
Yang et al. Intell. Robot. 2025, 5(2), 248-75
DOI: 10.20517/ir.2025.13 Intelligence & Robotics

Research Article Open Access

Retrieve-then-compare mitigates visual hallucination
in multi-modal large language models
Dingchen Yang1, Bowen Cao2, Sanqing Qu3, Fan Lu3, Shangding Gu4,5, Guang Chen3,4

1School of Automotive Studies, Tongji University, Shanghai 201804, China.
2The Chinese University of Hong Kong, Hong Kong 999077, China.
3Department of Computer Science and Technology, Tongji University, Shanghai 201804, China.
4School of Computation, Information and Technology, Technische Universität München, München 80333, Germany.
5Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94704, USA.

Correspondence to: Prof. Guang Chen, Department of Computer Science and Technology, Tongji University, 4800 Cao’an Road,
Jiading District, Shanghai 201804, China. E-mail: guangchen@tongji.edu.cn

How to cite this article: Yang, D.; Cao, B.; Qu, S.; Lu, F.; Gu, S.; Chen, G. Retrieve-then-compare mitigates visual hallucination in
multi-modal large language models. Intell. Robot. 2025, 5(2), 248-75. http://dx.doi.org/10.20517/ir.2025.13

Received: 15 Dec 2024 FirstDecision: 24 Feb 2025 Revised: 8Mar 2025 Accepted: 10Mar 2025 Published: 25Mar 2025

Academic Editor: Alex Khang PH Copy Editor: Pei-YunWang Production Editor: Pei-YunWang

Abstract
Multi-modal large language models (MLLMs) demonstrate remarkable success in a range of vision-language tasks.
However, they are prone to visual hallucinations, where their textual responses diverge from the provided image.
Inaccurate visual understanding poses risks to the practical applications ofMLLMs. AreMLLMs oblivious to accurate
visual cues when they hallucinate? Our investigation indicates that the visual branch of MLLMs may advocate both
erroneous and accurate content equally, highlighting a high level of uncertainty. To address this issue, we propose
retrieval contrastive decoding (RCD), a training-free method that leverages analogous visual hallucinations, which
are induced by images sharing common semantic and appearance characteristics, to mitigate visual hallucinations.
Specifically, RCD retrieves relevant images to serve as references for MLLMs, and compares their visual content with
the test image through confidence score subtraction. Additionally, RCD coordinates the correction of hallucinations
from both the visual and textual branches of MLLMs by adaptively scaling the subtracted scores. Experiments on
public hallucination benchmarks demonstrate the efficacy of RCD inmitigating visual hallucinations for three state-of-
the-artMLLMs, surpassing other advanced decoding strategies. Furthermore, we validate the effectiveness of RCD in
enhancing the capability of MLLMs to comprehend complex and potentially hazardous situations in real-world traffic
scenarios. RCD enhances the accuracy of MLLMs in understanding real-world scenes and improves their capability
for reasoning, thereby enhancing the reliability of MLLMs in real-world applications.
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1. INTRODUCTION
Multi-modal large language models (MLLMs) have emerged as dominant forces in vision-language tasks [1–8],
showcasing remarkable advancements in comprehending a wide array of visual concepts and reasoning with
common sense. Pioneering work has also explored using MLLMs as the “brain” of embodied agents [9] and
autonomous driving systems [10,11], leveraging their strong visual perception and reasoning capabilities to fa-
cilitate high-performance interactions between robotic systems and the real world. Despite their impressive
capabilities, state-of-the-art MLLMs are susceptible to visual hallucination [12–19], wherein they inaccurately
interpret visual inputs. Specifically, MLLMs can generate conflicting or fabricated content that diverges from
the provided image, and may overlook crucial visual details. As illustrated in Figure 1A, leading MLLMs, such
as LLaVA-1.5 [2] and InstructBLIP [3], often hallucinate non-existent objects (e.g., traffic lights, people, and
trucks) and inaccurate locations (e.g., a man on the roof of a car). Inaccurate visual understanding negatively
affects subsequent reasoning processes and poses risks for real-world applications of MLLMs. Thus, investi-
gating and mitigating visual hallucinations in MLLMs forms the foundation for enhancing the reliability of
intelligent robotic systems in real-world applications.

Understanding the origins of visual hallucinations is paramount for their reduction. Previous studies high-
light several flaws in MLLMs, such as insufficiently distinctive visual features [18], the image-text modality
gap [14], biased feature aggregation patterns [13,20], and the reliance on superficial language patterns in the train-
ing data [15,17]. However, they have not investigated how these flaws specifically lead to the hallucinatory out-
puts. To address this gap, we develop an end-to-end analytical method to investigate the effects of two distinct
input modalities, i.e., images and text, on the output of MLLMs by decoupling the influence of each modality.
The distinction between existing studies and our research is depicted in Figure 1B.This investigation suggests a
different perspective on visual hallucinations that MLLMsmay not be entirely oblivious to accurate visual cues
when they produce hallucinations; rather, their predictions reflect an uncertainty between hallucinatory and
accurate content. This is evidenced by our observation that the visual branch of MLLMs tends to assign close
confidence scores to both accurate and erroneous token candidates, which are referred to as visually decep-
tive candidates. Assigning considerable positive confidence scores to inappropriate token candidates increases
their likelihood of being sampled, thereby leading to visual hallucinations.

The most straightforward approach to distinguish accurate token candidates from hallucinatory ones is di-
rectly adjusting the predicted confidence score distribution, prioritizing accurate content over hallucinations.
However, this objective lies beyond the capabilities of existing distribution post-processors, particularly the
contrastive decoding (CD)-based methods [15,21]. While these methods are effective at reducing the uni-modal
bias inherent in the language decoder, we observe that their side effects may exacerbate hallucinations origi-
nating from the visual branch of MLLMs, i.e., further promoting visually deceptive candidates. Commencing
with the hypothesis that similar images may induce analogous visual hallucinations, we proceed to analyze the
shift in confidence score distribution when replacing the test image with retrieved alternatives, and observe
moderate changes in the scores of visually deceptive candidates, whereas the scores for accurate candidates
exhibit more significant variations. This hypothesis is further supported by quantitative experiments using
samples drawn from the VQAv2 validation set [22]. Experimental results demonstrate that LLaVA-Next [23], a
state-of-the-artMLLM, exhibits hallucinations in 70% of the test samples. Among the test samples where hallu-
cinations occur, more than two-thirds demonstrate that similar images induce analogous visual hallucinations.
Leveraging this phenomenon, we introduce a training-free approach named retrieval CD (RCD). During the
inference stage of MLLMs, RCD first retrieves relevant images to serve as visual references for MLLMs. Next,
it contrasts the visual cues in the references with those of the test image by subtracting the predicted confi-
dence scores. The subtracted scores are then added to the scores predicted by the test image. This confidence
score calibration process suppresses the visually deceptive candidates and promotes the accurate candidates.
Additionally, RCD retains the ability to debias erroneous language priors by adaptively scaling the subtracted
scores. Thus, RCD is capable ofmitigating hallucinations originating from both the visual and textual branches
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InstructBLIP:
The image shows a man in a 
yellow shirt standing on the back 
of a yellow SUV, ironing clothes 
on the roof of the vehicle. He is 
surrounded by various items, 
including a suitcase, a backpack, 
and a purse. The scene takes 
place on a busy city street, with 
multiple cars and a traffic light 
visible in the background. The 
man's presence on the roof of the 
SUV is a unique and creative 
way to iron clothes, ...

LLaVA-1.5:
The image displays a refrigerator 
filled with various food items 
and drinks, …, there are multiple 
bottles, including milk and juice, 
placed in different compartments. 
Some of the bottles are located 
on the top shelf, while others are 
placed on the middle and bottom 
shelves. In addition to the bottles, 
there are several carrots and a 
bowl of strawberries, … The 
carrots are scattered throughout 
the refrigerator, … The bowl of 
strawberries is placed on the 
bottom shelf, …

LLaVA-1.5:
The image features a tall, skinny 
building with a large antenna on 
top, towering over a city. The 
building is situated in the middle 
of a cityscape, surrounded by 
other buildings. In the 
background, there are several
cars and a truck, indicating that 
the city is busy with traffic. The 
cars are scattered throughout the 
scene, with some closer to the 
foreground and others further 
away. The truck is located near 
the center of the image,…

InstructBLIP:
The image captures a beautiful 
aerial view of a scenic 
coastline, … The mountain is 
situated on the left side of the 
image, while the ocean is visible 
on the right side. The coastline 
features a long stretch of sandy 
beach, with a few people 
scattered along the shoreline. 
There are several cars visible in 
the scene, with one car located
near the top of the image and
another near the bottom. The cars 
add to the sense of a bustling 
coastal community.

A

Indirect Hallucination Analysis by 
investigating MLLMs’ inherent deficiencies

MLLMVisual Branch Textual Branch MLLMVisual Branch Textual Branch

Hallucinatory output Hallucinatory output
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🔍
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investigating the impact on the output

B

Figure 1. (A) An illustration of visual hallucinations in MLLMs’ responses. Leading MLLMs, such as InstructBLIP and LLaVA-1.5, often
produce image descriptions that contain inaccuracies, commonly referred to as visual hallucinations. These visual hallucinations can in-
clude incorrect object categories (nouns), incorrect spatial relationships (prepositions and adverbs), and inappropriate visual attributes
(adjectives). Such errors can diminish the reliability of MLLMs in real-world applications. The present samples are from the LLaVA-bench-
in-the-wild dataset, with inaccurate content highlighted in red. (B) Previous research has identified inherent deficiencies inMLLMs, but has
not explored how these deficiencies contribute to the hallucinatory responses. While recent studies have explored the impact of the textual
branch of MLLMs on hallucinations, the influence of the visual branch has been overlooked. This study addresses this gap by conducting a
direct analysis of hallucinations, examining the respective contributions of both the visual and textual branches to hallucinatory responses.
MLLMs: Multi-modal large language models.

of MLLMs.

We validate the effectiveness of our proposed method using publicly available hallucination evaluation bench-
marks, including MME [24], polling-based object probing evaluation (POPE) [25], WHOOPS [26] and LLaVA-
Bench-in-the-wild [27]. RCD significantly improves the performance of LLaVA-Next, LLaVA-1.5, and Instruct-
BLIP on these benchmarks, outperforming existing advanced decoding strategies for hallucination mitigation.
To evaluate the capability of RCD in enhancing MLLMs for real-world applications, we develop a compre-
hensive traffic scenario understanding benchmark. This benchmark features images depicting complex real-
world traffic situations, including accidents and significant risk factors, under diverse weather and lighting
conditions. We devise six categories of questions to cover a wide range of tasks, including visual recognition,
commonsense reasoning, and knowledge-intensive tasks. Our benchmark presents substantial challenges to
MLLMs, and RCD enhances the visual recognition and reasoning capabilities of three MLLMs, improving
their reliability in practical application.

Our main contributions are three-fold:
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• We provide quantitative and qualitative evidence to demonstrate that MLLMs can identify accurate vi-
sual cues even amid visual hallucinations. Additionally, we reveal that analogous hallucinations can occur
among similar images, and this phenomenon can be exploited to discern accurate visual content. These
findings suggest new perspectives for hallucination mitigation.

• We introduce a novel approach to mitigate visual hallucinations in MLLMs. Our approach RCD first re-
trieves relevant images to serve as references for MLLMs. By comparing the visual cues in the visual ref-
erences with the test image, RCD discerns accurate visual cues. This process is analogous to the memory
mechanism in the human brain, enabling MLLMs to refer to relevant information during the visual recog-
nition process. RCD can be integrated seamlessly into various MLLMs without requiring model retraining.

• Experiments on public hallucination benchmarks demonstrate the superiority of RCD, enhancing the per-
formance of three leading MLLMs and outperforming existing methods. Additionally, we curate a real-
world traffic scenario comprehension benchmark, encompassing various challenging tasks. Experiments
on our proposed benchmark validate that RCD improves the capabilities of MLLMs in visual recognition
and reasoning.

2. RELATED WORK
2.1. Visual hallucinations and their origins
In traditional computer vision (CV), the image hallucination task typically refers to the process of generating
or reconstructing high-quality images [28]. In the context of MLLMs, visual hallucination [12] refers to the issue
wherein the descriptive textual content diverges from the visual input. These erroneous responses may exhibit
fabrication, contradictions, or scarce specificity to the provided image. Initial investigations primarily address
object-level visual hallucinations [17,25,29], focusing solely on inaccurate nouns. This problem is subsequently
extended to a finer granularity [18,24,30], including errors in visual attributes, spatial relationships, physical states,
activities, numbers, and low-level visual perception tasks [31] regarding degraded images.

The origins of visual hallucination stem from various sources. Some highlight flaws within the visual en-
coder of MLLMs, such as limited image resolution [23], under-distinctive visual representations that lack visual
details [18], and poor cross-modal representation alignment [14]. Others emphasize deficiencies within the lan-
guage decoder, such as biased attention score distribution [13,20], adherence to superficial syntactical patterns
(e.g., frequent answers [19] and contextual co-occurrence of object names [15,17]), the overwhelming parametric
knowledge [32], and error snowballing [17,33]. However, the specific mechanisms by which these deficiencies
result in hallucinatory outputs (the predicted confidence scores for erroneous token candidates) have not been
examined. In this study, we investigate the genesis of visual hallucination by analyzing the direct impact of
the visual and textual input on the predicted confidence scores of MLLMs. Experimental results reveal that
the visual branch of MLLMs tends to equally advocate both erroneous and accurate token candidates amid
visual hallucinations. This observation suggests new perspectives that visual hallucinations can be reduced by
straightforwardly adjusting the predicted confidence scores, prioritizing accurate visual content over halluci-
nations.

2.2. Mitigating visual hallucination
2.2.1 Parameter tuning
Approaches for mitigating visual hallucinations in MLLMs through parameter tuning can be categorized into
supervised fine-tuning (SFT) methods and preference optimization techniques. Effective SFT-based methods
include curating multi-modal instruction tuning dataset with distracting instructions [19], and the provision
of extra supervision to promote image-text feature alignment [14] or the distinctiveness of visual features [7].
On the other hand, preference optimization methods [34–36] construct multi-modal pairwise preference data
comprising accurate and erroneous responses and optimize MLLMs using the direct preference optimization
(DPO) loss [37]. Thesemethods incorporate inferior responses during training, whichmay enhance their ability
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to suppress hallucinations. Nonetheless, for methods relying on SFT or DPO, the training cost becomes pro-
hibitive for large-scale MLLMs. Furthermore, excessive parameter tuning may impair some of the strengths
of MLLMs, such as the capability to provide detailed descriptions [19], when the training recipe is suboptimal.

2.2.2 Model ensemble
Integrating knowledge from other models compensates for MLLMs’ own shortcomings. Feasible methods
include improving the object recognition accuracy through ensembling object detectors [38], and obtaining
distinctive image features by ensembling various pretrained vision encoders [5]. Another line of work utilizes
a language model to post-hoc revise visual hallucinations [16,17]. Key challenges within this paradigm include
tailoring interfaces for various task-specific models, and automating their selection based on the hallucination
categories.

2.2.3 Decoding strategy
Intervening the decoding process of MLLMs is a more efficient approach compared to model training and
ensemble. For instance, OPERA [13] directly discards the candidates that may skew subsequent content to-
ward hallucination and reelects the others. visual contrastive decoding (VCD) [15] and its variants [21,39] extend
CD [40,41], which aims to mitigate factual hallucinations in large language models (LLMs), to the vision domain.
This line of work distorts the visual input to amplify the language priors, and downgrades the candidates advo-
catedmerely by the language priors through logit subtraction. Thus, they are capable of reducing the erroneous
language bias inherent in the decoder of MLLMs. However, hallucinations originating from the visual branch
of MLLMs have not been examined. As explained in Section 3.2.1, this kind of hallucination may be exac-
erbated by VCD-based methods. In this study, we investigate the respective impact of the visual and textual
input modalities on the hallucinatory content produced by MLLMs. Based on our findings, we propose an
approach to mitigate visual hallucinations arising from both the visual and textual branches of MLLMs.

3. VISUAL HALLUCINATION ANALYSIS
In this section, we first investigate the genesis and the characteristics of visual hallucinations, as well as the char-
acteristics of the hallucinated content. Commence with a fundamental question: to what extent are MLLMs
unaware of accurate visual cues amid hallucinations? Wedevise an end-to-end experiment pipeline and present
our findings in the following sections.

3.1. Background and visual hallucination analysis pipeline
Leading MLLMs [2–5,7,23] incorporate auto-regressive language models [42,43], which repeatedly select the next
token from their vocabularyV based on the predicted probability of each token candidate 𝑥𝑖 ,

𝑝𝜃 (𝑥𝑖 |𝒗, 𝒙, 𝒚<𝑡) =
exp (𝒉𝑡 · 𝐸𝑐 (𝑥𝑖))∑

𝑥′∈V exp (𝒉𝑡 · 𝐸𝑐 (𝑥′))
∈ (0, 1) (1)

where 𝒗 is the visual input, 𝒙 and 𝒚<𝑡 are the prompt and past generated tokens, respectively. 𝐸𝑐 (𝑥𝑖) is the token
embedding of candidate 𝑥𝑖 in the language model head. (·) is the inner product operator. 𝒉𝑡 is the hidden state
predicted by the last transformer [44] block of the language model 𝐿𝐿𝑀𝜃 ,

𝒉𝑡 (𝒗, 𝒙, 𝒚<𝑡) = 𝐿𝐿𝑀𝜃 ( [𝑉𝐸 (𝒗);𝑇𝐸 (𝒙; 𝒚<𝑡)]) (2)

where 𝑉𝐸 (·) denotes the visual encoder and the cross-modal connector. 𝑇𝐸 (·) is the input text embedding
layer. The confidence score (𝒉𝑡 ·𝐸𝑐 (𝑥𝑖))manifests the significance of 𝑥𝑖 ’s semantics in 𝒉𝑡 . According to Equation
(1), token candidates with higher confidence scores will obtain higher probability, such that they aremore likely
to be selected.

In this study, we pose the following questions: When visual hallucinations occur, are MLLMs completely
ignorant of the accurate visual cues, and is it possible to help them distinguish the accurate content from
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Figure 2. Experiment pipeline for investigating the impact of visual and textual inputmodality on the hallucinatory output. At each decoding
step 𝑡 , the test image 𝒗𝜏 is replaced with alternative images 𝒗′ while keeping the textual prefix constant. Next, we assess the difference in
output confidence scores (i.e., logits) between 𝑦𝑡 and 𝑦𝑡 to demonstrate the impact of the visual input. This test image is taken from the
OpenImages validation set [46]. Similar images are retrieved from the COCO Caption dataset [47].

hallucinations? To address these inquiries, we aim to decouple the contribution of the visual information in 𝒗 to
the predicted confidence scores. Inspired by Lin et al., we first input the test image 𝒗𝜏 into theMLLM to predict
𝒉𝑡 (𝒗𝜏 , 𝒙, 𝒚<𝑡) and greedily decode tokens [𝑦1, . . . , 𝑦𝑛] [45]. 𝑦𝑡 ’s confidence scores are denoted as the base scores.
Then at each decoding step 𝑡, 𝑡 ∈ {1, 2, ..., 𝑛}, the test image is replaced with alternatives 𝒗′ (either a noised
image without valid visual content, or other similar images), and the predicted tokens thus far [𝑦1, . . . , 𝑦𝑡−1]
are concatenated to 𝒙 to predict a new hidden state 𝒉𝑡 (𝒗′, 𝒙, 𝒚<𝑡) and decode 𝑦𝑡 , as illustrated in Figure 2.
The input shift vectors Δ𝒗𝒆 = 𝑉𝐸 (𝒗𝜏) − 𝑉𝐸 (𝒗′), represent the variation in input visual information, which is
anticipated to induce a corresponding output feature shift Δ𝒉 = 𝒉𝑡 (𝒗𝜏 , 𝒙, 𝒚<𝑡) − 𝒉𝑡 (𝒗′, 𝒙, 𝒚<𝑡). Therefore, the
confidence score distribution shift (Δ𝒉 · 𝐸𝑐 (𝑥′)), 𝑥′ ∈ V (the subtraction of 𝑦𝑡 ’s confidence scores from 𝑦𝑡 ’s)
represents the semantics in 𝒉𝑡 contributed by the visual information in Δ𝒗𝒆. We examine the impact of the
visual information to all predicted tokens’ confidence score distributions in the output sentences.

3.2. Main findings
3.2.1 MLLMs are aware of accurate visual cues amid hallucination
To integrally decouple the contribution of the visual branch to MLLMs’ predictions, Δ𝒗𝒆 should encapsulate
the majority of visual information. To this end, we erase the visual information in the test image 𝒗𝜏 until it
is indistinguishable from Gaussian noise, following the image diffusion [48] process (Note that we only use the
diffusion process to add noise to images, rather than employing the Denoising Diffusion Probabilistic Model
(DDPM) to generate images or other content, as done in prior work [49–51].),

𝒗𝑑 =
√
𝛼̄𝑇 𝒗

𝜏 +
√

1 − 𝛼̄𝑇 𝜖, (3)

where 𝛼̄𝑇 =
∏𝑇

𝑖=1 𝛼𝑖 is the cumulative product of the noise schedule parameters 𝛼𝑖 . 𝑇 is the diffusion step. 𝜖 is
Gaussian noise sampled from a normal distributionN(0, 𝐼), 𝐼 is the identity matrix. Then theMLLM “blindly”
predicts a new score distribution (denoted as the txt scores) using 𝒗𝑑 , devoid of valid visual cues. Thus, the
subtraction of the txt scores from the base scores can be interpreted as the contribution of the visual modality
(denoted as the img scores).

To quantify the dependency of each predicted token on the visual input, we propose a metric that combines
the Jensen-Shannon Divergence (JSD) between the base scores and the txt scores, and the img score of the
top-ranked candidate (denoted as the top-1 img score). A high JSD value suggests significance difference
between the predicted probabilities corresponding to the base scores and the txt scores. Consequently, the
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token
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1-NN
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base 
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2-NN
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3-NN
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4-NN
scoresrank

(yt)’s head 
vocabulary

(yt)

img
scores

txt
scores= +

0 ▁green 14.703 10.805 3.898 15.766 14.664 15.930 12.352
1 ▁f 14.305 7.973 6.332 13.906 13.258 16.500 11.430
2 ▁brown 13.453 9.203 4.250 9.648 8.133 15.016 9.672
3 ▁gray 13.297 8.289 5.008 8.852 5.230 11.227 6.152
4 ▁grey 12.844 7.672 5.172 8.234 5.090 10.930 6.883
5 , 12.422 10.180 2.242 12.359 11.109 13.695 11.688
6 ▁to 12.398 7.246 5.152 11.094 13.469 15.703 11.125
7 ▁white 11.852 10.789 1.063 9.367 7.918 12.180 8.695
8 ▁am 11.469 5.719 5.750 10.133 10.461 12.523 8.563
9 ▁p 11.461 8.875 2.586 9.000 7.508 12.227 8.063
10 ▁yellow 11.203 7.488 3.715 11.094 10.492 12.586 10.211
12 ▁l 11.047 7.496 3.551 14.445 10.906 12.203 7.746
13 ▁tree 10.805 8.156 2.648 11.445 6.965 10.977 6.414
20 ▁creature 9.484 7.074 2.410 10.203 9.664 11.906 5.668
22 ▁baby 9.406 6.883 2.523 9.219 7.215 13.094 5.496
27 ▁silver 9.023 6.398 2.625 7.219 5.055 9.680 6.418
47 ▁black 8.164 10.156 -1.992 9.164 6.617 12.055 9.266

1-NN 2-NN 3-NN 4-NNtest image

(y1) (yn)(y2)

×
√

×

√

A

B

Figure 3. Visual hallucination analysis results. (A) the JSD is employed to measure the dependency of each generated token on the visual
input. The JSD corresponding to articles and prepositions (such as _a and _on) are close to zero, while the JSD value for the erroneous
token _green is significantly higher. (B) LLaVA-1.5 can identify accurate visual cues even amid hallucinations, as the visual information
contributes +5.008 confidence scores to the accurate candidate _gray. However, the visual branch also mistakenly supports inaccurate
candidates (e.g., +3.898 for _green and +4.250 for _brown). Additionally, images with similar semantics and appearances can induce
analogous visual hallucinations. For instance, candidate _green receives high confidence scores (+15.930 and +12.352) in images that do
not contain green frogs. JSD: Jensen-Shannon Divergence.

img scores will not be uniformly distributed. This indicates that some, but not all, candidates are substantially
influenced (either advocated or suppressed) by the visual branch. Conversely, if both the JSD value and the
top-1 img score are close to zero, we assert that the visual information has minimal impact on predictions at
the current decoding step, as ablating the input visual information does not result in a significant difference in
the predicted probabilities.

The results of JSD and top-1 img scores are presented in Figure 3A. At the third decoding step, where the
erroneous token _green is selected, both the JSD and the top-1 img scores are significantly higher than those of
the grammatical tokens (e.g., _on and _a) and are not close to zero. Figure 3B presents the predicted base scores,
txt scores, and img scores. First, we observe that the predicted img scores are multimodally distributed among
the top-ranked candidates. Notably, both accurate and erroneous candidates obtain relatively high img scores,
e.g., +5.008 scores for accurate candidate _gray, +3.898 and +4.250 scores for erroneous candidates _green
and _brown, respectively. Therefore, the MLLM (LLaVA-1.5) is not entirely disregarding accurate visual cues
when it generates hallucinations in this case. On the other hand, this result also reveals that the visual branch
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similar images are retrieved for each test image. We then independently sample 𝑁 answers for the test image and the retrieved images.
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VQAv2: Visual Question Answering version 2.

of MLLMs may substantially promote hallucinatory token candidates. Second, certain candidates may receive
minimal support or even opposition from the visual branch, e.g., candidate _black gets -1.992 img scores.
According to previous studies [15,21], the word ‘black’ in this example reflects erroneous language inherited from
superficial syntactical patterns in the training data. In summary, these findings supplement previous studies,
indicating that the hallucinatory token candidates are not solely advocated by textual branch of MLLMs.

Regarding the example presented in Figure 3B, employing existingmethods [15,21], which adds scaled img scores
to base scores, can suppress erroneous language priors. For instance, the base score of the erroneous candidate
_black will be reduced. However, this approach will further increase the base scores of the hallucinatory candi-
dates _green and _brown, thereby exacerbating hallucinations. In this work, we aim to eliminate this adverse
side effect to achieve better mitigation of visual hallucinations.

3.2.2 Analogous visual hallucinations occur among similar images
Having identified that MLLMs are aware of accurate visual cues even amid visual hallucinations, we then
investigate whether similar images tend to induce similar hallucinations with identical textual prompts. To
this end, we randomly select 100 image-question pairs from the VQAv2 [22] validation set to investigate the
patterns of incorrect answers. For each test image, reference images with similar semantics and appearance are
retrieved from the COCOCaption [47] dataset utilizing the image retrieval method specified in Section 4.1. We
manually verify that each question and its corresponding ground truth answers strictly adhere to both the test
image and the retrieved reference images. Ultimately, we obtained 100 test samples and a total of 325 images,
with each test image having an average of 2.25 reference images.

LLaVA-Next’s answers for each image-question pair are obtained utilizing multi-nominal sampling strategy
with fixed decoding parameters. Specifically, 𝑁 answers are independently sampled for each image (both the
test image and references), as illustrated in Figure 4A. Recall that token candidates with higher confidence
scores are more likely to be sampled according to Equation (1). Thus, the proportion of each answer’s occur-
rence in the sampled results reflects the model’s confidence level in those answers. In practice, we set 𝑁 = 20
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and obtain 6,500 generated answers. The Accuracy metric defined using Exact Match (EM) evaluates the cor-
rectness of each answer. Next, we assess whether a sample exhibits hallucination and if similar images induce
analogous hallucinations following the process outlined in Figure 4B. Specifically, if all 𝑁 answers fall within
the set of ground truth answers, the current answers are considered to be correct. Otherwise, the test sample
is classified as Has Hallucination. Furthermore, for samples exhibiting hallucinations, if at least one incorrect
answer exists in the set of reference answers (predicted using the reference images), we determine that analo-
gous hallucination has occurred among similar images. For example, the test sample in Figure 4A is classified
as Analogous Hallucination, since the hallucinatory answer “Left” exists in the reference answers (both the
test image and reference images show a truck on the right lane). Otherwise, we determine that the test sample
has exclusive hallucinations.

Experimental Phenomena: The percentage distributions of the defined categories (Correct versus Has Hal-
lucination and Analogous hallucination versus Exclusive Hallucination) are presented in Figure 4C. Notably,
LLaVA-Next exhibits hallucinations on 75.2%(±3.2%) of the selected samples. Among the test samples with
hallucinatory answers, 68.7%(±3.4%) show that similar images induce analogous visual hallucinations. The
results are averaged on five separate experiments with different random seeds.

These experimental results support the following assumption:

• Condition: The input textual prefix to the MLLM is identical.
• Conclusion: Similar images are likely to induce analogous visual hallucinations.

3.2.3 Analogous visual hallucinations help discern accurate content
Having established that similar images can induce analogous hallucinations, we further investigate whether
these analogous hallucinations can help identify accurate token candidates by analyzing the differences in the
confidence score distributions generated using the test image and the reference images. Figure 3B presents
four retrieved images, along with their corresponding confidence scores (in the k-NN scores columns).

Experimental Phenomena: Upon comparing the base scores with the four k-NN scores, a notable observation
emerges: The score of the accurate candidate _gray decreases significantly from 13.297 to 7.865 (on average
across four references). In contrast, the score changes for visually deceptive candidates (We refer to the inac-
curate candidates that are erroneously promoted by the visual branch, as visually deceptive candidates).

(e.g., _green, _brown, and _yellow) and textually deceptive candidates ( We refer to the inaccurate candidates,
which are opposed by the visual branch, as textually deceptive candidates). (e.g., _black) are relatively modest.
For instance, candidate _green receives 15.390 and 12.352 scores in images without green frogs. Consider-
ing token candidates in the head vocabulary illustrated in Figure 3B, the average score variation for accurate
candidates, i.e., _gray, _grey, _white, and _silver, is 3.68, while the average score variation for erroneous or
ambiguous candidates is 0.60.

Conclusion: The example in Figure 3B demonstrates that, after replacing the input image with another globally
similar image under the same text prefix, the confidence score of the accurate token candidates decreases more
significantly than that of the hallucinatory candidates.

Inference: Under the same text prefix, token candidates whose confidence scores vary significantly across
similar images are more likely to be the correct ones compared to candidates with moderate score changes.
Note that we do not deny that candidates with moderate score changes may also represent common visual
content in similar images. However, we emphasize that they are more likely to be hallucinatory content than
candidates with significant score variations.
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without requiring model retraining. RCD: Retrieval contrastive decoding; MLLMs: multi-modal large language models.

Therefore, the difference in confidence scores predicted by similar images can potentially assist MLLMs in
distinguishing between accurate and erroneous token candidates.

4. METHOD
Inspired by our observation that MLLMs can recognize accurate visual cues even in the presence of hallucina-
tions, and that analogous hallucinations among similar images can aid MLLMs in identifying accurate visual
content, we propose a training-free and plug-and-play method named RCD. This method straightforwardly
calibrates the predicted confidence scores of MLLMs, focusing on prioritizing accurate content over halluci-
nations. Figure 5 presents an overview of RCD, which consists of two key components: the retrieval module,
which searches for similar images, and the compare module, which contrasts visual cues. These modules can
be seamlessly integrated into existing MLLMs without requiring model retraining.

4.1. Retrieve visual references
The reference database is expected to encompass diverse visual concepts, spanning a broad spectrum of com-
mon visual content. This is essential for the generalization capability of RCD. Before MLLMs’ inference stage,
𝑘 most relevant visual references are retrieved for each test sample 𝑞 from the reference databaseD, based on
a similarity measure F (·, ·). Formally,

{𝑟1, . . . , 𝑟𝑘 |𝑞} = arg max
𝑘

{F (𝐸𝑅 (𝑠 𝑗 ), 𝐸𝑅 (𝑞)) |𝑠 𝑗 ∈ D} (4)

where 𝐸𝑅 (·) is the retriever that embeds the raw inputs into vector representations for image retrieval. D[𝑟], 𝑟 ∈
{𝑟1, . . . , 𝑟𝑘 |𝑞} are the desired references for 𝑞. Overall, the reference database is analogous to the memory
mechanism in the human brain, enabling MLLMs to refer to relevant information during the process of visual
recognition. In the following subsections, we provide detailed explanations for the database D, the retriever
𝐸𝑅 (·), and the similarity metric F (·, ·).

4.1.1 Reference database
The reference database is constructed using samples from the COCO Caption dataset. Specifically, both the
Karpathy train and rest-val splits [52] are included, totaling around 113,000 samples. This ensures that the
database encompasses a wide range of visual concepts. In our database, each sample is stored as a key-value
pair for retrieval purposes. The retrieval key is the vector embedding generated by the retriever 𝐸𝑅 (·), and
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the retrieval value is the filename of the image on the disk. The retrieval keys are stored in a vector database
format and are clustered to facilitate efficient retrieval. Importantly, all samples that appear in test datasets are
excluded from the reference database to prevent information leakage.

4.1.2 Retriever
Theretriever 𝐸𝑅 (·) extracts representations from raw inputs (images or text). The representations are then used
to measure the similarity between samples. To improve the efficiency and effectiveness of visual reference
retrieval, we aim to extract a compact and distinctive representation for each sample that encapsulates its
global features. To achieve this, we employ feature extraction models for image and text modalities that have
been pre-trained on large-scale datasets. Specifically, We ensemble the CLIP [53] vision transformer (ViT [54]),
which excels at encoding semantics, and the self-supervised pre-trained DINOv2 [55] ViT, which is proficient
in capturing visual details. For image captioning and open-ended VQA, the retriever extracts semantic and
appearance features from the visual input 𝒗 into 𝐸𝑅 (𝒗) for all test images and reference images. In practice, the
predicted [𝑐𝑙𝑠] tokens from the penultimate transformer block of the CLIP (Available at https://huggingfac
e.co/openai/clip-vit-large-patch14) and DINOv2 (Available at https://github.com/facebookresearch/dinov2)
ViT-L14/336 models are concatenated in the feature dimension to serve as the representation for each image,
as illustrated in Figure 5. For yes-or-no binary VQA, we focus on finding visual references that are semantically
aligned with the question. The CLIP Transformer is used to extract semantics from the question 𝒙 into a vector
embedding 𝐸𝑅 (𝒙) for all test samples. For hallucination evaluation benchmarks MME and POPE, we modify
the question template before extracting text features, rewriting questions into narratives.

4.1.3 Similarity metric
The similarity metric F (·, ·) in Equation (4) is implemented using cosine similarity,

F (𝐸𝑅 (𝑠 𝑗 ), 𝐸𝑅 (𝑞)) =
𝐸𝑅 (𝑠 𝑗 ) · 𝐸𝑅 (𝑞)

∥𝐸𝑅 (𝑠 𝑗 )∥∥𝐸𝑅 (𝑞)∥
=

∑𝑛
𝑖=1 𝐸𝑅 (𝑠 𝑗 )𝑖𝐸𝑅 (𝑞)𝑖√∑𝑛

𝑖=1(𝐸𝑅 (𝑠 𝑗 )𝑖)2
√∑𝑛

𝑖=1(𝐸𝑅 (𝑞)𝑖)2
(5)

where 𝑛 is the size of the feature dimension. Cosine similarity selected for its invariance to the magnitude of
vectors, which reduces the impact of numerical discrepancies between image features from different models,
ensuring a balanced contribution from each vision encoder. The similarity between the retrieval query 𝐸𝑅 (𝑞)
(image or text features of all test samples) and all retrieval keys 𝐸𝑅 (𝑠 𝑗 ) (image features of all reference samples
𝑠 𝑗 ∈ D) is evaluated using Equation (5). In practice, 𝐸𝑅 (𝑠 𝑗 ) and 𝐸𝑅 (𝑞) are first L2 normalized, and maximum
inner product search (MIPS) is conducted using FAISS [56], which is a library for vector clustering and sim-
ilarity search. For image captioning and open-ended VQA, both semantic and appearance-level similarities
between the test image and visual references are equally considered, as the normalized [𝑐𝑙𝑠] tokens from CLIP
and DINOv2 ViTs are concatenated in the feature dimension. For binary VQA, we utilize the cross-modal
feature matching capabilities of the CLIP model to retrieve images relevant to the question. On the MME
benchmark, the retrieval results are re-ordered according to the BLEU@1 [57] score between the question 𝒙

and the annotated captions of the retrieved images for better performance.

4.1.4 Efficiency
The FAISS library uses vector clustering and approximate k-nearest neighbor (k-NN) algorithms for acceler-
ation. We evaluate the efficiency of the retrieval process on a single NVIDIA 3090 GPU. When retrieving 32
visual references for each query, calculating 𝐸𝑅 (𝒗) takes up around 40ms, and the retrieval process takes under
5 ms (averaged on 500 queries). It is important to note that RCD does not increase the input token sequence
length of MLLMs, and the additional token sequences can be stacked for batch processing to further reduce
computational latency. A detailed efficiency analysis is provided in Section 5.5.4.
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4.2. Compare visual concepts
In Section 3.2.2 and Section 3.2.3, we demonstrate that similar images can induce analogous hallucinations,
and infer that, after replacing the test image with globally similar ones (under identical text prefixes), token
candidates exhibiting more significant confidence score decline (i.e., BaseScores-kNNScores in Figure 3B) are
more likely to be the correct ones. Therefore, contrasting the confidence scores predicted by similar images
can help MLLMs distinguish accurate visual cues and mitigate visual hallucinations. Specifically, the MLLM
first generates 𝑘 + 2 distinct confidence scores (referred to as logits in Equations (6) and (7) for each token
candidate 𝑥𝑖 ∈ V. These scores are derived from one test image 𝒗𝜏 , one diffused image 𝒗𝑑 , and 𝑘 retrieved
images {𝒗𝑁𝑁 }𝑘 , all with identical textual prefix 𝒙 + 𝒚<𝑡 , as illustrated in Figure 5. Then, 𝑥𝑖 ’s confidence score
predicted by the test image 𝒗𝜏 is contrasted to the scores predicted by the 𝑘 + 1 references,

logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝜏 , 𝒗𝑑 , {𝒗𝑁𝑁 }𝑘 ) = (𝛼𝜏 + 𝛼𝑡
𝑑 + 𝛼𝑡

𝑁𝑁 )logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝜏)

−
𝛼𝑡
𝑁𝑁

𝑘

𝑘∑
𝑗=1

logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝑁𝑁
𝑗 ) − 𝛼𝑡

𝑑logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝑑) (6)

where the subtraction operator highlights the difference between the test image and the visual references. This
approach prioritizes candidates with significant score variations across similar images, as they are more likely
to be the correct ones, over candidates with moderate score changes, which may be the analogous visual hal-
lucinations across similar images. The subtracted scores logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝜏) − 1

𝑘

∑𝑘
𝑗=1 logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝑁𝑁

𝑗 )
and logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝜏) − 𝛼𝑡

𝑑logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝑑) are then scaled and added to the confidence scores corre-
sponding to the test image logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝜏). This ensures that the output of MLLMs remains unchanged
when the difference in predicted confidence score distributions is close to zero (in circumstances when the
MLLM determines that the retrieved images are almost identical to the test image). The outcome of Equation
(6) yields probabilities after the softmax operator [Equation (1)], and these predicted probabilities are subse-
quently used for token selection. The selected token is appended to all sequences to ensure that the textual
prefix remains identical at each decoding step. This confidence score calibration process is applied to MLLMs
throughout the output sentences.

4.2.1 Adaptive scaling strategy
The influence of {𝒗𝑁𝑁 }𝑘 and 𝒗𝑑 should be regulated in order to coordinate the effect in mitigating hallucina-
tions originating from both visual or textual branches of MLLMs. Specifically, in cases where MLLMs exhibit
uncertainty [17] regarding the recognized visual cues, i.e., the confidence scores, {𝑙𝛿𝑖,𝑡}𝑚−1

𝑖=0 , exhibit multimodal
distribution, which are calculated by

𝑙𝛿𝑖,𝑡 = logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝜏) − logits(𝑥𝑖 |𝒙, 𝒚<𝑡 , 𝒗𝑑) s.t. 𝑥𝑖 ∈ V𝑚
ℎ𝑒𝑎𝑑 (7)

then the coefficient𝛼𝑡
𝑑 is reducedwhile𝛼

𝑡
𝑁𝑁 is increased at the current decoding step 𝑡. This adjustment ensures

that the token candidates, which are erroneously promoted by the visual branch, are not further endorsed.
Formally,

𝛼𝑡
𝑑 = 𝛽𝑑 exp (max(softmax({𝑙𝛿𝑖,𝑡}𝑚−1

𝑖=0 ))) (8)

𝛼𝑡
𝑁𝑁 = 𝛽𝑁𝑁 exp (1 − max(softmax({𝑙𝛿𝑖,𝑡}𝑚−1

𝑖=0 ))) (9)

Following the adaptive plausibility constraint [41], RCD only considers 𝑥𝑖 that are in the head vocabularyV𝑚
ℎ𝑒𝑎𝑑 ,

which consists of𝑚 top-ranked candidates that are selected based on the confidence scores predicted by 𝒗𝜏 (i.e.,
the base scores). In practice, we set a cut-off value as the base score of the 𝑚𝑡ℎ-ranked candidate. Confidence
scores lower than this cut-off value are set to −𝑖𝑛 𝑓 . 𝑚 is set at 50 by default. 𝛼𝜏 , 𝛽𝑑 and 𝛽𝑁𝑁 are hyper-
parameters, which are by default set at 1.0, 0.1, and 0.1, respectively.

4.3. Summary
Algorithm 1 provides an overview of our proposedmethod RCD. First, the search query 𝑞 is flexibly configured
according to the different types of visual language tasks. Next, the 𝑠𝑒𝑎𝑟𝑐ℎ𝑘𝑁𝑁 function [Equation (4)] is used
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Algorithm 1 Our retrospect-then-compare paradigm
Input: a test image 𝒗𝜏 , input textual prefix 𝒙, output token list 𝒚 = [], the reference database D, the retriever
𝐸𝑅 (·)
Arguments: number of references 𝑘 , diffusion step 𝑑𝑠, head vocabulary size 𝑚, hyper-parameters 𝛼𝜏 , 𝛽𝑑 and
𝛽𝑁𝑁

Output: output token list 𝒚
1: if Binary VQA task then
2: Let 𝑞 = 𝒙.
3: else
4: Let 𝑞 = 𝒗𝜏 . # image captioning or open-ended VQA
5: end if
6: {𝒗𝑁𝑁 }𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ𝑘𝑁𝑁 (D, 𝐸𝑅 (·), 𝑞, 𝑘).
7: 𝒗𝑑 = 𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒(𝒗𝜏 , 𝑑𝑠)
8: t = 0 # decoding step
9: stop_condition = False
10: while not stop_condition do
11: 𝑙𝒗𝜏 = logits(𝑥 |𝒙, 𝒚<𝑡 , 𝒗𝜏) = 𝐿𝑀𝐻𝑒𝑎𝑑 (𝐿𝐿𝑀𝜃 ( [𝑉𝐸 (𝒗𝜏);𝑇𝐸 ( [𝒙; 𝒚<𝑡])]))
12: 𝑙𝒗𝑑 = logits(𝑥 |𝒙, 𝒚<𝑡 , 𝒗𝑑) = 𝐿𝑀𝐻𝑒𝑎𝑑 (𝐿𝐿𝑀𝜃 ([𝑉𝐸 (𝒗𝑑);𝑇𝐸 ([𝒙; 𝒚<𝑡])]))
13: 𝑙𝒗𝑁𝑁

𝑗
= logits(𝑥 |𝒙, 𝒚<𝑡 , 𝒗𝑁𝑁

𝑗 ) = 𝐿𝑀𝐻𝑒𝑎𝑑 (𝐿𝐿𝑀𝜃 ([𝑉𝐸 (𝒗𝑁𝑁
𝑗 );𝑇𝐸 ([𝒙; 𝒚<𝑡])])), where j = 1,2,…, k

14: V𝑚
ℎ𝑒𝑎𝑑 = arg max

𝑚
(𝑙𝒗𝜏 )

15: 𝛼𝑡
𝑑 , 𝛼

𝑡
𝑁𝑁 = 𝐴𝑆(𝑙𝒗𝜏 , 𝑙𝒗𝑑 , 𝛽𝑑 , 𝛽𝑁𝑁 ,V𝑚

ℎ𝑒𝑎𝑑)
16: logits(𝑥 |𝒙, 𝒚<𝑡 , 𝒗𝜏 , 𝒗𝑑 , {𝒗𝑁𝑁 }𝑘 ) = 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝛼𝑡

𝑑 , 𝛼
𝑡
𝑁𝑁 , 𝛼𝜏 , 𝑙𝒗𝜏 , {𝑙𝒗𝑁𝑁

𝑗
}𝑘𝑗=1, 𝑙𝒗𝑑 )

17: t = t + 1
18: 𝑦𝑡 = 𝑑𝑒𝑐𝑜𝑑𝑒(logits(𝑥 |𝒙, 𝒚<𝑡 , 𝒗𝜏 , 𝒗𝑑 , {𝒗𝑁𝑁 }𝑘 ))
19: 𝒚<𝑡+1 = [𝒚<𝑡 ; 𝑦𝑡]
20: stop_condition = check_stop_condition(stop_condition)
21: end while
22: return 𝒚

to find 𝑘 most relevant images for each test sample. Additionally, we add noise to the test image [Equation (3)]
as an extra reference to address erroneous language bias, following the approach in VCD [15]. During the in-
ference stage, 𝑘 + 2 distinct confidence score distributions are independently predicted by the language model.
Subsequently, the Adaptive Scaling strategy (AS) regulates the influence of {𝒗𝑁𝑁 }𝑘 and 𝒗𝑑 , The visual concept
comparison step [the 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (·) function, Equation (6)] then adjusts the predicted confidence score distri-
bution. Finally, token candidates are selected based on the modified confidence scores through the 𝑑𝑒𝑐𝑜𝑑𝑒(·)
function. This confidence score calibration process is repeated until the stop condition is met. In summary, we
develop a reference database that functions similarly to the memory mechanism in the human brain, allowing
MLLMs to access relevant information during the visual recognition process. Our proposed confidence score
calibration mechanism is designed to distinguish accurate visual content from hallucinations. Notably, RCD
addresses visual hallucinations originating from both the visual and textual branches of MLLMs, overcoming
the limitations of previous methods that could only suppress erroneous language priors from the text decoder.
Additionally, RCD can be easily integrated into MLLMs without requiring model retraining.

5. RESULTS
5.1. Experimental settings

5. RESULT

5.1. Experimental settings

5.1.1 Datasets and metrics
We use publicly available hallucination benchmarks POPE [25], (the MLLM Evaluation benchmark) MME [24],
WHOOPS [26], and LLaVA-Bench-in-the-wild [27] to validate the effectiveness of our proposed method. POPE
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is designed to assess hallucinations at the object level, while MME evaluates hallucinations at both the object
level and the visual attribute level. In these benchmarks, MLLMs are prompted to answer the questions using
a single word or phrase. The evaluation metrics for POPE include Accuracy and F1 score, based on whether
the prediction contains the annotated answer (either “yes” or “no”). For MME, the evaluation metric is the
combined score of Accuracy and Accuracy+. Given that MLLMs encode rich real-world conventions and may
embed certain superficial syntactical patterns in model parameters [17], we hypothesize that images containing
counterintuitive visual cues (visual content that contradicts common sense) can highlight the problem of vi-
sual hallucinations. Therefore, we conduct quantitative experiments using the WHOOPS benchmark, where
MLLMs are instructed to describe the counterintuitive images in a single sentence. For the image captioning
task, automatic evaluation metrics such as BLEU [57], METEOR [58], CIDEr [59], and SPICE [60] are employed.
Additionally, we conduct qualitative experiments on the “detailed description” subset of the LLaVA-Bench-
in-the-wild benchmark (LLaVA-W), which encompasses a diverse array of image styles, including real pho-
tographs, text-rich images, and sketches.

We further evaluate the effectiveness of RCD in enhancing the MLLMs’ capability in real-world scene com-
prehension and reasoning. To this end, we develop a challenging image captioning and VQA test set, which
contains images of complex real-world traffic situations and accidents. Images are sourced from copyright-
free websites and high-quality images are retained through manual inspection. For the VQA task, human
volunteers are enlisted to write one question for each image based on our devised question categories. Sub-
sequently, we invite 10 volunteers with over 3 years of driving experience to annotate 10 answers for each
question. Finally, we manually check all the answers to ensure consistency. In total, 300 image caption-
ing test samples with 1,500 annotated captions, and 200 VQA test samples with 2,000 annotated answers
are obtained. For the image captioning task, we use a multi-modal supermodel ( gpt-4o-2024-08-06 model,
https://platform.openai.com/docs/models/gpt-4o) to generate captions for each image, and thenmanually ver-
ify and revise these captions to ensure their accuracy.

For the VQA task, we use the EM metric for quantitative evaluation, following the implementation as in the
VQAv2 [22] benchmark. We carefully devise six categories of questions that are essential for comprehending
traffic scenes, encompassing basic visual recognition tasks, logical reasoning tasks, and knowledge-intensive
tasks, as detailed below:

• Object Recognition: We design questions regarding the types of objects in the scene (such as the categories
and sizes of obstacles on the road), their quantities, and the distances to objects. The proportion of this type
of question accounts for 24.2%.

• Traffic Sign Recognition: We design optical character recognition (OCR) questions based on the traffic
signs, such as asking about the speed limit, the meaning of prohibition signs, and the names and distances
of destinations. We also include questions about traffic lights. The proportion of this type of question
accounts for 26.8%.

• Lane Identification: This task involves questions about the number of lanes on the road, the directions of the
lanes, and which lane should be selected under specific conditions. The proportion of this type of question
accounts for 5.6%.

• Traffic Police Hand Signal Recognition: This is a knowledge-intensive task. The questions ask about the
meaning of the traffic police gestures in each image. The proportion of this type of question accounts for
19.7%.

• Reasoning and Forecasting: This task requires the MLLM to observe the information in the image, com-
bined with common sense, and deduce the reasons behind a certain state or action depicted in the picture,
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Table 1. Results on all perception sub-tasks of the MME benchmark

Model Decoding Color Count Existence Position Posters Celebrity Scene Landmark Artwork OCR Total

LLaVA-Next

greedy 185.0 158.3 185.0 116.7 145.9 137.1 159.3 134.3 120.2 162.5 1504.3
+DoLa 185.0 158.3 185.0 116.7 143.9 135.0 158.5 132.8 117.5 162.5 1490.2
+VCD 190.0 155.0 185.0 115.0 145.9 134.1 155.5 138.3 124.3 162.5 1505.6
+Ours 185.0 155.0 185.0 113.3 155.8 152.6 161.5 145.5 124.5 162.5 1540.7

LLaVA-1.5

greedy 155.0 158.3 195.0 123.3 129.6 132.6 155.0 163.5 121.0 125.0 1458.9
+DoLa 153.3 158.3 195.0 123.3 127.6 130.9 154.8 162.8 122.3 122.5 1450.7
+VCD 148.3 158.3 190.0 126.7 136.7 147.4 148.8 166.0 122.5 130.0 1474.7
+Ours 165.0 153.3 195.0 128.3 141.8 150.3 157.3 161.8 122.8 140.0 1515.6

InstructBLIP

greedy 120.0 60.0 185.0 50.0 142.9 81.8 160.0 160.0 92.0 65.0 1116.6
+DoLa 120.0 60.0 185.0 50.0 142.9 80.9 160.0 160.0 92.2 65.0 1116.0
+VCD 123.3 60.0 185.0 53.3 151.7 94.1 156.5 161.3 99.3 95.0 1179.5
+Ours 153.3 78.3 180.0 58.3 140.5 71.2 163.8 158.3 94.3 95.0 1193.0

We report the officially defined metric that combines Accuracy and Accuracy+ (larger is better). Our
proposed method improves the perception competencies for three MLLMs. Bold font indicates that the method
in the corresponding row achieves the highest performance for the corresponding MLLM on the given task. MME:
OCR: optical character recognition; MLLMs: multi-modal large language models.

or to predict what actions a car or a pedestrian might take in the near future. The proportion of this type
of question accounts for 11.1%.

• Driving Maneuver: This task involves questions about which driving behaviors are permitted or prohibited
in the scenarios depicted in the image, as well as what actions should be taken to avoid the risk factors. These
questions correspond to images that feature different road conditions (dry or icy), different traffic situations
(congested or clear), and various traffic signal indications. The proportion of this type of question accounts
for 12.6%.

Among the test samples, images depicting traffic accidents (e.g., collisions and fire) and significant risk fac-
tors (e.g., slippery roads, obstacles, and imminent collisions) account for 59.6%, nighttime images account for
17.9%, and images from the driver’s first-person perspective account for 25.8%. This test set is expected to
comprehensively evaluate the capability of MLLMs in comprehending real-world scenes.

5.1.2 MLLM baselines
Three state-of-the-artMLLMs are selected to implement ourmethod, including InstructBLIP [3], LLaVA-1.5 [2],
and LLaVA-Next (stronger) [23]. These threeMLLMs integrate CLIPVision Transformer as their visual encoder.
As for the cross-modal connector, LLaVA-1.5 and LLaVA-Next use a two-layer MLP, and InstructBLIP uses
a Q-former [6] with textual query. We use the 7B version (with around 7-8 billion learnable parameters) of
the MLLMs, with Vicuna-7B [42] as the language decoder for LLaVA-1.5 and InstructBLIP, and LLaMA3-8B
(Available at https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for LLaVA-Next.

5.1.3 Implementation details
All experiments are in zero-shotmanner, and greedy decoding serves as the baseline strategy for reproducibility.
All random seeds are set at 42, ensuring that repeated trials would yield identical results. We run all experiments
on two NVIDIA 3090 GPUs. We use PyTorch [61] and the Huggingface Transformers library (https://github
.com/huggingface/transformers) to implement our method. We compare RCD with two advanced decoding
strategies VCD [15] and DoLa [62], using their official code implementations. VCD contrasts the confidence
scores of the test image with the scores of a noised image, targeting at reducing erroneous language priors. For
VCD, we follow the official hyper-parameters on the MME and POPE benchmarks. DoLA aims to amplify the
knowledge injected by deeper layers by contrasting the confidence scores predicted by the language model’s
final hidden state with those predicted by its shallow layers. For DoLa, we follow its dynamic premature layer
selection strategy.

5.2. Hallucination benchmark results
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InstructBLIP’s Score：60.0 InstructBLIP+RCD’s Score：78.3
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Figure 6. Analysis of RCD’s impact on the MME benchmark. Our proposed RCD reduces the answer uncertainty of InstructBLIP, and
decreases the number of false positive samples. RCD: Retrieval contrastive decoding; MME:

5.2.1 Results on MME
Experimental results on the perception subtasks of MME are presented in Table 1. Without additional train-
ing, RCD significantly improves the total score for LLaVA-Next (+36.4 scores), LLaVA-1.5 (+56.6 scores), and
InstructBLIP (+76.3 scores), surpassing current advanced decoding strategies DoLa and VCD by 64.1 and 29.8
scores on average, respectively. In particular, RCD effectively mitigates visual hallucinations in color-related
perception tasks for LLaVA-1.5 (+10 scores) and InstructBLIP (+33.3 scores). RCD also improves the OCR
capability for LLaVA-1.5 (+15 scores) and InstructBLIP (+30 scores).

We further investigate how RCD enhances model performance on the MME benchmark and present the re-
sults in Figure 6. We plot the predicted confidence scores corresponding to token candidates _yes and _no (
We observe that in all test results, candidates _yes and _no consistently rank as the top two positions in the
vocabulary). on the vertical and horizontal axis, respectively. Each test sample corresponds to a single triangle
mark colored in blue (the samples’ ground truth answer is _yes) or red (the ground truth answer is _no). If a
blue triangle mark is below the 𝑦 = 𝑥 line, or a red triangle mark is above the 𝑦 = 𝑥 line, the answer is incorrect.
The main observations are summarized as follows:

• Without visual references, InstructBLIP has equal confidence, i.e., high uncertainty, to the positive and
negative answers. As illustrated in Figure 6, a number of test samples in the Count sub-task are close to the
𝑦 = 𝑥 line.

• Without visual references, InstructBLIP tends to answer “yes” for all questions. As shown in Figure 6, almost
all samples are located above the 𝑦 = 𝑥 line.

Figure 6 illustrates that after integrating RCD, there are fewer red triangle marks above the 𝑦 = 𝑥 line. This
indicates that the number of false positive answers is reduced. Besides, the sample points demonstrate more
dispersed distribution above or under the 𝑦 = 𝑥 line with RCD, indicating that the level of uncertainty is
reduced.

5.2.2 Results on POPE
The averaged Accuracy and F1 score across the random, popular, and adversarial splits of POPE are presented
in Table 2. On three subsets of POPE, RCD boosts the overall Accuracy of LLaVA-Next (+1.98 on average),
LLaVA-1.5 (+0.25 on average), and InstructBLIP (+0.91 on average), outperformingVCD andDoLA in varying
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Table 2. Results on the POPE benchmark

Model Decoding
COCO AOKVQA GQA

Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑

LLaVA-Next

greedy 83.93 81.33 84.16 83.23 82.84 81.94
+DoLa 83.77 81.09 84.12 83.17 82.63 81.64
+VCD 86.51 85.25 85.74 85.55 84.08 83.90
+Ours 86.73 85.65 85.93 85.85 84.21 84.11

LLaVA-1.5

greedy 85.56 84.11 84.32 84.40 84.73 84.84
+DoLa 85.38 83.86 84.30 84.33 84.71 84.76
+VCD 85.59 85.53 82.07 83.39 82.17 82.87
+Ours 85.80 84.58 84.56 84.91 85.01 85.38

InstructBLIP

greedy 85.14 84.45 81.73 83.18 80.58 82.03
+DoLa 85.21 84.54 81.74 83.22 80.56 82.03
+VCD 84.42 83.62 81.50 82.78 80.90 82.05
+Ours 85.12 84.37 83.30 83.88 81.76 82.15

Our proposed method RCD demonstrates superior performance to existing advanced de-coding strategies
(VCD and DoLa) on the MSCOCO, AOKVQA and GQA subsets. Bold font indicates that the method in
the corresponding row achieves the highest perfor-mance for the corresponding MLLM on the given task.
POPE: Polling-based object prob-ing evaluation; RCD: retrieval contrastive decoding; VCD: visual
contrastive decoding.

Table 3. Results onWHOOPS image captioning benchmark

Model Method B4 ↑ M ↑ C ↑ S ↑

LLaVA-Next

greedy 22.7 24.5 77.7 17.1
+DoLa 22.6 24.4 77.9 17.0
+VCD 23.1 25.1 81.2 17.2
+RCD 23.6 25.8 83.5 17.5

LLaVA-1.5

greedy 19.7 25.6 67.9 17.3
+DoLa 19.9 25.6 67.8 17.4
+VCD 19.1 25.4 69.1 17.3
+RCD 20.0 26.3 75.5 17.8

InstructBLIP

greedy 24.9 26.5 87.3 18.2
+DoLa 24.8 26.5 87.4 18.2
+VCD 25.5 27.0 89.2 18.2
+RCD 25.7 27.1 90.6 18.6

RCD boosts the overall performance for LLaVA-1.5 and InstructBLIP. B4, M, C, and S
denotes the Bleu@4, METEOR, CIDEr, and SPICE metrics, respectively. Bold font
indicates that the method in the corresponding row achieves the highest performance
for the corresponding MLLM on the given task. RCD: Retrieval contrastive decoding.

degrees.

5.2.3 Results on WHOOPS
Quantitative results are presented in Table 3. RCD significantly enhances the image description accuracy of
LLaVA-1.5 and InstructBLIP. For instance, RCD improves the CIDEr score of LLaVA-1.5 and LLaVA-Next
by 7.6 and 5.8, respectively, surpassing existing methods VCD and DoLa. These experimental results validate
the effectiveness of RCD in image captioning task and demonstrate its ability to generalize to counterintuitive
images. The examples in Figure 7 illustrate the effectiveness of RCD in enhancing MLLMs’ comprehension of
counterintuitive visual cues. For instance, RCD enables LLaVA-1.5 to accurately identify a traffic signal with
three green lights and assists InstructBLIP in correctly distinguishing rubber ducks from real ducks. These
results demonstrate that RCD has strong generalization capabilities, enabling precise visual understanding in
scenarios involving counterintuitive visual content.

5.2.4 Results on LLaVA-W
Theprevious sections quantitatively evaluate the effectiveness of RCD.This section qualitatively assesses RCD’s
performance by presenting examples from the image detailed captioning task on the LLaVA-Bench-in-the-
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LLaVA-1.5 – Greedy Decoding:
A green traffic light with a black base.

LLaVA-1.5 + DoLa:
A green traffic light with a black base.

LLaVA-1.5 + VCD:
A green traffic light with green lights on the top and bottom.

LLaVA-1.5 + RCD:
A three light green traffic signal is on a white background.

Counterintuitive image description

InstructBLIP – Greedy Decoding:
a duck and three ducklings are in the water.

InstructBLIP + DoLa:
a duck and three ducklings are in the water.

InstructBLIP + VCD:
a duck and her babies are floating in the water.

InstructBLIP + RCD:
a duck and three rubber duckies in a pond.

1-NN ReferenceTest image 2-NN Reference

Counterintuitive image description

1-NN ReferenceTest image 2-NN Reference

Figure 7. RCDdemonstrates robust generalization capabilities to counterintuitive images, thereby enhancing the accuracy ofMLLMs’ visual
understanding. Correct and hallucinatory content are highlighted in green and red, respectively. RCD: Retrieval contrastive decoding.

wild (LLaVA-W) benchmark, offering a more intuitive analysis of its capabilities. The examples illustrated
in Figure 8 demonstrate that RCD effectively mitigates hallucinatory content in detailed descriptions for both
in-door and out-door scenes that contain diverse objects, outperforming existing methods DoLa and VCD.
For instance, RCD enables LLaVA-1.5 to accurately discern the spatial relationships among multiple instances
in a refrigerator, and helps InstructBLIP correctly distinguish streetlights from traffic lights. These exam-
ples demonstrate that RCD effectively mitigates various categories of visual hallucination, thereby enhancing
MLLMs’ capabilities in comprehending complex real-world scenes.

5.3. Real world application
5.3.1 Quantitative results
Table 4 demonstrates that RCD enhances the capability of MLLMs to comprehend real-world scenarios. RCD
leads to notable improvements in the LLaVA model family for both image captioning and VQA. Specifically,
RCD increases the CIDEr score by 3.0 for LLaVA-Next and 1.5 for LLaVA-1.5 in image captioning, and im-
proves the EM metric by 2.4 and 1.2 for LLaVA-Next and LLaVA-1.5 in VQA, respectively. However, the
performance gains for InstructBLIP are less pronounced, with only a 0.5 increase in CIDEr scores and a 0.2 in-
crease in EM scores. This may be attributed to the loss of information in the visual token compression process
executed by the Q-former [6] model. These results also demonstrate that RCD consistently outperforms DoLA
and VCD.

5.3.2 Qualitative results
Qualitative experimental results on our proposed VQA benchmark are presented in Figure 9. Our method
demonstrates higher answer accuracy than DoLa and VCD. Specifically, our approach help MLLMs accurately
recognize object categories (e.g., bags and cones on the road), and interpret traffic signs (e.g., a yellow triangle
sign indicating children crossing) Additionally, RCD enhances the MLLM’s reasoning capabilities, such as
inferring appropriate driving behaviors (e.g., proceeding at a green light intersection), and predicting potential
risks in the scene (e.g., possible collision with a motorcycle on the right side). It is noteworthy that RCD also
exhibits robust performance on hazy and low-light images. For particularly challenging questions, such as
selecting a lane based on specific requirements, all MLLMs and methods struggle. This suggests that current
MLLMs still have considerable room for improvement in accurately comprehending real-world scenarios.
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LLaVA-1.5 + RCD:
The image displays an open refrigerator filled with various food items. Inside the refrigerator, there are multiple containers holding 
different foods, including milk, yogurt, and strawberries. The milk is placed in the middle of the refrigerator, while the yogurt is 
located towards the right side. The strawberries are situated on the left side of the refrigerator. In addition to the food items, there are 
two bottles in the refrigerator, one located near the top left corner and the other near the top right corner. The refrigerator is well-
stocked, providing a variety of food options for consumption

LLaVA-1.5 + VCD:
The image displays a refrigerator filled with various food items and drinks. Inside the refrigerator, there are multiple bottles, including 
milk and juice, placed on different shelves. Some of the bottles are located on the top shelf, while others are placed on the middle and 
bottom shelves. In addition to the bottles, there are several carrots stored in the refrigerator. Some of the carrots are placed on the 
middle shelf, while others are located on the bottom shelf. The refrigerator also contains a bowl, which is placed on the middle shelf. 
Overall, the refrigerator is well-stocked with a variety of food items and drinks, providing a diverse selection for consumption.

LLaVA-1.5 - Greedy Decoding:
The image displays a refrigerator filled with various food items and drinks. Inside the refrigerator, there are multiple bottles, 
including milk and juice, placed in different compartments. Some of the bottles are located on the top shelf, while others are placed 
on the middle and bottom shelves. In addition to the bottles, there are several carrots and a bowl of strawberries placed in the 
refrigerator. The carrots are scattered throughout the refrigerator, with some on the top shelf and others on the middle and bottom 
shelves. The bowl of strawberries is placed on the bottom shelf, adding a touch of color to the refrigerator's contents.

Image Detailed
Caption

Hallucination

Correct

Test Image 1-NN Reference 2-NN Reference

InstructBLIP - Greedy Decoding:
The image captures a busy highway at night, filled with a multitude of cars driving in both directions. The highway is lined with 
numerous vehicles, creating a long traffic jam. The cars are parked in various positions, some closer to the center of the highway, 
while others are positioned further away.  There are also several traffic lights visible in the scene, indicating the presence of 
intersections along the highway. The traffic is moving slowly, likely due to the congestion caused by the large number of vehicles on 
the road.

InstructBLIP + DoLa：
The image captures a busy highway at night, filled with a multitude of cars driving in both directions. The highway is … while 
others are positioned further away.  There are also several traffic lights visible in the scene, indicating the presence of intersections
along the highway. The traffic is moving slowly, likely due to the congestion caused by the large number of vehicles on the road.

InstructBLIP + VCD：
The image captures a busy highway … lined with multiple lanes of traffic, creating a congested and bustling scene. The cars are 
moving at a steady pace, creating a sense of motion and activity.  There are multiple cars visible in the scene, with some closer to the 
center of the highway and others positioned further away. The cars are spread out across the highway, creating a busy and crowded 
atmosphere. In addition to the cars, there are several traffic lights visible throughout the scene, helping to regulate the flow of traffic.

InstructBLIP + RCD：
The image captures a busy highway … lined with numerous cars, creating a congested traffic situation. The cars are parked in 
various positions along the highway, some closer to the center and others closer to the edges.  There are also several trucks visible in 
the scene, adding to the overall traffic volume. The highway is illuminated by streetlights, providing a clear view of the traffic. The 
scene is likely a representation of a busy urban highway during rush hour, with a significant amount of traffic moving along the road.

Image Detailed
Caption

Hallucination

Correct

Test Image 1-NN Reference 2-NN Reference

Figure 8. RCD effectively reduces visual hallucinations in detailed image descriptions. DoLa’s response is omitted when it is identical to the
greedy baseline. Correct and hallucinatory contents are highlighted in green and red, respectively. RCD: Retrieval contrastive decoding.

Qualitative samples fromour proposed image captioning benchmark are exhibited in Figure 10. RCD enhances
the accuracy of image descriptions, mitigating various types of visual hallucinations, such as incorrect physical
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Table 4. Quantitative results on our proposed traffic scenario comprehending test set

Model Decoding
Image captioning VQA

Bleu@4 ↑ METEOR ↑ CIDEr ↑ SPICE ↑ Accuracy ↑

LLaVA-Next

greedy 11.4 15.7 25.0 10.8 24.7
+DoLa 11.6 15.4 24.7 10.8 25.0
+VCD 12.1 16.6 27.4 12.0 24.6
+Ours 12.3 16.7 28.0 12.0 27.1

LLaVA-1.5

greedy 16.5 18.0 36.7 12.6 23.2
+DoLa 16.4 18.0 36.6 12.6 23.9
+VCD 15.9 18.2 37.5 12.6 23.9
+Ours 15.9 18.2 38.2 12.8 24.4

InstructBLIP

greedy 12.2 15.5 24.8 11.1 21.3
+DoLa 12.1 15.5 24.8 11.1 21.1
+VCD 12.6 15.6 24.9 11.3 21.3
+Ours 12.7 15.5 25.3 11.2 21.5

Our proposed method RCD boosts the image captioning and VQA performance for three
MLLMs, outperforming existing methods. Bold font indicates that the method in the
corresponding row achieves the highest performance for the corresponding MLLM on the given
task. RCD: Retrieval contrastive decoding; MLLMs: multi-modal large language models.

Table 5. Ablation study on our proposed image captioning benchmark

Exp. img.
ret.

diffuse
img.

comp. adapt. num.
refs

Bleu@4 ↑ METEOR ↑ CIDEr ↑ SPICE ↑

1 n/a 11.4 15.7 25.0 10.8
2 ✓ ✓ ✓ ✓ 2 12.3 16.7 28.0 12.0
3 rand. ✓ ✓ ✓ 2 11.9±0.2

(-0.4)
16.0±0.1

(-0.7)
26.2±0.6

(-1.8)
11.9±0.1

(-0.1)
4 ✓ ✓ ✓ 2 12.5(+0.2) 15.7(-1.0) 27.1(-0.9) 11.3(-0.7)
5 ✓ ✓ add. ✓ 2 9.6(-2.7) 14.7(-2.0) 20.3(-7.7) 9.9(-2.1)
6 ✓ ✓ ✓ 2 12.4(+0.1) 16.3(-0.4) 26.9(-1.1) 11.7(-0.3)
7 ✓ ✓ ✓ ✓ 1 12.6(+0.3) 16.5(-0.2) 27.7(-0.3) 11.9(-0.1)
8 ✓ ✓ ✓ ✓ 4 13.1(+0.8) 16.5(-0.2) 27.9(-0.1) 11.9(-0.1)
9 ✓ ✓ ✓ ✓ 8 13.0(+0.7) 16.4(-0.3) 27.8(-0.2) 11.9(-0.1)

Each component of our proposed RCD positively influences the overall performance. All exper-iments utilize LLaVA-Next-8B
as the MLLM (Exp.1). The results for RCD are detailed in Exp.2. The performance differences relative to Exp.2 are shown for
Exp.3 through Exp.9.

states (e.g., an upside-down car), incorrect object categories (e.g., mistaking a pedestrian sign for a real person),
and incorrect spatial relationships (e.g., perceiving a truck coming from the other side). Additionally, RCD
improves the specificity of image descriptions, such as identifying three cars involved in a collision on a wet
road and a police officer standing in the middle of the street. These examples provide clear evidence of the
effectiveness of RCD.

5.4. Ablation studies
We assess the effectiveness of each component in our proposed method RCD by systematically ablating them
and evaluating the resulting performance variations on the image captioning task of our proposed benchmark.
Results are presented in Table 5. Conclusions are summarized as follows:

5.4.1 Similar images are better than random images
We first ablate the image retrieval process (abbreviated img. ret.), opting to randomly sample visual references
from the database instead. The average results and standard deviations from five separate trials (each with
different random seeds) are presented in Exp.3. The results suggest that random images can positively influence
performance (+1.2 CIDEr scores and +1.1 SPICE scores compared to Exp.1), underscoring the resilience of
RCD in scenarios lacking similar images. Furthermore, when similar images are available (Exp.2), RCD leads
to more substantial improvements across all metrics (e.g., CIDEr +3.0 and SPICE +1.2). Note that the noised
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InstructBLIP greedy decode:

InstructBLIP + DoLA:

InstructBLIP + VCD:

InstructBLIP + Ours:

Q: What is the obstacle shown 
on the road in the picture?
Annotated Answer: 
["bags", "bag", "plastic bags", 
"bag", "plastic bags", "plastic 
bags", "plastic bags", "bags", 
"bag", "bags"]

truck

truck

truck

bag

LLaVA-1.5 greedy decode:

LLaVA-1.5 + DoLA:

LLaVA-1.5 + VCD:

LLaVA-1.5 + Ours:

Q: What does the yellow triangle 
sign in the picture warn about?
Annotated Answer: ["children 
crossing", "child", "pupils", 
"children", "children crossing", 
"children crossing", "children", 
"children", "children", "pupils"]

No horns

Children crossing

No horns

No horns

LLaVA-Next greedy decode:

LLaVA-1.5 + DoLA:

LLaVA-1.5 + VCD:

LLaVA-1.5 + Ours:

Q: What are the main obsta-
cles on the road surface?
Annotated Answer: ["cone", 
"red cones", "Cones", "Cones", 
"Traffic Cones", "traffic 
cones", ”Policeman", ”Cones", 
”People", ”Cones"]

Fog

Cones

Fog

Cones

Object Recognition Traffic Sign Recognition Object Recognition Driving Maneuver

LLaVA-1.5 greedy decode:

LLaVA-1.5 + DoLA:

LLaVA-1.5 + VCD:

LLaVA-1.5 + Ours:

Q: If you were driving and 
faced with the situation in the 
picture, would you choose to 
stop or to proceed forward?
Annotated Answer: ["to 
proceed forward", ”,  … 
"Proceed forward", "proceed "]

Stop

Proceed

Stop

Stop

Traffic Police Hand Signal 
Recognition

LLaVA-Next greedy decode:

LLaVA-Next + DoLA:

LLaVA-Next + VCD:

LLaVA-Next + Ours:

Q: What instruction is the traffic 
police officer's hand gesture 
conveying in the picture?
Annotated Answer: 
["stop", "halt", "pause", "stop", 
"halt", "stop", "stop", "stop", 
"stop", "stop"]

Stop

Stop

Stop

Stop

Reasoning and Forecasting

LLaVA-1.5 greedy decode:

LLaVA-1.5 + DoLA:

LLaVA-1.5 + VCD:

LLaVA-1.5 + Ours:

Q: If you are driving a car and 
preparing to turn right, what 
might you collide with?
Annotated Answer: 
["motorcycle", "the cyclist on 
the right side", "cyclist", 
"electric scooter", …, "scooter”]

Van

Motorcycle

Van

Van

Reasoning and Forecasting

LLaVA-Next greedy decode:

LLaVA-Next + DoLA:

LLaVA-Next + VCD:

LLaVA-Next + Ours:

Q: Why is it necessary to steer to 
the right in this situation?
Annotated Answer: ["avoid the 
motorcycle", "the road ahead turn 
right", "avoid collision with the 
motorcycle", "to let motorcyclist 
pass", "to avoid collision”, …]

To avoid

To let motorcyclist pass

To avoid

Pass

Lane Identification

LLaVA-1.5 greedy decode:

LLaVA-1.5 + DoLA:

LLaVA-1.5 + VCD:

LLaVA-1.5 + Ours:

Q: If I want to exit the current 
overpass, should I take the 
left lane or the right lane?
Annotated Answer: ["the 
right lane", "right", "Right", 
"the right lane", "right lane", 
"right lane", "right lane", …]

Left

Left

Left

Left

Figure 9. Qualitative results on our proposed VQA benchmark. Our method enhances the accuracy of answers from three MLLMs across
nearly all question categories. Human-annotated answers are provided for each test sample. Incorrect and correct answers are highlighted
in red green, respectively. VQA: Visual Question Answering.

image is retained because it aids in mitigating erroneous language priors, and the CIDEr score dropped by 0.9
in Exp.4 after it is ablated.

5.4.2 Visual concepts comparison is better than combination
We modify the visual concept comparison process (abbreviated comp.), transitioning from logit subtraction
in Equation (6) into addition. The additive paradigm emphasizes the shared visual cues across similar images.
Exp.5 demonstrates significant declines in all metrics (e.g.,-7.7 CIDEr score and -2.1 SPICE score). These
results support the superiority of contrasting visual concepts between similar images over combining them.
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LLaVA-1.5 greedy decode:
A red car is upside down on 
the road and is surrounded 
by other cars.

LLaVA-1.5 + DoLA:
A red car is upside down on 
the road and is surrounded 
by other cars.

LLaVA-1.5 + VCD:
A red car is upside down 
on the road and is next to 
a black car.

LLaVA-1.5 + Ours:
Three cars are involved in a 
crash on a wet road.

LLaVA-1.5 greedy decode:
A bike lane is painted on 
the road with a man 
walking on the other side.

LLaVA-1.5 + DoLA:
A bike lane is painted on 
the road with a person 
walking on the other side.

LLaVA-1.5 + VCD:
A bike lane is painted on 
the road with a man 
walking on the other side.

LLaVA-1.5 + Ours:
A bike lane is painted on 
the road with a pedestrian 
symbol walking.

LLaVA-Next greedy decode:
A man on a motorcycle 
talking to a police officer.

LLaVA-Next + DoLA:
A man on a motorcycle 
talking to a police officer.

LLaVA-Next + VCD:
A policeman directing 
traffic on a city street.

LLaVA-Next + Ours:
A police officer standing 
in the middle of a street 
talking to a scooter rider.

InstructBLIP greedy decode:
a car is driving under a bridge 
and a truck is coming from 
the other side

InstructBLIP + DoLA:
a car is driving under a bridge 
and a truck is coming.

InstructBLIP + VCD:
a truck is driving down 
the street next to a car.

InstructBLIP + Ours:
a truck is driving down 
the street next to a car.

Figure 10. Qualitative results on our proposed image captioning benchmark. Ourmethod RCD improves the accuracy of image descriptions
and reduces various types of visual hallucinations. Additionally, RCD enhances the specificity of the descriptions. Incorrect content is
highlighted in red, while correct content is highlighted in green. RCD: Retrieval contrastive decoding.

5.4.3 Other ablations
Exp.6 demonstrates that the adaptive scaling strategy (abbreviated as adapt.) can enhance almost all metrics.
Additionally, increasing the number of reference images yields improvements on the BLEU@4 metric (from
12.3 to 13.0). However, it also leads to slight decreases on the CIDEr score (from 28.0 to 27.8) in Exp.7-9.
Therefore, RCD defaults to using two visual references.

5.5. Further experimental analysis
5.5.1. Analysis of various text decoding baselines
In the experiments on public benchmarks, greedy search is used as the baseline strategy. This approach selects
only the token candidate with the highest confidence score, thereby excluding any randomness in text decoding.
We further investigate the integration of RCDwith various token sampling baselines, including multi-nominal
sampling, top-𝑘 sampling, and top-𝑝 sampling. The experimental results are presented in Table 6. Notably,
RCD integrates well with different baseline sampling strategies. However, these token sampling strategies
exhibit significantly weaker performance compared to greedy decoding.

5.5.2. Analysis of similarity metrics
RCD employs cosine similarity as the similarity measure for reference information retrieval. Table 7 provides
a quantitative analysis on our proposed traffic scene image captioning test set comparing cosine similarity with
the L2 distance metric. These results indicate that the performance based on the Euclidean distance metric is
marginally inferior to that of the cosine similaritymetric, yet it consistently surpasses the baseline performance
of the greedy decoding approach.

5.5.3. Analysis of the reference database’s size
RCDuses a reference database containing 113k samples from theCOCOCaption dataset. Table 8 demonstrates
that incorporating the entire Visual Genome dataset [63] into the reference database doubles the size of the
database but leads to a decline in the evaluation metrics of the LLaVA-1.5 model. For instance, the CIDEr
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Table 6. Image captioning performance with various token sampling baselines on theWHOOPS benchmark

Method B4 ↑ M ↑ C ↑ S ↑

LLaVA-1.5

greedy 19.7 25.6 67.9 17.3
+RCD 20.0 26.3 75.5 17.8
multi-nominal sampling 6.9 19.0 31.4 12.0
+RCD 8.8 20.3 40.6 13.7
nucleus sampling 9.6 20.5 39.4 13.3
+RCD 10.7 21.8 46.8 14.0
Top-k sampling 8.0 19.3 33.6 12.3
+RCD 8.8 20.3 40.6 13.7

RCD boosts model performance on various text decoding baselines. For nu-cleus (Top-𝑝)
sampling, 𝑝 is set at 0.9. For Top-𝑘 sampling, 𝑘 is set at 50, following common practice.
The random seeds are fixed at 42 in all exper-iments. Bold font indicates the highest
performance. RCD: Retrieval con-trastive decoding.

Table 7. Quantitative results on our proposed traffic scenario description test set

Model Method B4 ↑ M ↑ C ↑ S ↑

LLaVA-Next
greedy 11.4 15.7 25.0 10.8
RCD-L2 12.1 16.3 27.0 11.8
RCD-Cos 12.3 16.7 28.0 12.0

L2 denotes using Euclidean distance as similarity metric for RCD. Cos de-notes cosine
similarity. Bold font indicates the highest performance. RCD: Retrieval contrastive
decoding.

Table 8. Experiment onWHOOPS image captioning benchmark with enlarged reference database for LLaVA-1.5

Model Method # Ref. B4 ↑ M ↑ C ↑ S ↑

LLaVA-1.5
greedy - 19.7 25.6 67.9 17.3
COCO 113.2k 20.0 26.3 75.5 17.8
COCO+VG 220.6k 20.0 26.3 74.6 17.7

“# Ref.” denotes the number of samples in the reference database. Bold font indi-
cates the highest performance.

score slightly decreases by 0.9 compared to using the COCO Caption data. This decline is likely attributable
to the increased inaccuracy in image retrieval results, as the reference database becomes significantly more
expansive. As a result, the retrieval module’s robustnessmay require further optimization to effectivelymanage
larger-scale reference databases.

5.5.4. Analysis of inference efficiency
RCD requires the independent prediction of an additional 𝑘+1 confidence score distribution, which introduces
linear computational complexity. As shown in Table 9, the naive sequential prediction of these distributions
(implemented using a for loop, denoted as RCD-Naive) increases theMLLM’s inference time by approximately
a factor of 𝑘 . Tomitigate this delay, the 𝑘+1 input sequences can be stacked for batch processing. This optimiza-
tion (RCD-Optimized) reduces the 𝑘-fold increase in inference time to approximately 0.43𝑘-fold. Moreover,
as demonstrated in Table 9, both implementations of RCD result in only a negligible increase in GPUmemory
(less than 15 MB) when 𝑘 = 2.

6. DISCUSSION
6.1. Key contributions
Through extensive experiments, we find that MLLMs’ visual branch often equally supports both erroneous
and accurate token candidates. This indicates that MLLMs are not blind amid hallucinations, and suggests
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Table 9. Efficiency analysis on our proposed traffic scene VQA benchmark

Model Method 𝑘 Time (s) Memory (MB)

LLaVA-Next
greedy - 0.7684± 0.0065 19569
RCD-Naive 2 1.6498± 0.0034 19581
RCD-Optimized 2 1.1499± 0.0012 19579

“Time” denotes the wall clock time for a single test sample, which is averaged on 200 samples
from three separate runs. RCD: Retrieval contrastive decoding.

new perspectives for visual hallucination mitigation by eliciting accurate content from non-blindMLLMs. We
further provide quantitative and qualitative evidence to reveal that analogous hallucinations can occur among
similar images, and this phenomenon can be exploited to distinguish accurate visual content. We hope that
our findings can inspire subsequent research on the hallucination issue of MLLMs.

Based on our analysis on the characteristics of visual hallucinations, we introduce a novel method named RCD
tomitigate visual hallucinations. RCD retrieves relevant images to serve as references forMLLMs during visual
recognition. This process is analogous to the memory recall mechanism in the human brain. Next, RCD dis-
tinguishes accurate visual cues by contrasting the visual cues between the test image and the visual references.
Our proposed method is a plug-and-play module that can be seamlessly integrated into MLLMs to reduce hal-
lucinations originating from both visual and textual branches of MLLMs. Quantitative and qualitative results
demonstrate that RCD improves the accuracy of visual recognition and enhances the reasoning capabilities of
MLLMs.

6.2. Limitations and future work
Our proposed method RCD is based on the premise that images with similar semantics and appearance are
likely to induce analogous visual hallucinations. We provide both quantitative and qualitative evidence in Sec-
tion 3.2 to support this hypothesis, specifically in relation to the widely used LLaVAmodel family (LLaVA-1.5
and LLaVA-Next). Additionally, we also observe significant performance improvements on two hallucina-
tion benchmarks when RCD is applied to InstructBLIP. In future work, we aim to investigate whether this
phenomenon is dependent on the model or if it is model-independent.

A reference database consisting of around 113,000 samples from the COCO Caption dataset is utilized in
all experiments. These images encompass a rich variety of scenes and objects, including real-world traffic
scenarios. The diversity of visual references enables RCD to enhance model performance across multiple
evaluation benchmarks. However, experimental results demonstrate that there is still room for improvement in
the retrieval module’s ability to handle larger databases. Additionally, improvements are needed in the current
state-of-the-art MLLMs on our proposed traffic scenario comprehension benchmark. We plan to conduct a
more detailed analysis of the types of failure cases, and optimize the performance of RCD.

7. CONCLUSIONS
We address the issue of visual hallucinations inMLLMs. Through comprehensive analysis, we find that even in
the presence of visual hallucinations, MLLMs can still recognize accurate visual cues. Furthermore, we demon-
strate that analogous visual hallucinations induced by similar images can be exploited to mitigate visual hallu-
cinations. Building on this insight, we introduce RCD, a training-free method that effectively mitigates visual
hallucinations in MLLMs. RCD retrieves similar images from a database to serve as references for MLLMs,
and discerns accurate visual content through confidence score comparisons. This approach corrects erro-
neous content that is mistakenly supported by both the visual and textual branches of MLLMs. Experiments
conducted on two publicly available hallucination benchmarks demonstrate the superiority of our proposed
method. RCD leads to significant performance improvements in three leading MLLMs: InstructBLIP, LLaVA-
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1.5 and LLaVA-Next. Additionally, RCD outperforms existing advanced decoding strategies. We also curate
a benchmark focused on understanding real-world traffic scenarios, which includes challenging questions de-
signed to evaluate the effectiveness of RCD in assistingMLLMs in practical applications. Both quantitative and
qualitative results demonstrate that RCD significantly enhances the ability of three MLLMs to accurately com-
prehend real-world traffic scenes. This improved visual comprehension forms the foundation for developing
reliable embodied AI systems that employ MLLMs in real-world applications.
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