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Abstract
In 2030, pancreatic ductal adenocarcinoma (PDAC) will become the second leading cause of cancer-related 
mortality in the world. Unfortunately, neither conventional chemotherapy nor novel immunotherapeutic strategies 
can provide durable responses and the survival prognosis remains very low. PDAC is notorious for its immune-
resistant features and unique genomic landscape facilitating tumor escape from immunosurveillance. Novel 
immune-checkpoint inhibitors (ICI) failed to show promising efficacy and other multi-modal approaches are 
currently being validated in multiple clinical trials. In this paper, we provide our opinion on the major mechanisms 
responsible for PDAC resistance to ICI therapy and provide our view on future strategies which may overcome 
those barriers.
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Pancreatic ductal adenocarcinoma (PDAC) represents a major challenge in modern oncology[1]. It is 
predicted that by 2030 PDAC will become the second leading cause of cancer-related death[2]. Surgery is 
curative at earlier stages, whereas advanced or metastatic stages are almost impossible to treat[3]. 
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Figure 1. Mechanisms of immune-checkpoint inhibitors. ICIs target unique inhibitory checkpoint molecules expressed by T- and 
antigen-presenting cells. By blocking those receptors, ICIs promote the proper induction and differentiation of T cell-mediated 
immunity. In contrast, the absence of ICIs results in successful priming of checkpoint receptors with their ligands, thus inhibiting TCR 
activation overall, leading to cancer escape from immunosurveillance. APC: antigen-presenting cell; CD: cluster of differentiation; 
CTLA-4: cytotoxic T-lymphocyte associated antigen 4; mAb: monoclonal antibody; MHC: major histocompatibility complex; PD-1: 
programmed cell death protein 1; PD-L1: programmed cell death protein 1 ligand 1; TCR: T cell receptor.

Conventional chemotherapy can only provide a short partial remission with 5-year overall survival (OS) of 
less than 9% in patients with advanced PDAC[4]. Recent discoveries in cancer immunology have led to the 
successful use of immune-checkpoint inhibitors (ICIs) in treating advanced solid malignancies. ICIs are 
monoclonal antibodies that target immune checkpoints such as cytotoxic T-lymphocyte associated antigen 
4 (CTLA-4), programmed cell death protein 1 (PD-1) with its ligands PD-L1/L2 and other expressed by 
antigen-presenting cells (APCs) and T cells [Figure 1][5]. ICIs have shifted treatment paradigms for 
melanoma, non-small cell lung cancer (NSCLC), and hepatocellular carcinoma[6,7]. Unfortunately, PDAC 
has shown incredible resistance to immunotherapy[8]. To date, US Food and Drug Administration (FDA) 
has only approved PD-1 inhibitor pembrolizumab, albeit only for patients with high microsatellite instability 
(MSI-H)[9]. Unfortunately, the majority of patients (~ 97%) with microsatellite stable status (MSS) are not 
benefited from ICIs and their outcomes remain critically poor[10]. Early trials combining chemotherapy with 
ICIs also fail to show any superior efficacy in MSS patients[9]. This paper provides an opinion on factors 
responsible for PDAC resistance to ICIs and potential strategies to overcome this issue.

Classically, PDAC has an immunologically “cold” tumor microenvironment[11] characterized by abundant 
infiltration of myeloid cells and a small number of infiltrating T- and NK (natural killer) cells [Figure 2]. A 
few studies suggested that focal adhesion kinases (FAK) can regulate the fibrotic features of cold tumors, 
including the immunosuppressive microenvironment[12,13]. The data from in vitro studies on the synergistic 
efficacy of FAK + PD-1 inhibitors showed promising responses and resulted in further testing of this 
regimen in clinical trials. Other factors of resistance are low mutational burden and complex 
immunosuppressive features able to inhibit T cell priming and trafficking, resulting in lower efficacy of 
immunotherapy[14].
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Figure 2. Mechanisms of pancreatic cancer resistance to immune-checkpoint inhibitor therapy. Pancreatic ductal adenocarcinoma is 
known as a tumor with a "cold" microenvironment characterized by a small number of CD8+ T- and NK cells, an abundance of 
regulatory T (immunosuppressive) cells, and poor response to ICI therapy. Mutation in KRAS gene (mKRAS) allows pancreatic cancer 
cells to induce expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokine C-X-C motif ligand 1 (CXCL1) 
and C-C motif chemokine ligand 4 (CCL4) playing a crucial role in immunosuppression. Moreover, mKRAS leads to upregulation of 
WNT/β -catenin pathway and Sonic Hedgehog pro-inflammatory pathways overall, inhibiting the ICI therapy.

Stromnes et al. reported that analysis of tumor samples revealed that PDAC has a lower number of effector
T cells and lower clonality of T cell receptors as compared to other solid tumors that can be successfully
managed by ICIs[15]. Genome studies have established that PDAC almost ubiquitously has activating KRAS
(Kirsten ras oncogene) mutations[16]. Conventionally, mKRAS is known to be associated with tumor
proliferation and metastasis; however, recent results of high-throughput studies have established that
mKRAS may orchestrate downstream signaling responsible for immunosuppression[17]. A few in vitro
studies established that mKRAS inhibits the expression of MHC-I, CD47, and PD-L1[18,19]. It is known that
PD-L1 is a crucial marker for ICI efficacy in non-small cell lung cancer[20]. Perhaps the lower expression of
checkpoint proteins (targets) negatively impacts ICI therapy and explains its lower effectiveness in PDAC
patients. Secondly, mKRAS can upregulate the expression of GM-CSF and CXCL1, which are involved in
the recruitment of myeloid-derived suppressor cells known for their immunosuppressive features[21,22].
Furthermore, mKRAS can downregulate the expression of CCL4 via WNT/β -catenin pathway[23]. CCL4 is
an important factor for recruiting dendritic cells; major APCs require FOR priming T cell 
response and activating the cytotoxic cascade[24,25]. A lower number of APCs impacts the 
tumor escape from immunosurveillance. Additionally, mKRAS promotes signaling via the Sonic 
Hedgehog pathway and can induce expression of matrix metalloproteinase 7 (MMP-7)[26] as well as 
selectively target lysosomal degradation of MHC-I molecules through an autophagy-dependent 
mechanism, thus negatively impacting ICI therapy[19]. Overall, it results in chronic inflammation and 
proliferation of the fibrotic stroma, thus complicating T cell trafficking[27]. The development of 
mKRAS-directed strategies may one day overcome this critical resistance mechanism and result in higher 
effectiveness of ICIs in PDAC.

In summary, PDAC is among the most immune-resistant tumors. Recent discoveries in understanding key
elements of PDAC resistance to ICI therapy, including FAK[28], mKRAS and other novel molecules[29], have
reshaped our view on future approaches for PDAC treatment. To effectively treat PDAC, it is crucial to
elucidate the rational combinatorial approach(es) targeting both checkpoint proteins and non-redundant
mechanisms of PDAC resistance, such as mKRAS. Moreover, novel therapeutic strategies should be selected
based on patient’s individual genotype, which is responsible for high phenotypic heterogeneity observed
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across PDAC patients. Finally, mKRAS remains the bull’s eye for PDAC immunologic resistance; thus, the 
combinatorial approach of ICI + MEK (mitogen-activated protein kinase) inhibitors should be thoroughly 
studied in randomized trials. The synergistic effect of both drugs may improve clinical outcomes for PDAC 
patients in the near future.
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