also capture potentially complex structural rules,
such as natural images, videos, and voice [41]. In the field of machine learning, deep learning is a promising
research direction that is aimed at getting machine learning closer to AI. As part of deep learning, the internal
rules and representation levels of sample data are learned [42], and the information gained from this process
can be used to interpret text, image, and sound data. Deep learning is an algorithm that has achieved far more
in speech and image recognition than previous methods related to machine learning. The ultimate goal is for
machine learning to be able to recognize words, images, and sounds in a manner similar to humans.

Models for deep learning include convolutional neural networks (CNN), deep reinforcement learning [43], and
stacked autoencoder networks [44,45]. In the neural and cognitive machine of Fukushima, the first computa-
tional model of CNN is proposed, inspired by the visual system [46,47]. To obtain a translation invariant neural
network structure form, neurons with the same parameters are applied to different positions of the previous
layer based on the local connections between neurons and hierarchical image transformation. As a result
of this concept, Le Cun et al. developed CNN with error gradients [48], which improved pattern recognition
performance. Historically, CNN has shown extraordinary performance, such as the handwritten character
recognition [49].

The Deep Belief Networks (DBNs) are a type of Bayesian probabilistic generation model [50,51], which can be
trained to generate inputs in a probabilistic way. The resulting trained layers can even be used as a feature
detector, which is able to be further trained to solve classification problems. For DBNs, a stack of Restricted
Boltzmann machines (RBMs) is used, which sometimes consists of two layers of the recurrent neural network
(RNN), i.e., the visible layer and hidden layer. Such layers are undirected; thus, an efficient, fast training
capability can be obtainedwhen performing the unsupervised procedure. It is observed that due to the network
structure of the DBNs, such models can be trained by a greedy learning strategy layer-by-layer. As a result, the
DBNs have been found to have a broad range of applications in practice [52,53].

Similar to DBNs, stack autocoding networks consist of several layers of structural units [54]. However, the struc-
tural units in the autocoding model are auto-encoders instead of RBMs [55]. In the autocoding model, there
are two layers, i.e., an encoding layer and a decoding layer [56]. An effective method for building multi-layer
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neural networks based on unsupervised data was proposed by Hinton in 2006 [57]. A single layer of neurons is
constructed in two steps: first, a single layer is built layer by layer, which means a single layer of the network
is trained every time; then, the wake-sleep algorithm is used to tune all layers. A bidirectional weighting of
all layers except the topmost is used, so the topmost layer remains a single-layer neural network [58], while the
other layers become graphmodels. Use the wake-sleep algorithm to adjust all weights, with the upward weight
for ”cognition” and the downward weight for ”generation”. The topmost representation generated must be ca-
pable of restoring the underlying node as accurately as possible to ensure cognition and generation agree [59].
If a node represents a face at the top, then all face images should activate this node, resulting in an image that
can be used to represent a general image of a face.

Currently, to improve the performance of real-time flood forecasting, we could use the Fully Convolutional
Network (FCN), Long Short Term Memory model (LSTM), Gated Recurrent Unit Network (GRU), Graph
Convolutional Network (GCN), Generative Adversarial Networks (GAN), CNN-Long Short Term Memory
Network (CNN-LSTM), and STA-LSTM. Each model or algorithm has a different focus on hydrological pre-
diction and, therefore, has a different effect when we focus on different kinds of flooding.

1. Fully Convolutional Network (FCN): A FCN can mainly solve the image segmentation technology from
the semantic level. After sampling the feature map of the convolutional layer, the FCN can restore it to the
same size as the input image tomake pixel predictions. FCNandMultioutput FCNare quite useful in solving
problems related to spatial data but do not encode the position and orientation of applied objects. The image-
based model of FCN can capture the basic structure of the problem, but it has higher requirements on time
and space complexity [60].

2. Long Short TermMemory (LSTM)/Gated Recurrent Unit Network (GRU): LSTM networks are designed
to have a large short-term memory, allowing for more efficient and resource-rich training on datasets of
sequential samples. As a consequence of a series of activation functions and processes, LSTM neurons
produce two different values, as compared to a convolution operation generating one output and holding
it to urgent receptors in both the next and same layer [61]. While both outcomes are kept within the LSTM
layer to keep a record of what was learned in the preceding part of the sequential manner, one is transmitted
to the next layer [62]. GRU and LSTM have comparable performance, and the GRU is the variant of LSTM.
However, the parameter of GRU is less, and the training speed is faster than LSTM because the input gate
and the forget gate of LSTM are combined with the update gate and the cell state, and the hidden state of
LSTM is combined in GRU. The GRU has advantages over LSTM in forecasting when the dataset is huge.

3. Graph Convolutional Network (GCN): Graph Neural Network (GNN) refers to the application of neural
networks on graphs. According to the classification of propagation mode, GNN can be divided into graph
convolutional neural network (GCN) and graph attention network (GAT). GCN can efficiently extract fea-
tures from non-euclidean structure data, which is prevalent in a large amount of data types lacking regular
structure.

4. GenerativeAdversarial Networks (GAN):TheGAN introduces the concept of adversarial learning [63]. The
concept is introduced between the generator and the discriminator. GAN, as presented by Goodfellow et
al. (2014) [64], presents two separate CNNs that work in unison but are seemingly separate at the same time.
It resembles that they are competing against one another in a min-max game. Here, one of the CNN will
aim to generate fake examples from the given dataset. Another CNN acts as the discriminator. The role of
the discriminator is to test whether the dataset is real or not. Since both the CNNs are working against one
another and the training is better, it makes the CNN get better over time. Moreover, Markovmodels usually
compute at a slow speed and might have a high degree of inaccuracy; the GAN can work with high-volume
complex data in a faster manner [65].

5. Convolutional Neural Network LSTM (CNN-LSTM):Themain feature of CNN is the convolution opera-
tors. CNN is suitable for processing spatial data because it consists of a convolutional layer and a pooling
layer. The convolution layer can maintain the spatial continuity of the image and extract the local features

http://dx.doi.org/10.20517/ir.2023.12


Zhang et al. Intell Robot 2023;3(2):190-212 I http://dx.doi.org/10.20517/ir.2023.12 Page 200

of the image. The pooling layer can use max-pooling or mean-pooling, reducing the dimension of the
middle-hidden layer and the amount of computation. Moreover, LSTM is suitable for processing temporal
data. Therefore, CNN-LSTM has better performance than LSTM for spatio-temporal prediction problems.

6. Spatio-temporal attention LSTM (STA-LSTM): STA-LSTM includes the main LSTM network and Spatial
Attention and Temporal Attention. Themain LSTMnetwork is used for feature extraction, spatial-temporal
correlation utilization, and final prediction. We can adjust the attention weights dynamically, and the per-
formance of LSTM cells can be improved due to Spatial Attention and Temporal Attention.

Then relevant experimental verification should be conducted appropriately for flood forecasting models. Ex-
perimental verification is an essential step in evaluating the performance of a flood forecasting model and
ensuring that it is accurate and reliable. The previously unused data (test dataset) can be used to validate the
accuracy of the model and use different evaluationmetrics to assess its performance. In general, flood forecast-
ing belongs to a regression task, for which evaluation indexes are usually important. Thus, a few commonly
used indexes are listed, including Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Abso-
lute Error (MAE), R Squared, and Nash-Sutcliffe Efficiency (NSE). Relevant experimental verification can and
should be conducted appropriately for flood forecasting models. Experimental verification is an essential step
in evaluating the performance of a flood forecasting model and ensuring that it is accurate and reliable [66,67].

1. Mean Squared Error (MSE):MSE is the expectation of squared error, that is, the average squared deviation
between the prediction values and the observation values.

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1

(𝑂𝑖 − 𝑃𝑖)2 (6)

In equation (6), 𝑂𝑖 means the observation value, 𝑃𝑖 means the prediction value, �̄�𝑖 means the average
observation value and 𝑛means the number of observations. Usually, theMSE could be led to the dimension
issues.

2. Root Mean Square Error (RMSE): RMSE shows the degree of dispersion of the samples and assesses how
well the predicted value matches the observed value. RMSE can avoid the dimension issues compared with
MSE. If the machine learning problem is sensitive to the dimension issues, the RMSE could be used as an
evaluation index of model performance. Since RMSE is the sum of squared errors and then takes the square
root, it would be possible to magnify the gap for the larger errors.

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑
𝑖=1

(𝑂𝑖 − 𝑃𝑖)2 (7)

3. Mean Absolute Error (MAE): MAE is the expected value of the absolute error loss, that is, the average
deviation between the predicted value and actual value. Similar to RMSE, the value of the MAE should be
optimized as low as possible too. Since the MAS directly takes the absolute value of the error, the MAS
reflects the real error.

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑂𝑖 − 𝑃𝑖 |

𝑛
(8)

4. R Squared (𝑅2): 𝑅2 is called the coefficient of determination. The performance of the model cannot be
accurately judged when the evaluation index does not have the upper and lower limits, while 𝑅2 is able to
take this into account, confining the index value into a certain bound.

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑂𝑖 − 𝑃𝑖)2∑𝑛
𝑖=1(𝑂𝑖 − �̄�𝑖)2

(9)

5. Nash-Sutcliffe Efficiency (NSE): A normalized statistic, called the NSE, can evaluate the performance of
the model to measure variables and can display the percentage of the initial variance of the model.

𝑁𝑆𝐸 = (1 −
∑𝑛

𝑖=1(𝑂𝑖 − 𝑃𝑖)2∑𝑛
𝑖=1(𝑂𝑖 − �̄�𝑖)2

) × 100 (10)
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Note that when models deal with regression problems, if the models have higher performance, the values of
the MSE, RMSE, and MAE are as low as possible, but the 𝑅2 and NSE are both nearly 1.

3. PROBLEMS AND CHALLENGES OF DIFFERENT ALGORITHMS FOR FLOOD PREDICTION
After analyzing the machine learning working mechanism, this section aims to understand the distinctions
and problems between different machine learning methods and propose corresponding models to solve the
problems. The researchers must comprehend the characteristics and performance of every machine learning
approach while selecting models. Understanding the drawbacks of each algorithm, in particular, can help us
better pick models for flood prediction.

3.1. Problems and challenges in supervised learning
When an algorithm or model is proposed, the following aspects need to be considered in order to obtain a
good learning performance:

1. The trade-off between bias and variance: To generate more precise prediction results, We make a trade-
off between bias and variance [68]. Generally, bias and variance are a trade-off in a learning algorithm, so a
lower bias learning algorithm needs to be flexible so that it canmatch the data well. However, it is likely that
if the learning algorithm is too flexible, it will match every training dataset, which results in a high variance.
Therefore, most supervised learning methods offer a bias/variety parameter that the user can adjust so that
they can adjust this trade-off between bias and variance. For flood forecasting, the bias (accuracy) would be
sacrificed for lower variance (stability) because lower variance means better robustness and generalization
ability.

2. The complexity of the function and the amount of training data: The second issue is the amount of com-
plexity of the training data relative to the ”real” function (classification or regression) [69]. With a small
amount of data, an ”inflexible” learning algorithm can be used to learn a simple function with a high bias
and low variance [70]. The function, however, will only be trained from a very large number of data, and the
use of ”flexible” learning algorithms has a low bias and variance if it involves many different input elements
in a complex interaction and it has behavior in various parts of the input space [71]. Based on data avail-
ability and perceived complexity of a function, good learning algorithms automatically adjust bias/variance
trade-offs.

3. The dimension of the input space: There is also the problem of the input space dimension [72]. Even if
the true function only depends on a small number of input features, the learning problem is difficult if
the input feature vectors have high dimensionality. As a result, high input dimensionality usually requires
adjustments to classifiers with low variance and high bias. This is because many of the ”extra” sizes can
be confounded by the learning algorithm and make it have a high variance. Engineers can improve the
accuracy of this learning function by manually removing irrelevant features from the input data. Further,
many algorithms are available for choosing features that are relevant and ignoring those that are not.

4. Output value in noise: The fourth issue is the level of noise at the desired output values (monitoring the
target variables) [73]. If the desired output value is usually incorrect (because of human or sensor errors),
the learning algorithm should not try to find a training example that exactly matches those values. Trying
to fit the data too cautiously leads to overfitting [74]. When there is no measurement error (random noise),
if you are struggling to learn the function, it is your learning pattern itself that is too complex, potentially
leading to overfitting.

3.2. Problems and challenges in unsupervised learning
Unsupervised learning is not commonly employed in real-time flood prediction models [75] due to its suscep-
tibility to subjectivity and lack of clear analytical objectives, such as response prediction. Furthermore, there
is no widely accepted approach for performing cross-validation or validating the outcomes of unsupervised
learning techniques on different datasets, making it difficult to evaluate their effectiveness [76,77].
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However, Chen et al. (2022) suggested the Flood Domain Adaptation Network (FloodDAN) strategy, which
combined adversarial domain adaptation and extensive pretraining to create a model for unsupervised flood
forecasting [78]. They undertook adversarial domain adaptation between the two datasets after pre-training the
source model on large-scale datasets. The final model was built using the source prediction head and target en-
coder produced in the first and second stages, respectively. The findings of the experiment demonstrated that
FloodDAN could make flood predictions using simple rainfall data. In addition, Chen et al. (2022) compared
the performances of fully supervised learning and unsupervised learning in flood forecasting. In fully super-
vised learning, researchers used the entire training set for supervised training and compared the evaluation
findings to determine the optimum model structure for flood prediction. They computed the lower bound of
the unsupervised learning method using the historical runoff input as the model output. The findings demon-
strated a typical issue in supervised learning, which was when the amount of data diminished, the performance
of the model degraded. However, the FloodDAN unsupervised learning model may perform at the same level
as supervised learning which took 450–500 hours, which is very significant and valuable for flood forecasting
in regions without hydrological data.

3.3. Problems and challenges in semi-supervised learning
While semi-supervised learning has found extensive use in flood prediction, there remain certain challenges
in its implementation process. Specifically, two key aspects warrant consideration:

1. Sample division: Semi-supervised learning divides samples into unlabeled and labeled samples, which is
important for building models [79]. In the process of model training by predicting labeled samples and
then building a newmodel, the process is cyclic iteration; and in the process of prediction, it is necessary to
consider that the sample prediction is wrong, whichwill greatly affect its generalization performance [80] and
even lead to performance degradation. Building a model that can guarantee prediction accuracy without
over-labeling is an important challenge in semi-supervised learning [81].

2. Selection of semi-supervised learningmethods: Semi-supervised learning is not easy to build better learn-
ing programs from unlabeled data. As mentioned earlier, unlabeled data are useful if and only if they con-
tain information useful for predicting labels, which do not contain data that cannot be extracted or are
difficult to extract in labeled data. Semi-supervised learning methods can be applied in practice to provide
effective information for model building, which further leads practitioners and researchers to the question
of when such situations occur. It is currently difficult to precisely define the conditions for any particular
semi-supervised learning job, and it is not easy to assess the extent to which these conditions are met by
the methods that can be used. This question has so far been left unanswered. Research on this problem
stops at inferring the applicability of different learning methods to various types of problems [82], such as
graph-based methods [83] that apply local similarity measures to construct graphs of all data points [84].

3.4. Problems and challenges in deep learning
While deep learning methods have decent fitting ability and robustness, there are still some problems that
cannot be overlooked.

1. Expensive computation and low portability: Deep learning is expensive since it takes a lot of data and pro-
cessing power. Additionally, a lot of programs are still incompatible with mobile devices. Many businesses
and teams are now working on creating semiconductors for portable devices [85].

2. Strict hardware specifications: Deep learning demands a lot of computational power, which is something
that standard CPUs can no longer handle [86]. GPU and TPU are the primary components used in main-
stream computing; therefore, both the cost and hardware requirements are relatively high.

3. Intricate model design: Deep learning model creation is quite complicated, taking a lot of time, labor, and
material resources to create new algorithms and models. Most individuals are limited to using pre-made
models. For example, the STA-LSTM and CNN-LSTM can somewhat resolve the robustness and gradient
issues, and GRU is able to perform calculations more quickly than LSTM [87,88].
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Table 1. Comparison of machine learning algorithms in the flood forecasting

Algorithms Computational cost Other benefits Disadvantages

SVM High on large dataset [91] Effective in handling high-dimensional The input data needs to be normalized.
data; robust to noise; accurate in Sensitivity to kernel choice; parameter
nonlinear problems; good for small tuning difficultly
datasets

ANN High on large dataset Capture complex nonlinear relationships; Overfitting easily; parameter tuning
better robustness; the ability to learn difficultly; poor interpretability; sensitivity
and adapt to changes in the input data; to input data
better generalization

CNN High on large dataset Spatial and temporal feature extraction Limited applicability; need to adjust
ability; No pressure for high-dimensional parameters and a large and high-quality
data processing; Robustness to noise; sample size

FCN Higher than CNN handle high-resolution data; learn complex Need a large amount and high-quality of
spatial patterns: handle missing data and labeled data for training; overfitting; not
noise; computationally efficient explicitly model temporal dynamics [60] .

GCN Higher than ANN and CNN Deal with non-Euclidean data; learn the Loss of spatial information; requires a
spatial dependencies between nodes; deal well-defined graph structure; not explicitly
with missing data and noise in the input model temporal dynamics
data; computationally efficient; handle large
graphs [92]

LSTM Higher than CNN and ANN Solved Gradient problem; model temporal With the increase of time, the modeling
dependencies and capture long-term ability of LSTM begins to decline due to
dependencies in time-series data; handle the gradient problem; overfitting; struggle
missing data and noise; computationally with handling sudden changes in the
efficient; handle large datasets [61] data distribution; not explicitly model

spatial dependencies [93]

GRU Lower than LSTM Alleviate the gradient problem; high memory Gradient problem as LSTM; training
efficiency; higher computationally efficient; difficultly; require careful tuning of
capturing temporal dependencies; good hyperparameters; sensitivity to
generalization ability [94] . initialization; overfitting; limited

interpretability
CNN-LSTM Higher than LSTM Spatial and temporal feature extraction; Overfitting; gradient problem; computational

improved accuracy; better robustness; better complexity
generalization

STA-LSTM Higher than CNN-LSTM The high robustness and generalization of lower computational efficiency than
hydrological prediction, and the prediction CNN-LSTM; carefully tune each attention
accuracy better than most forecasting models [95] weight; the identification of important spatio

-temporal features [11]

4. COMPARISONS AND FURTHER DIRECTION FOR FLOOD FORECASTING
As a result of our determination of the requirements for choosing the right machine learning algorithm, we
have listed them below in descending order, starting with the most important and going down to the least
important in the prediction of a flood as the following: accuracy, robustness, generalization, low configuration,
low preprocessing of data, and insights into factors influencing prediction.

4.1. Characteristics of machine learning algorithms for flood prediction
Asmanymachine learningmodels have been used for flood prediction, we select some representativemodels to
compare. Table 1 shows the comparison between variousmachine learning algorithms used in flood prediction.
Firstly, SVM has good performance on both low-dimensional and high-dimensional datasets and has certain
robustness [89]. Nonetheless, due to the high computational complexity, SVM is usually not efficient for the
case when the training datasets are rather large. The input datasets of the flood forecasting model not only
have a very large size but also have a relatively high dimension [90]. Therefore, SVM seems to be inadequate
to deal with the flood forecasting problem. Moreover, the flood forecasting problem is a nonlinear regression
problem; an overfitting issue would more likely occur when the SVM deals with nonlinear problems.

In Artificial Neural Networks (ANN), 3-layer neural network models are employed as the function estimators
in order to forecast the flood. Unlike conventional physical models described by certain differential equations,
ANN models are able to be trained from the historical data, after which the future trend of the flood can be
predicted through the obtained models [96,97]. In this procedure, the actual hydrological datasets are utilized
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for training the ANN models; the connecting weights of each neuron are adjusted accordingly in order to fit
well the relationship between the occurrence of the flood and related impact factors [98]. Clearly, the quality of
the provided dataset is one of the most influential features for the ANN performance [99]. Due to the fact that
the real-time datasets of flood forecasts are sometimes subject to the large noise, data preprocessing is quite
necessary in order to improve theANNmodels. Thedata cleaning, normalization, and transformation are good
preprocessing techniques that are commonly employed to enhance the quality of the dataset [90,100]. Besides
that, overfitting is another common issue in ANNmodel training, particularly when themodels used are overly
complex or the size of the dataset is relatively small. To this end, the dropout regularization and weight decay
are frequently utilized to prevent overfitting, thus improving the generalization ability and robustness [101].
Notice that basic ANN architecture merely includes three layers: input layer, hidden layer, and output layer,
and usually, such a 3-layer structure cannot achieve the flood forecasting with high accuracy.

The CNN is a kind of ANN architecture trained with deep-learning algorithms [102]. CNNs are well suited for
solving prediction problems with spatial datasets. This is because CNNs are designed to handle the spatial
structure of data and can learn to extract features hierarchically from the input data. The accuracy of a CNN
depends on several aspects, such as the size and complexity of themodel architecture, the quality of the training
data, and the choice of hyperparameters [103]. CNNs can be robust in flood forecasting, particularly when
trained on a diverse range of data that captures variations in environmental conditions and flood events. This
can help the model to identify features that are associated with flooding and to generalize well to new and
unseen data. Therefore, CNNs can be made less sensitive to changes in the input data, such as changes in
weather conditions or changes in the landscape, which may possibly affect the accuracy of the model. As with
most machine learning methods, overfitting may occur as well when the model employed is too complex or
the training data is too limited, leading to poor generalization performance on new datasets. Similar to ANN,
overfitting would be prevented by the appropriate regularization techniques. Furthermore, the CNN models
can be combined with other models to improve the performance of flood forecasting.

The FCN, as a specific type of CNN architecture, has been designed for image segmentation tasks. FCNs and
CNNs can be adopted for different types of tasks in flood forecasting due to their different characteristics.
The accuracy, robustness, and generalization of FCNs are much similar to CNNs [104]. FCNs may sometimes
require more computational resources than CNNs owing to their architecture, which could be a limitation for
real-time flood forecasting applications. Techniques such as the use of a smaller model architecture or transfer
learning can be employed to reduce the computational cost of training an FCN. Mu (2022) trained the models
of FCNs, multi-output FCNs, and their RNN variants in watersheds with frequent rainfall and performed both
quantitative and qualitative analysis for specific rainfall events [60]. In cases where the predicted water depth
exceeded 50 cm, the multi-output FCNs had a very significant advantage. Under the recurrent effect, the
accuracy of long-term flood prediction of FCNs will be greatly improved. In the process of this test, the three
predicted NSE values of the FCN model were 81.0%, 79.95%, and 78.16%, respectively. From this result, this
model had a certain accuracy for predicting floods, but the values were not particularly close to 1. The single
FCNmodel here still has a lot of room for optimization. FCNs and CNNs are both useful in flood forecasting,
but their specific strengths and weaknesses depend closely on the type of data and task at hand.

GCNs are a class of deep learning models that can effectively handle graph-structured data, making them
promising tools for flood forecasting. GCNs have good robustness. For example, they can deal with noisy data
andmissing values by learning from the local connections in the graph, allowing themodel to smooth out noise
in the data. GCNs can also effectively adapt to changes in the data by dynamically updating the weights of the
connections in the graph, enabling the model to learn from new data without requiring a full retraining [105].
Notice that GCNs are mainly designed to handle graph-structured data, which makes them well-suited to
handle complex spatial relationships in flood forecasting data. GCNs may struggle to generalize to new and
unseen data outside of the training set, especially when the graph structure is significantly different from the
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training data. This can lead to overfitting and reduce performance in real-world flood forecasting applications.
GCNs may be computationally expensive, especially for large graphs with many nodes and edges. This can
make it challenging to scale up GCN-based flood forecasting models in order to cover larger geographic areas.
Then Graph convolutional RNN (GCRNN) is a kind of neural network based on GCN. The GCN is used to
capture image data to represent spatial relationships, while the RNN is used to capture temporal data [87]. The
combination of these two structures gives this model an advantage over time and space. GCRNN can be used
to predict the time series of water quantity in a geographic area or water supply area. GCRNN is an image-
basedmodel that captures water volume in both time and space. Zanfei et al. (2022) have tested this prediction
model in the presence of sensor failures [92]. The test results showed that GCRNN can accurately predict floods
when considering the spatial criteria of time series. Especially in fault testing, GCRNN performedmuch better
than LSTM. Since GCRNN has relatively high complexity and the demand for computing time is also high,
there are still some deficiencies on the whole. While GCRNN is able to predict the whole flood cycle reliably
and stably, the modeling ability begins to decline with the increase of time. From this point of view, GCRNN
still has higher advantages. In the model test of the three time periods in the Chongqing section of the Yangtze
River Basin, the GCRNN model has significantly higher accuracy than the FCN model since the NSE results
of the GCRNN in these three tests are 93.10%, 89.33%, and 83.56%. These three values are larger and closer to
1 than the respective values of FCNs.

LSTM is a type of RNN, and the gradient problem of RNNs can be partially resolved by LSTMmodels. LSTM
models have been shown with high accuracy in flood forecasting compared to traditional statistical models.
This is because LSTMmodels are able to capture the complex temporal dependencies and patterns for the time
series data [106]. LSTM models have also been shown with the ability to effectively model the nonlinear and
non-stationary behavior of hydrological variables, which is important in flood forecasting [107,108]. However,
the accuracy of LSTM models can be affected by several factors, such as overfitting, underfitting, and the
presence of outliers or anomalies in the data. The quality and quantity of input data can significantly impact
the robustness of an LSTMmodel. The architecture of an LSTMmodel, including the number of layers, hidden
units, and input/output dimensions, can impact its robustness too. Moreover, the choice of training parameters,
e.g., learning rate, batch size, and optimization algorithms, may also impact the robustness of an LSTMmodel.
The use of appropriate training parameters can improve the ability of the model to generalize to new data.
LSTMs performed very well for one-day, two-day, and three-day forecasts. TheNSE for these three predictions
were 95%, 93%, and 88%, respectively, which are better than FCNs and GCNs.

GRU and LSTM have comparable performance, whereas GRU has a lower computational cost than LSTM.
The NSE values of GRU in the three predictions are nearly 95%, 93%, and 88%, respectively. Some researchers
combined GRU and CNN models to create the Convolutional GRU (CONV-GRU), aiming to maximize the
benefits of both models [88]. The combination is accomplished by connecting the output of the CNN model
with the input of the GRU model. This model was used to forecast the water level and flood phenomena of
a Taiwanese river. This model was thought to be an extension of the GRU model. When compared to other
neural network models, the CONV-GRUmodel was found to be superior to other neural network methods in
predicting water level characteristics, and it was very useful in detecting local flood characteristics. TheCONV-
GRU model can detect both normal and abnormal time series behavior. Furthermore, the error between the
predicted and actual value of this model is relatively small, and the CONV-GRU model is superior to the four
models of LSTM, CNN, ANN, and Seq2seq (Sequence to sequence).

Although the applications of machine learning techniques in flood prediction have been increasing, most of
them are based on a collection of one-dimensional data. The CNN-LSTM model uses the two-dimensional
radar map to calculate the runoff and then achieves the purpose of flood prediction [109]. The two-dimensional
processing of the precipitation radar map by CNN and the one-dimensional processing of the sequence by
LSTM makes it possible to figure out the upstream and downstream flow series [86]. The database in three
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Table 2. Measures of machine learning algorithms

Measures Algorithms

High accuracy STA-LSTM [11,93]

Good robustness SVM, STA-LSTM
Good generalization SVM, STA-LSTM, GRU
Low computational cost SVM, ANN, CNN
Gradient problems CNN, LSTM, GRU
Fitting problems SVM, ANN, CNN, FCN, GCN
High dataset quality SVM, CNN, Hybrid LSTM, GRU

different years was taken as the study period. After forecasting at three different water level periods, the NSE
values were 93.51%, 94.25%, and 95.18%, respectively. Comparing this set of results with the NSE values of the
LSTM, it was clear that the CNN-LSTM predictions were more accurate. After using the NSE and evaluating
the performance of themodel, it is found that the better prediction performance ofCNN-LSTMhighly depends
on the optimized input dataset [110]. It means while models can be useful for estimating water levels and issuing
flood warnings, high-quality datasets are fundamental to their value.

It is observed that most prevailing deep learning structures, such as LSTM networks, are unlikely to model the
spatial correlation of hydrological data and, thus, fail to produce satisfactory prediction results [95]. It is clear
that flood is uncertain and highly nonlinear, which leads to the low robustness of hydrological prediction [111].
The physical interpretability of the models is easily overlooked by general machine learning methods. Some
scholars proposed the STA-LSTMmodel based on the original LSTM, which contains an explainable attention
mechanism. Experiments showed that this model outperformed FCN, CNN, GCN, and the conventional
LSTM in most cases. The rationality of this model is mainly reflected by the visual and interpretable weight
of spatial and temporal attention. When carrying out modeling experiments, Lyu et al. (2021) found that in
the STA-LSTM model, spatio-temporal attention and time have similar weights, and they all move forward
slowly. In terms of the overall weight, its change trend is not obvious and relatively slow [112,113]. However,
in the case of actual flood input, with the extension of the forecast time, the time attention weight also keeps
moving forward, and a certain time point will have a synchronous forward speed with the predicted speed.
This implies that the time attention weight is very similar to the whole fusion process [114]. Moreover, if the
weight of time attention deviates, it is highly likely to cause the deviation of the prediction results. From this
perspective, although the STA-LSTM model has better performance than other neural networks in terms of
datasets and performance, it is greatly affected by the weight of time attention [115]. The three values of NSE
in this evaluation were 97.03%, 96.73%, and 95.10%, respectively, which shows STA-LSTM had the highest
accuracy in predicting floods.

All in all, the high-quality datasets, the great quantity of data, concise model structure, suitable hyperparame-
ters, and data preprocessing are important for the accuracy, robustness, and generalization of flood forecasting
models. As a result, the selection of a machine learning algorithm for flood forecasting should be based on the
unique requirements of the application and the properties of the available data.

4.2. Future direction for real-time flood forecasting
Although the challenges of flood forecasting have been partially addressed by current machine learning meth-
ods, there are still challenges not completely being solved in flood forecasting, as shown in Table 2. The van-
ishing gradient problem is a common challenge in deep learning-based flood forecasting models [116]. LSTM
models can relieve the vanishing gradient problem of RNN and CNNmodels, but it also occurs when the gra-
dient of the loss function becomes very small or very large, making it difficult for the optimizer to update the
model parameters effectively during training. Various techniques, such as weight initialization, batch normal-
ization, gradient clipping, and data augmentation, can be used to address the gradient problem and improve
the performance of these models [117].
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An ideal flood forecasting model should exhibit low bias and low variance to accurately predict true values
while not being overly sensitive to minor input data changes [118]. However, striking this balance can be chal-
lenging, especially when dealing with complex flood systems that are influenced by a multitude of factors and
variables. The variance impacts the robustness and generalization of the flood forecasting model, while the
bias affects its accuracy [119]. Therefore, the balance between variance and bias needs to be adjusted according
to the specific forecasting requirements.

A lot of flood forecasting models are sensitive to the input data changing. Because flood events can be affected
by various factors, such as weather patterns and land-use changes, future work could focus on developing ma-
chine learning models that can adapt to changing conditions and provide accurate predictions under different
scenarios. In other words, the flood forecasting models of high generalization stability have to be given more
attention. For example, the hybrid CNN models could be created since CNN models are hyposensitive to the
input data changing [120,121].

Notwithstanding the fact that machine learning models have flexibility, speed, and simplicity with physical
models, their generalization ability is restricted [122]. The physical models are based on the underlying physical
laws and can generalize well to different conditions and locations. Therefore, hybrid models that combine the
strengths of machine learning and physical models can improve flood prediction accuracy and generalization.

The quality and quantity of the dataset will have a large impact on the accuracy of the flood forecasting models.
In some regions, data scarcity can limit the effectiveness of deep learning models. Developing methods to
address data scarcity is imminent, such as transfer learning and data augmentation. The concept of GAN-
LSTM is to generate synthetic flood data that can be used to augment the training data of an LSTM model.
GANs can generate realistic and diverse samples from a given distribution, while the LSTM learns to predict
the next flood event based on the input data and the synthetic data [123]. This approach has the potential to
improve the accuracy and generalization of the LSTMmodels, as it can learn to predict floods based on a wider
range of data. Researchers could try to explore the use of advanced deep learning algorithms, such as GANs,
to improve the accuracy and robustness of flood forecasting.

5. CONCLUSIONS
The purpose of this manuscript is to provide a survey of the current state of machine learning applications in
flood prediction. Due to the abundance of literature on the topic, the focus of this review is to analyze and
compare the performance ofmainstream algorithms that are currently being used in real-time flood prediction.

Accurately detecting the timing and magnitude of major floods is a challenge for watershed managers, as it is
critical to provide timely early warnings to those at risk and save lives. Recent advancements in remote sensing
technology and the installation of real-time flood water level detection sensors, in conjunction with advanced
machine learning techniques, have made it possible to provide more accurate and longer forecast windows for
predicting the timing and magnitude of future flooding events. This improved prediction capability enables
better countermeasures, evacuation efforts, and mobilization of emergency management teams.

By utilizing advanced remote sensing techniques and real-time flood water level monitoring sensors, a large
volume of data can be collected, quickly analyzed, and processed by machine learning algorithms to forecast
floods. These algorithms can identify complex patterns in real-time data to accurately predict floodwater levels
in complex river networks and urban sewer sheds. The data collected can be used to create flood inundation
maps and issue warnings to impacted residents through mobile applications on their cell phones, enabling
emergency response teams to mobilize and coordinate evacuation efforts more effectively.
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In conclusion, this review summarizes the combination of remote sensing, real-timemonitoring, andmachine
learning technology, offering a promising solution to the challenge of accurately forecasting floods and reduc-
ing their impact on at-risk communities.
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