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Abstract
Recently, flexible/stretchable micro-scale light-emitting diodes (LEDs), with dimensions significantly smaller than 
conventional diodes used for illuminations, have emerged for promising applications in areas such as deformable 
displays, wearable devices for healthcare, etc. For such applications, these devices must have some unusual 
features that common inorganic LEDs do not intrinsically own, including conformability, biocompatibility, 
mechanical flexibility, etc. This Perspective focuses on summarizing the most recent progress in developing such 
flexible emitters based on inorganic semiconductors, followed by reviewing their potential applications. Finally, 
major challenges and future research directions of deformable micro-scale LEDs are presented.
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INTRODUCTION
Micro-scale light-emitting diode (Micro-LED) displays made from p-n junctions of III-V inorganic 
epitaxial semiconductors, such as gallium nitride (GaN) and aluminum gallium indium phosphide 
(AlGaInP), have stood out as a competing technology over organic LED (OLED) and liquid crystal displays 
(LCD)[1-7]. Despite the reduced physical dimensions into a regime of a few tens of microns or below, they 
exhibit unusual properties such as fast switching speed, high brightness, long lifetime, and large current 
withstanding capability[8], making them particularly suited for low-power consumption and high-resolution 
display. Indeed, significant progress of Micro-LEDs has been made in areas such as smart watches, VR/AR, 
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and high-resolution TVs. Their huge commercial prospect has been partially confirmed, accompanied by a 
booming display market worth tens of billions of dollars.

In contrast to the tremendous progress of using planar Micro-LEDs for conventional rigid displays, the 
development of flexible Micro-LED counterparts is currently actively explored, evidenced by intensive 
research interest from both academia and industry[9-18]. Benefiting from their extraordinary luminescent 
property, deformable displays made from inorganic Micro-LEDs can not only significantly improve visual 
experience of users but also potentially provide more convenience, better portability, and easier connectivity 
with their surroundings. Furthermore, they allow more versatile design with various forms that are difficult 
to achieve using conventional planar devices. Examples of such innovations have led to the recent 
demonstration of distortion-free displays[10], foldable three-dimensional (3D) displays[19], etc.

Apart from high-resolution deformable displays, some emerging applications, such as optogenetics[20-28] and 
smart contact lenses[29-33], also drive the development of highly efficient, biocompatible light sources that can 
be conformally attachable to skins or implantable inside the human body for healthcare [34]. Micro-LEDs in 
flexible/stretchable formats are well suited for these purposes. Here, we highlight the recent technology 
advancements in developing such flexible emitters and then discuss their potential applications for 
uncommon displays and healthcare. Finally, future research trends of flexible inorganic emitters are also 
given.

STRATEGIES TOWARD DEFORMABLE MICRO-LEDS
Conventional inorganic semiconductors used for Micro-LEDs have higher conductivities and mobilities, 
leading to higher brightness and better operation stability. However, high-performance inorganic 
semiconductors are usually grown on rigid, planar substrates, which means they are not intrinsically 
flexible. In order to render Micro-LEDs with flexibility, several strategies must be considered, including 
substrate removal, chip transfer printing, and certain mechanical design for enhanced stretchability 
[Figure 1].

Substrate removal
Thickness reduction by substrate removal can impart certain flexibility to Micro-LEDs. Two major 
strategies have been developed to take off the growth substrate: laser lift-off (LLO)[6,35,36] and epitaxial lift-off 
(ELO)[37-43]. LLO exploits the laser energy absorption at the LED layer/substrate interface, which leads to the 
release of Micro-LEDs from the substrate due to the high-temperature induced material decomposition at 
the interface[35] [Figure 1A]. Prior to LLO, the LED wafer is temporarily bonded to a supporting carrier. 
High-energy laser scanning leads to the transfer of a thin membrane to the supporting substrate. ELO, on 
the other hand, is a technique based on a modified epitaxial structure, where a sacrificial layer is 
incorporated in the epi-stack to assist the release of Micro-LEDs grown on the sacrificial layer[38]. Depending 
on specific release layers, two ELO principles have been established: chemical (CLO)[43-46] and mechanical 
lift-off (MLO)[37,38]. In the case of CLO, the sacrificial layer can be removed by chemical solvents, resulting in 
released thin film Micro-LEDs [Figure 1B]. For MLO, a handling carrier (for instance, a tape) is used to peel 
off the epi-stack grown on the release layer directly due to the significantly weakened bonding of the epi-
layer to the substrate [Figure 1C]. Two-dimensional (2D) material-assisted epitaxy or remote epitaxy has 
emerged to fulfill this purpose[39-42,47-49]. Growth on voids or porous templates can also lead to successful 
MLO[50,51]. However, MLO is usually done manually, making it difficult to accurately control the process 
with good reproducibility. By contrast, CLO is more controllable, which has witnessed commercial success, 
especially for the fabrication of solar cell modules[52,53].
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Figure 1. Strategies toward the fabrication of deformable Micro-LEDs, including substrate removal (A-C), micro-assembly (D-F), and
mechanical design (E-I). Schematics for the substrate removal methods, including (A) laser lift-off, (B) chemical lift-off, and (C)
mechanical lift- off[35]; Representative transfer methods for Micro-LED integration on curvilinear substrates reported recently, including
(D) ballon-shaped stamp transfer[60], (E) roller transfer[11], and (F) photosensitive tape-assisted transfer[17]; Typical mechanical
structure designs for improved stretchability of Micro-LED devices, including (G) island-bridge design[61], (H) buckling structures[16],
and (I) Kirigami structures[9]. Figure 1A-C reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International
license[35]; Figure 1D adapted with permission from ref.[60]. Copyright 2021 Springer Nature; Figure 1E reproduced under the terms 
of the CC-BY Creative Commons Attribution 4.0 International license[11]; Figure 1F reproduced under the terms of the CC-BY 
Creative Commons Attribution 4.0 International license[17]; Figure 1G reproduced under the terms of the CC-BY Creative Commons 
Attribution 4.0 International license[61]; Figure 1H adapted with permission from ref.[16]. Copyright 2009 AAAS; Figure 1I adapted with 
permission from ref.[9]. Copyright 2022 Wiley-VCH. Micro-LED: Micro-scale light-emitting diode.

Micro-assembly
System-scale flexibility can be partially enhanced by micro-assembling Micro-LEDs onto soft 
substrates[35,54-56]. With shrinking the Micro-LED size and thickness into the micro-scale regime, fast and 
accurate manipulation of Micro-LEDs in a reliable manner becomes a critical challenge. Several micro-
assembly techniques have been established to partially address this issue, including the pioneering stamp 
transfer printing methods[15,16,56,57], where an elastic polydimethylsiloxane (PDMS) stamp picks up the 
microscale device from the source wafer and then releases it to a receiver. To assist the transfer, Micro-LEDs 
are commonly patterned in a manner such that they are weakly suspended on the growth substrate by using 
anchors or undercut microstructures[7]. Other popular methods include laser-based[6,58] or fluid-assisted 
micro-assembly[55,59], which have competing advantages in terms of the transfer speed. While most of them 
do work for transfer printing microscale devices to planar surfaces, some present poor combability for 
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integrating Micro-LEDs onto a flexible or curvy substrate, primarily because the conventional planar stamps 
are difficult to be in conformal contact with the curvy/flexible surface. The issue can be partially alleviated 
by micro-assembling Micro-LEDs onto a planar soft substrate fixed on a temporary hard substrate. The 
temporary supporting substrate is then removed, enabling the integration of Micro-LEDs onto soft 
substrates[6]. Alternatively, several modified micro-assembly methods have been developed to address the 
challenge of Micro-LED integration onto curved substrates directly [Figure 1D-F]. Rao et al. developed a 
ballon-shaped stamp for printing micro-scale devices onto a curvy surface[60] [Figure 1D]. Hu et al. 
proposed using a roller stamp for flexible Micro-LED integration[11] [Figure 1E]. Guo et al. developed a 
photosensitive polymer adhesive stamp-based method[17] [Figure 1F]. These approaches exhibit excellent 
capability for micro-assembling micro-scale chips onto both planar and curvilinear surfaces due to the 
improved conformity with the receiver and adhesion switchability. However, transfer speed, printing yield, 
and placement accuracy are key factors that need continuous improvement, especially for the device 
integration onto curvy substrates.

Mechanical structure design
The brittle nature of Micro-LEDs prevents the system (i.e., Micro-LEDs and integrated substrates) from 
accommodating large strain induced by bending, especially in the localized areas close to Micro-LEDs. Extra 
mechanical design can provide further room to enhance the system performance and stretchability. 
Representative strategies toward enhanced deformation of Micro-LEDs include island-bridge[15,61,62], 
buckling[16,63], and kirigami/origami structures[9,60]. Stretchable Micro-LEDs with the island-bridge 
configuration have rigid island arrays (where these LEDs are fixed) and meandering metallic interconnects 
connected to individual islands[61] [Figure 1G]. In this structure, the Micro-LED devices on the rigid islands 
are hardly affected by external strain, whereas the meandering interconnects, which are commonly 
patterned into serpentine or noncoplanar arc-shapes, can tolerate most of the strain and geometric 
deformation. Stretchable Micro-LED devices can also be achieved by incorporating buckled structures[16] 
[Figure 1H], inspired by the fact that a flexible film on a pre-stretched soft substrate (e.g., PDMS) can turn 
into periodically wrinkled structures once the pre-stressed substrate is relaxed. Such wrinkle structures can 
be flattened if the substrate is re-stretched, which allows the flexible devices to be stretched without 
mechanical failure. Micro-LED integrated onto a substrate with kirigami/origami structures is another 
smart strategy for fabricating stretchable Micro-LEDs[9] [Figure 1I]. The 2D stress exerted on the Micro-
LED device can be significantly reduced via 3D shape transformation induced by the cutting/folding lines, 
thereby mitigating stress concentrations around the Micro-LED devices.

EMERGING APPLICATIONS
With the above innovations in material epitaxy, chip transfer, device fabrication, and mechanical designs, 
great progress has been made toward developing advanced deformable Micro-LEDs with expanded 
functionalities for applications such as advanced displays and healthcare.

Deformable displays
Currently, most display electronics take the rigid, planar shape, but in the future, foldable/flexible displays 
may become the mainstream products. To this end, Micro-LEDs in deformable formats have undergone 
intensive research recently due to their higher luminescent efficiency and longer lifetime than their organic 
counterparts. Industrial research in this field has led to great progress in developing deformable Micro-LED 
display prototypes with encouraging performances. For instance, AU Optronics successfully demonstrated a 
9.4-inch 228-ppi flexible Micro-LED display integrated onto a flexible low-temperature polysilicon thin-film 
transistor (LTPS-TFT) backplane based on fine-pitch flip-chip bonding, followed by LLO to take off the 
temporary supporting carrier[12] [Figure 2A]. The display features a high contrast ratio of > 1,000,000:1, a 
brightness of up to 700 nits, good display uniformity, and minimized color shift at any off-axis viewing 
angles, revealing its potential for high-resolution flexible automotive applications. Royole Co. demonstrated
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Figure 2. Deformable Micro-LEDs for applications in (A-D) advanced displays and (E and F) healthcare. (A) 4-inch flexible full-color
active-matrix display integrated onto TFT backplane by LLO[12]; (B) Stretchable display based on island-bridge structures[64]; (C)
Distortion-free stretchable display based on 2D Kirigami structures defined by laser cutting[10]; (D) 3D foldable display based on an
origami structure design[19]; (E) Wearable contact lenses for the treatment of diabetic retinopathy[29]; (F) Wirelessly powered, dual-color
implantable probes for optogenetics[28]. Figure 2A adapted with permission from ref.[12]. Copyright 2021, Wiley-VCH; Figure 2B adapted
with permission from ref.[64]. Copyright 2021, Wiley-VCH; Figure 2C adapted with permission from ref.[10]. Copyright 2022, Wiley-VCH;
Figure 2D adapted with permission from ref.[19]. Copyright 2020, Wiley-VCH; Figure 2E reproduced under the terms of the CC-BY
Creative Commons Attribution 4.0 International license [29]; Figure 2F reproduced under the terms of the CC-BY Creative Commons 
Attribution 4.0 International license[28]. Micro-LED: Micro-scale light-emitting diode; TFT: Thin-film transistor; 2D: two-dimensional; 
3D: three-dimensional.
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a 2.7-inch 42-PPI stretchable Micro-LED display based on an island-bridge structure in combination with 
buckling[64] [Figure 2B]. The obtained device panel can be normally operated under biaxial stretching, free 
from twisting and poking, revealing its excellent capability for tolerating large deformation.

Academic research, on the other hand, has led to the development of some unusual deformable displays 
with expanded functionalities that common ones cannot provide. Jang et al. demonstrated using Micro-
LEDs fabricated on a 2D kirigami electrical circuit board to realize an auxetic distortion-free meta-display 
with a stretchability of 24.5% and Poisson’s ratio of -1 under uniaxial stretching[10] [Figure 2C]. The concept 
constitutes a remarkable improvement over the common stretchable displays, which can lead to the 
deterioration of the reduced resolution per unit area and the blurred display image quality when subject to 
large mechanical stretch. Kim et al. demonstrated a hexahedral LED array with general row and column 
control lines by laminating Micro-LED devices to an acrylonitrile butadiene styrene (ABS) film, followed by 
selective plasticization and transformation, forming nondisruptive tucking-based origami at the electronics 
level[19] [Figure 2D]. The novel origami structure and fabrication process, combined with laminated Micro-
LEDs, pave the way toward developing 3D foldable displays.

Wearable devices for healthcare
Apart from displays, deformable Micro-LEDs attachable to skins or implantable to human/animal bodies 
can be used as wearable light sources for healthcare purposes. For instance, Lee et al. demonstrated a 
wirelessly powered smart contact lens based on infrared Micro-LEDs [Figure 2E][29]. The contact lens with 
integrated Micro-LEDs can be conformally attached to the eyeball, effectively treating diabetic retinopathy 
that can cause vision loss and blindness in people with diabetes. Li et al. developed an implantable, wireless-
powered dual-color Micro-LED probe for bidirectional optogenetic modulations[28] [Figure 2F]. The 
lightweight device has good biocompatibility, reduced dimensions and good portability, constituting 
remarkable improvements over conventional implantable LEDs driven by external wires and batteries, 
which restrict the natural motion and social interactions of animals. Self-powered, battery-free flexible 
Micro-LED-based Optogenetic Systems have also been reported to further reduce the system weight[20,65]. 
Zhang et al. demonstrated a wirelessly powered Micro-LED patch for local tissue oximetry, which allows 
effective monitoring of the regional tissue oxygenation in animal models[66]. Such a Micro-LED-based tissue 
oximeter can create many opportunities for studying various O2-mediated processes in naturally behaving 
subjects, with implications in biomedical research and clinical practice. Phan et al. reported a flexible and 
wireless Micro-LED patch with an internet of things (IoT) healthcare platform for wound healing 
applications, which opens tremendous opportunities for remote healthcare with cost-effectiveness in the 
future[67].

CONCLUSIONS AND REMARKS
Technological advancements in substrate removal, transfer printing and mechanical designs have enabled 
the fabrication of deformable Micro-LEDs in flexible/stretchable formats. These devices not only reserve 
their excellent optoelectronic performance but also exhibit substantially improved flexibility and better 
reliability than rigid counterparts, making them suited for potential application in areas such as unusual 
deformable displays and wearable devices for healthcare. It is envisioned that deformable Micro-LEDs will 
lead to a technological revolution in the future display industry.

However, before practical applications of deformable Micro-LEDs, several issues need to be addressed. First, 
further improving the mechanical properties of Micro-LEDs is urgently required. While some novel 
mechanical designs, such as island-bridge and buckling structures, can be adopted to enhance the system 
stretchability, these concepts lead to reduced pixel resolution and compromised filling factors. Innovations 
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in intrinsically stretchable conductors/substrates[68] (for instance, replacing the meandering interconnects 
using intrinsically stretchable conductors/substrates) and more accurate micro-assembly processes should 
be considered to simultaneously achieve excellent stretchability and resolution. Vertical stacking of multi-
color Micro-LED chips may be another useful strategy toward further enhanced resolution of the flexible 
device[38]. Second, the long-term operation stability and biocompatibility of such deformable Micro-LEDs in 
bio-environments needs to be clearly established, especially for healthcare purposes. These devices 
encapsulated by bio-polymer generally can tolerate harsh environment attacks. However, whether they have 
any long-term side effects on the skin or human organs needs to be confirmed. It has been known, for 
example, that wearable devices with poor air permeability can affect the long-term wearing comfort[69]. 
Bonding failure at the Micro-LED/soft substrate interface is another issue worth future investigation. It may 
be worthwhile to develop intrinsically stretchable solders that can enhance the interfacial bonding strength. 
It is also urgently needed to develop flexible Micro-LEDs with full-color emitting capability. Monochromic 
Micro-LEDs combined with flexible quantum dot patterns[70], for example, may be a practical approach 
toward full-color wearable displays in the future. Finally, a system-scale, universal fabrication process for 
wearable Micro-LEDs is required. Currently, most fabrication techniques are only demonstrated at the 
laboratory, lacking consistent reproducibility. There is still a long way to extend the lab concept to large-
scale fabrication.
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