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The PI3K/AKT/mTOR (PAM) pathway is involved in a variety of cellular functions and often contributes to oncogenesis and 
cancer progression. It has been recognized that this pathway is frequently activated in the most common central nervous system 
cancers of adults and children, malignant gliomas and medulloblastomas (MB). In these tumors, the PAM network controls key 
functions necessary for cell invasion and metastasis, such as cell motility. This review summarizes the current knowledge about 
the role of PAM signaling in cell invasion and metastasis in gliomas and MB. Current approaches to inhibit cell invasion and 
metastasis by targeting the PAM pathway will also be discussed.
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INTRODUCTION

Tumors of the central nervous system include a broad range 
of neoplasms that arise from different cell lineages. The 
most common variants in adult and pediatric populations 
are malignant gliomas and MB, respectively.

Glioblastoma (GBM) is a highly aggressive tumor that 
arises from different glial cell types. Based on WHO 
classification, GBM is a grade IV astrocytoma that either 
develops de novo (primary GBM) or gradually from lower 
grade astrocytomas (secondary GBM).[1] Due to limited 
therapy options, the median survival is a dismal 15 months 
with standard of care, which includes surgical resection, 
temozolomide chemotherapy and radiation.[2]

Medulloblastomas are embryonal tumors that originate 
from fetal tissue due to aberrant developmental signaling.[3] 
By using treatment protocols that combine chemotherapy, 
surgery and cranio-spinal radiotherapy, 70-80% of patients 
can be cured, albeit with debilitating long term side effects.[4]

Advances in molecular biology have led to remarkable 
insights into the understanding of the underlying molecular 
pathogenesis of malignant gliomas and MB and have 
revealed specific pathways and signaling networks that 
promote tumorigenesis in these malignancies.[5,6] These 
frequently feature aberrant receptor tyrosine kinase (RTK) 
signaling via the PI3K/AKT/mTOR (PAM) pathway.
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The PAM signaling axis integrates extracellular signals via 
RTK and G protein-coupled receptors and regulates a host 
of intracellular functions, such as cell cycle, metabolism, 
migration and apoptosis.[7-9] Phosphatidylinositol 
3-kinase (PI3K) phosphorylates the 3’-hydroxyl group 
of phosphatidylinositol, producing second messengers 
that recruit cytoplasmic proteins to the membrane. These 
include various modulators of small GTPase activity, TEC 
family tyrosine kinases and members of the AGC protein 
kinase family like AKT (also known as Protein Kinase B, 
PKB).[10] The serine-threonine kinase mTOR, a regulator 

of translation and protein synthesis, is activated by AKT 
signaling.

Since many hallmarks of malignancy are controlled by 
PAM signaling, genetic and epigenetic alterations in 
various components of this pathway are frequent events 
in central nervous system (CNS) cancers. These include 
gain-of-function mutations and amplifications in genes 
encoding RTKs such as epidermal growth factor receptor 
(EGFR), loss-of-function mutations of the phosphatase and 
tensin homolog deleted on the chromosome 10 (PTEN) 

Figure 1: PAM-signaling network and effector functions associated with metastasis: In GB and MB, aberrant PAM signaling can promote tumor progression by 
over- inducing angiogenesis, EMT, cell migration and invasion, and also by inhibiting loss of adhesion associated apoptosis. PAM: PI3K/AKT/mTOR; VEGF: 
vascular endothelial growth factor; PDGFR: platelet derived growth factor receptor; IGF-1: insulin-like growth factor-1; IGFR: insulin-like growth factor receptor; 
NFκB = nuclear factor kappa-light-chain-enhancer of activated B cells; HIF-1α: hypoxia inducible factor 1α; PTEN: phosphatase and tensin homolog deleted 
on chromosome 10; PI3Ks: Phosphatidylinositol-3-kinases; MEK: mitogen-activated ERK kinase; EGFR: epidermal growth factor receptor; ERK: extracellular-
signal regulated kinase

Table 1: Stage of clinical development of PAM pathway inhibitors for brain tumors[138]

Inhibitor Target Stage of clinical development for brain tumors
SF-1126 (RGDS-conjugated
LY294002 prodrug)

Pan-PI3K Phase I

PX-866 Pan-PI3K Phase II
Pictilisib (GDC-0941) Pan-PI3K Phase II
LY294002 Dual PI3K/mTOR Preclinical
Wortmannin Dual PI3K/mTOR Preclinical
Dactolisib (NVP-BEZ235) Dual PI3K/mTOR Phase II
Perifosine (KRX-0401) Akt Phase II
KP-372-1 Akt Preclinical
KP-372-2 Akt Preclinical
A-443654 Akt Preclinical
Bevacizumab (Avastin) VEGF-A Phase III
Aflibercept VEGF and placental growth factor Phase I
Cediranib (AZD2171) VEGFR, Flt1/4, PDGFR, FGFR1, c-KIT Phase I
Cabozantinib (XL-184) c-MET and VEGFR2 Phase I
SGX-523 c-MET Phase I
Osthole IGF-1/IGF-1R and calcium channel blocker Preclinical

PAM: PI3K/AKT/mTOR; VEGF: vascular endothelial growth factor; PDGFR: platelet derived growth factor receptor; FGFR: fibroblast 
growth factor receptor; IGF-1: insulin-like growth factor-1
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tumor suppressor gene, and oncogenic mutations in various 
PI3K isoforms that lead to a constitutively activated 
pathway.[11,12] Aberrant PAM signaling also favors essential 
steps for cell invasion and metastasis in CNS malignancies 
[Figure 1]. The implications of aberrant PAM signaling in 
angiogenesis, epithelial to mesenchymal transition (EMT) 
and immune response modulation is currently under intense 
investigation.[13-15] Components of the PAM pathway are 
therefore being considered as potential drug targets [Table 
1] to inhibit the often fatal events of metastasis and cell 
invasion.[16-18]

ANGIOGENESIS

Angiogenesis is a process consisting of the generation of 
blood vessels and is essential for the growth of tumor mass 
beyond 1mm in diameter.[19] This process allows tumors 
to become invasive by supporting them with nutrients and 
oxygen. Tumor and host cells synthesize and secrete pro-
angiogenic factors, such as vascular endothelial growth 
factor (VEGF), that activate quiescent endothelial cells 
and induce the formation of new blood vessels from pre-
existing vascular structures.[20]

The PAM pathway plays a critical role in this 
neovascularization process by controlling the hypoxia-
inducible factor 1-alpha (HIF-1α) mediated expression and 
secretion of VEGF.[21,22] In cancer cells, VEGF stimulation 
can be mediated by chronic stimulation by growth factors, 
such as insulin-like growth factor-1 (IGF-1); constitutive 
activation of PI3K; or constitutive activation of AKT due to 
inactivation of PTEN.[23,24] The important role of the PAM 
pathway in angiogenesis has been confirmed in various 
malignancies where inhibition of pan-PI3K by LY294002 
and downregulation of p110α (or recently, PI3KC2α) were 
shown to block tumor vascularization.[15,22,25] In myeloid 
cells, PI3Kϒ was reported to be involved in the activation 
of integrin α4β1, leading to myeloid cell invasion into 
tumors and, in turn, to tumor angiogenesis.[26]

In GBM, the most aggressive glioma subtype, the PAM 
pathway also plays a crucial role in the induction of 
invasion, angiogenesis and the expression of VEGF in 
cells.[24,27]  Therefore, new small molecule inhibitors 
targeting PI3K enzymes are being tested in this CNS 
malignancy. These include the PI3K inhibitors SF1126 (a 
RGDS-conjugated LY294002 prodrug) and PX-866, and 
the dual PI3K/mTOR inhibitor NVP-BEZ235.[28-30] These 
compounds were shown to induce a substantial inhibition 
of the expression of VEGF, thus reducing the invasive and 
angiogenic capabilities of GBM cells. In fact, PX-866 has 
recently entered phase II studies in patients with recurrent 
GBM. Unfortunately, preliminary results of this trial have 
shown a low overall response rate.[31]

The combined inhibition of VEGF and vascular endothelial 
growth factor receptor (VEGF/VEGFR) is currently thought 

to be an effective way to control GBM growth.[32-34] Examples 
of VEGF/VEGFR inhibitors are bevacizumab, already in 
phase III trial,[35] and aflibercept, a VEGF/VEGFR inhibitor 
that also targets placental growth factor.[36] Unfortunately, 
long-term treatment with aflibercept was reported to induce 
an invasive phenotype of GBM.[37,38]

In addition, RTK inhibitors such as cediranib (an inhibitor of 
VEGFR, platelet-derived growth factor receptor, fibroblast 
growth factor receptor 1, and v-kit Hardy-Zuckerman 4 
feline sarcoma viral oncogene homolog), have also been 
used with promising results.[39,40] Inhibitors of c-MET such 
as cabozantinib are also being considered, and have been 
reported to induce a significant increase in overall survival 
of mice bearing GBM xenografts.[41]

However, anti-angiogenic therapies targeting VEGF/
VEGFR have had less of an effect than expected.[42] This 
could be because, in highly vascularized tissues like 
the lung and brain, tumors can often proliferate around 
existing vessels and hijack them, a process called vessel co-
option.[43,44] These pre-existing blood vessels circumvent the 
need to generate new tumor vasculature, and may explain 
the inefficacy of anti-proliferative therapies in GBM, the 
most vascularized tumor in humans.[38]

Autophagy is an evolutionarily conserved, catabolic 
process that maintains cellular biosynthesis through the 
degradation and recycling of proteins and organelles to 
support metabolism and survival during starvation. This 
process has been shown to have a complex relationship 
with angiogenesis induction in various malignancies. 
While some studies have reported that autophagy inhibits 
angiogenesis,[45,46] other studies have found that induction 
of autophagy promoted cancer and its inhibition prevented 
angiogenesis.[47,48] This illustrates the dual role that 
autophagy plays in cancer, acting as a pro-survival or pro-
death mechanism depending on the tumor type and stage.[49]

Autophagy is induced by different cellular stress-mediated 
signaling pathways, the inputs of which are integrated by 
the protein kinase mammalian target of rapamycin (mTOR). 
The mTOR complex 1 (mTORC1) is a negative regulator 
of autophagy and a downstream target of the PI3K/AKT 
pathway.[50] Anti-cancer agents that target this pathway are 
able to induce autophagy, which has a cytoprotective role as 
well as an anti-angiogenic potential similar to the action of 
the dual PI3K-mTOR inhibitor NVP-BEZ235.[51-53]

High-grade gliomas have been reported to have lower 
expression of autophagy-related proteins than low-grade 
gliomas.[54] The amplification of EGFR, which is often 
found in these tumors, is known to suppress autophagy.[55] 
The progression of astrocytic tumors is associated with a 
decrease in autophagic capacity.[56] In most of these CNS 
malignancies, the modulation of autophagy sensitizes 
tumor cells to standard chemotherapy and radiotherapy 
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induced cell death.

EMT, CELL INVASION AND MOTILITY

EMT is a biological process that allows immobile epithelial 
cells to acquire a mobile mesenchymal phenotype, becoming 
detached and invasive. It was initially described in the 
context of embryonic differentiation.[57] In tumor cells, this 
process, together with the induction of neo-angiogenesis, 
initiates cancer metastasis, inducing enhanced migratory 
properties, invasiveness and resistance to apoptosis.[58,59]

During EMT, a variety of transcription factors are 
upregulated in metastatic cells, such as Snail, Slug, 
Twist and Zeb ½.[60] Snail can be activated by a number 
of  pathways, including hypoxia, HIF-1, HIF-2, Notch, 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB), and transforming growth factor beta 
(TGF-β), a pro-apoptotic factor. Snail up-regulates AKT 
phosphorylation and Bcl-Xl, countering the induction of 
apoptosis,[61] and down-regulates cyclin D2, inhibiting cell 
cycle progression.[62]

Twist, which promotes loss of E-cadherin mediated cell-
cell adhesion and cell motility,[63] has been linked to the 
PI3K/AKT pathway in various malignancies. This link 
is established by the AKT2 isoform, a Twist-mediated 
transcriptional regulator that activates Twist, constituting 
a positive feedback loop that promotes EMT.[64,65] Twist 
also maintains hyper-activation of the PI3K/AKT pathway 
in breast cancer cells, through its transcriptional target 
TGF-β2.[65]

AKT hyper-activation and PIK3CA knock-in can promote 
EMT in various human cancers.[61-66] The association 
between EMT and PI3K activation has also been reported 
in ERα-negative endometrial carcinomas.[67]

Twist overexpression has also been correlated with the 
induction of tumor cell invasion in GBM.[68] However, these 
malignancies usually do not metastasize out of the CNS, 
mainly due to their rapid relapse rate and poor prognosis.[69] 
Even so, there are reports describing GBM metastasis[70] 

involving the spread of GBM cells out the CNS through 
cerebrospinal fluid, blood or lymphatic vessels.[71,72]

Medulloblastoma, on the other hand, has a high tendency 
to disseminate to the spinal cord and leptomeninges of the 
cerebellum and forebrain. These tumors are classified into 
4 molecular subgroups: wingless (WNT), sonic hedgehog 
(SHH), group 3 and group 4.[73] Group 3, characterized 
by cMYC amplification, is associated with metastatic 
disease.[74]

The PI3K/AKT pathway is activated in 50% of GBMs. In 
the case of MB, there are a number of studies concerning 
alterations in this pathway.[6,75,76] This pathway appears to 
facilitate an invasive phenotype of GBM and MB, especially 

in terms of motility and resistance to stress.[77]

The class IA PI3K isoform p110α is the most relevant 
PI3K isoform affecting cell growth and survival. The gene 
encoding this isoform, PIK3CA, is usually mutated in GBM 
(27%).[78] In this malignancy, PIK3CA mutated form plays 
a main role in cell growth under anchorage-independent 
conditions. In MB, however, this PI3K isoform is typically 
overexpressed,[79] promoting cell proliferation, for example, 
through the regulation of the leukemia inhibitory factor 
receptor α (LIFR α).[80] The inhibition of p110α impairs 
cancer cell growth, migration, and survival in these CNS 
malignancies.[16,79]

Other class IA PI3K isoforms are also overexpressed in 
brain tumors, such as p110δ, which has been reported to 
be overexpressed at the mRNA level in primary GBM, 
controlling migration in these cells.[81,82] The isoform 
p110ϒ, which is overexpressed in primary MB, contributes 
to cisplatin resistance and has emerged as a novel target 
for combinatorial treatments.[83] The class II PI3K isoform 
PI3KC2β, which is overexpressed in a variety of cancers, 
acts as a modulator of cell migration, survival and 
proliferation in leukemia and brain tumors.[84] The highly 
specific pan-PI3K inhibitor GDC-0941 has recently been 
shown to have anti-migratory, anti-proliferative and pro-
apoptotic effects in MB cell lines, showing synergy with 
the standard chemotherapeutic drug etoposide and good 
clinical tolerability.[85]

Other elements of the PI3K/AKT pathway are also being 
considered as potential targets to inhibit cell proliferation 
and migration in GBM and MB. One example is AKT, 
which usually shows high levels of phosphorylation in these 
brain tumors.[86] Its inhibition by KP-372-1, KP-372-2, 
A-443654, or perifosine, was reported to inhibit cell growth 
and induce radio-sensitizing effects in GBM and MB.[87-89] 

Clinical trials of perifosine in GBM patients are ongoing.[90]

PTEN is a tumor suppressor usually mutated and inactivated 
in GBM, with an inverse correlation between its expression 
and glioma grade.[91] In MB, PTEN is rarely mutated but 
frequently downregulated, by promoter hypermethylation 
and/or allelic losses, inducing AKT activation.[86]

PTEN, together with the MAPK signaling pathway, has a 
primary role in the regulation of G1/S cell cycle checkpoint-
defective astrocytoma invasion, and its deletion increases 
migration, invasion and resistance to apoptosis in GBM 
cell lines.[92] PTEN controls integrin-dependent migration 
through the regulation of Src family kinase activation, in 
a PI3K/AKT-independent manner.[93] The re-expression of 
PTEN in GBM cell lines increases the cellular content and 
activity of the p53 tumor suppressor protein inducing cell 
cycle arrest and increasing the sensitivity of the tumor cells 
to various chemotherapeutic agents such as etoposide.[94]

Upstream regulators of EMT induction, such as insulin-like 
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growth Factor-1 receptor (IGF-1R), c-MET and the CXCR4 
receptor, have been proposed as potential targets to inhibit 
GBM or MB invasion.

IGF-1R is typically overexpressed in malignant GBM,[95] 
and its activation by IGF-1 contributes to Snail and 
Twist expression though PI3K/AKT signaling pathway 
activation.[96,97] Therefore, IGF-1R tyrosine kinase 
inhibitors or IGF-1 inhibitors, such as osthole, have been 
used to inhibit GBM proliferation, migration and EMT.[97,98] 
In a recent study of 218 cases of human GBM, IGF-1R 
overexpression was reported as an independent prognostic 
factor associated with shorter survival time and a less 
favorable response to temozolomide.[99]

C-MET expression levels correlate with tumor grade in CNS 
malignancies,[100] and its activation also mediates EMT-
promoting signals in cancer cells via class IA PI3K.[101,102] In 
MB, c-MET signaling is deregulated, thus inducing tumor 
growth and an anaplastic histology.[103] The use of c-MET 
kinase inhibitors, such as SGX523, suppressed tumor 
growth in GBM cell lines.[104] This inhibition blocked the 
EMT induced by VEGF ablation in a GBM mouse model[105] 
and induced an effective decrease in MB cell migration and 
invasion.[106,107]

Stromal cell derived factor (SDF-1) or CXCL2 and its 
chemokine receptor CXCR4 can induce EMT in GBM via 
activation of PI3K/AKT and extracellular-signal-regulated 
kinases (ERK) pathways, and its inhibition suppressed 
EMT in glioma cell lines by upregulating E-cadherin.[108]

However, single agents targeting the PAM pathway have 
been reported to be an inefficient approach in MB and to 
increase invasion in the surviving fraction of GBM.[109] 
Therefore, new therapeutic approaches should be based 
on increasing the therapeutic window by targeting two 
different routes, namely the PAM and ERK pathways, 
or on combining PAM inhibitors with chemotherapeutic 
agents.[110]

MicroRNAs have also been shown to play an important 
role in various CNS malignancies, and miR-142-5p and 
miR-25 are upregulated in all of them.[111] In MB, miR-21 
suppression inhibited tumor migration.[112] MiR-183 has a 
pro-tumorigenic effect in the MYC-driven MB subgroup 
through the inhibition of apoptosis, deregulation of the 
mTOR pathway and modulation of cell motility and 
migration.[113]

During the EMT process, malignant cells start to intravasate 
into the surrounding blood vessels in order to migrate to 
other parts of the body. To accomplish this, the extracellular 
matrix and basement membrane of blood vessels have to 
be degraded by matrix metalloproteases (MMP).[114] The 
most relevant metalloproteases in this invasive process are 
MMP-2 and MMP-9.[115]

One of the upstream pathways controlling MMP production 
is the PI3K/AKT pathway.[116] As a consequence, drugs like 
wortmannin, a drug that inhibits the secretion of MMP-
2, blocks GBM invasion through the down-regulation of 
the PI3K/AKT/NF-kB signaling pathway.[117] Since Snail 
induces MMP-9 expression, EMT seems to be necessary 
for intravasation of lymph vessels in GBM and other 
cancers.[119]

PI3KS IN INFLAMMATION/
MICROENVIRONMENT

The process of inflammation has been extensively 
linked to tumor progression, as it can stimulate immune 
suppression, angiogenesis and tumor metastasis.[119,120] In 
response to tumor-derived growth factors and chemokines, 
inflammatory cells of the immune system are recruited to the 
tumor microenvironment. There, cells normally involved 
in chronic inflammation, such as mast cells, granulocytes 
and monocytes, provide the tumor with angiogenic factors, 
enzymes for extracellular matrix (EM) remodeling and 
growth factors to create a favorable milieu for expansion 
and dissemination.[121,122] 

Members of the class I PI3K family have also been 
implicated in tumor-associated inflammatory responses. 
In myeloid cells, p110γ can be activated via tumor-derived 
chemoattractants, such as IL-6, Il-8, TNF-α and CSF-1. 
Upon activation, p110γ promotes extravasation into the 
tumor microenvironment (TME) via integrin α4β1 and 
promotes inflammation-associated tumor progression.[26,123] 
This is in line with other reports indicating a crucial role of 
p110y for immune cell chemotaxis, as well as for chronic 
inflammation.[124]

Microglial cells are resident macrophages of the CNS. 
Depending on the signaling context, these cells possess a 
dual role in tumor biology. By secreting cytokines like IL-
6, IL-10 and immune suppressive molecules, gliomas can 
polarize microglia into tumor supporting M2 phenotypes that 
participate in matrix remodeling and cell invasion.[125-127] In 
a recent study, PAM signaling was upregulated in microglial 
cells that were exposed to glioma derived factors, indicating 
that PAM signaling is needed to force microglial cells into 
a tumor supportive M2 state.[128] This result was supported 
by a report showing that mTOR inhibition with rapamycin 
polarizes microglia cells to express a tumor suppressive 
M1 phenotype.[129] To date, the exact molecular mechanism 
by which PI3K signaling contributes to M2-polarization 
of microglia is still unknown and should be the subject of 
further investigation.

The tumor microenvironment of MB is also being 
investigated. A recent study associated the SHH-MB subtype 
with high infiltration of tumor associated macrophages 
(TAM) and strong expression of the inflammatory genes 
CSF1R and CD163.[130] It has been shown that PI3K binding 
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to CSF1R stimulates spreading and motility in macrophages 
and their enhancement of tumor cell invasion.[131] Inhibition 
of p110δ impairs CSF-1 induced macrophage spreading 
and their invasive capacity.[132] Hence, it may be worth 
investigating whether selective inhibition of PI3Ks in the 
SHH-MB subtype impairs TAM-driven tumor invasiveness. 
The CD163 gene is a surface marker that is strongly 
expressed by tumor promoting M2 macrophages, but it 
is not clear whether or not MB cells polarize surrounding 
TAM via PI3K to enhance tumor invasion.

CLINICAL TRIALS OF KINASE 
INHIBITORS IN GLIOBLASTOMA

Oncogenic kinase signaling (e.g. via the PAM pathway) 
is crucial in GBM and hence attractive for targeted 
therapy.[133,134] Unfortunately, the overall response rate 
of GBMs to kinase inhibitors in clinical trials has been 
poor so far.[135] One reason for these disappointing results 
may be inadequate trial design. Systematic flaws such as 
small sample sizes, absent control groups and unverified 
drug activity have been reported in the past.[135] Therefore, 
various changes in study design have been proposed to 
improve the reliability of the results. Clinical trials enriched 
for patients with an aberrant kinase target are likely to give 
a better picture of the overall performance of a particular 
inhibitor.[136] In addition, the importance of monitoring target 
inhibition and negative feedback has been shown in a phase 
I trial in PTEN-deficient glioblastomas.[137] To improve the 
results of clinical trials using kinase inhibitors, it appears 
necessary to set higher requirements for preclinical models 
and to verify efficacy in a broader spectrum of GBM models 
in order to address each model’s shortcomings. Given the 
fact that kinase signaling pathways are often dysregulated 
in parallel, it may also prove worthwhile to evaluate 
combinations of different kinase inhibitors.

CONCLUSION

Aberrant PAM signaling can promote crucial metastatic 
events such as angiogenesis, EMT, and modulation of 
immune cells in both MB and GBM. Targeting the PAM 
network may be a useful way to inhibit these often fatal 
events. Understanding the molecular mechanisms and 
the context by which different components of the PAM 
pathway contribute to tumor progression is a prerequisite 
for the design of novel treatment strategies. Some of these 
mechanisms, such as the interaction between malignant 
CNS cells and TME, have only recently become the focus 
of investigation and are still incompletely understood. 
Further studies are necessary to elucidate these 
mechanisms and to determine which components of the 
PAM pathway should be targeted to inhibit the metastasis 
of CNS malignancies.
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