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Abstract
Keloid is a fibroproliferative disorder resulting from the abnormal wound healing process, and it causes both 
cosmetic concerns and functional disabilities. Genetic predisposition, wound trauma, foreign body reaction, 
mechanical stretch, and immune dysfunction are common risk factors, but there remain mechanisms unclarified, 
leaving challenges in addressing the clinical concerns of recurrence and resistance. However, similar patterns of 
growth and metabolism between keloids and cancers provide a unique insight into the future exploration of keloid 
pathogenesis. Psychological stress has been demonstrated to be involved in the development and drug resistance 
of multiple cancers, but this aspect remains less-explored in keloids. Clinical observations and published 
investigations have noticed that persistent stress is common among keloid patients and their symptoms tend to 
deteriorate under stressful conditions. Following a thorough review of the published literature, we have identified 
three signaling pathways that might imply how stress hormones are likely to influence the keloid pathogenesis via 
activating adrenergic receptors and dysregulating the immune system. Thus, we hypothesized that psychological 
stress would be a key risk factor for keloid development via stimulating fibrosis, aggravating local hypoxia, and 
inflammation.
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INTRODUCTION
Keloids give rise to both cosmetic concerns and functional disabilities as a result of fibroproliferative disorder 
and excessive collagen deposition after abnormal wound healing. Furthermore, subjective symptoms 
derived from this disease such as pain and pruritus could dramatically affect patients’ quality of life by 
causing significant psychological stress. Previous studies have revealed that the genetic background, wound 
trauma, foreign body reaction, mechanical stretch, and immune dysfunction are critical risk factors for 
keloid development, but the exact mechanism of keloid formation could be more complicated than what 
has been found and other risk factors are also likely to be involved, posing challenges to clinical treatment. 

Described as “the non-specific response of the body”[1], psychological stress has a complicated and 
profound influence on the functional state of affected human bodies by secreting various stress hormones. 
These primarily include glucocorticoids through the activation of the hypothalamic-pituitary-adrenal 
axis and catecholamines through the sympathetic nervous system[2]. Glucocorticoids can significantly 
affect cell metabolism and immune functions in the long term, while the effects of catecholamines 
[norepinephrine (NE), epinephrine (E)] are mediated via binding to α-adrenergic receptors (α-AR) or 
β-adrenergic receptors (β-ARs) facilitating the human body to react to all kinds of stressors. However, if 
the stressful situation becomes overwhelming, the combined action of stress stimulators remains persistent 
the physiologically maintained balance maybe disrupted leading to enhancement of pathophysiological 
processes for multiple diseases. 

Psychological stress has been indicated for contributing to cancer development for decades. For example, 
in patients with lung cancers, stress has become an established predictor of mortality[3]. Stress hormones 
(NE, E) can also promote resistance to tyrosine kinase inhibitors (TKIs) of epidermal growth factor 
receptor (EGFR) in non-small cell lung cancer (NSCLC)[4] and increase tumor-derived interleukin-6 (IL-6) 
overexpression in ovarian cancer cells[5]. Featured with uncontrollable proliferation, invasiveness, and 
glycolysis-dominant metabolic pattern[6], keloids are regarded as benign skin tumors and the accumulating 
literature evidence suggests that certain pathogenic signaling pathways might be shared between keloids 
and tumors. As an example, the elevation of IL-6 level, which was determined as a promoting agent in 
NSCLC resistance and its poor prognosis, has also been identified to contribute to keloid formation[7]. 
Therefore, it would be reasonable to investigate whether psychological stress influences keloid pathogenesis 
and explore the potential of stress hormones (NE, E) as therapeutic targets.

The psychological and mental impacts of pathological scars have been studied in clinical settings and been 
reported in an investigation among a black African population. Of this, 48.9% of keloid patients thought 
they were stigmatized and 35.8% complained about their limited social interactions[8]. Furtado et al.[9] from 
Brazil have reported psychological stress as a risk factor for postoperative keloid recurrence in a clinical 
study and proposed a novel psycho-neuro-immune-endocrine etiology where they pictured a macroscope 
of the “brain-skin connection” in keloid pathogenesis without mentioning detailed pathways[10]. For quite a 
long time, the potential association between stress hormones and keloid pathogenesis has been neglected 
according to Pubmed and Embase database searched with key words: keloid AND stress, keloid AND 
psychological stress, keloid AND mood disorders. By analyzing the published evidence with regards to 
bio-active molecules in keloid tissues and the effects of stress hormones (NE, E) on skin fibroblasts and 
immune cells (macrophages) in vitro and immune cytokine profiles both in vitro and in vivo, we outline in 
this manuscript three possible signaling pathways that might explain these phenomena.
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HYPOTHESIS
The psychological and mental state of keloid patients has been investigated and observed in clinical 
practice, but unfortunately, the association between the psychological stress-induced pathological 
alterations in keloids has been neglected. Based on the published literature, we propose the hypothesis that 
psychological stress can be a risk factor of keloid development as stress hormones (NE, E) might contribute 
to keloid pathogenesis [Figure 1]. Therefore, attenuating the AR-receptor function(s) may enhance the 
efficacy of traditional keloid treatments and reduce the therapeutic resistance. The following sections 
provide a detailed description of the hypothesis with related supporting evidence from the literature. 

EVALUATIONS OF THE HYPOTHESIS: THE PROMOTING EFFECT OF PSYCHOLOGICAL 

STRESS ON KELOID PATHOGENESIS
Stress hormones could increase IL-6 expression to enhance fibrosis via activating β-ARs
As a critical mediator of fibrosis[11-14] and inflammation[15], elevated IL-6 level has been identified in both 
keloid tissues and psychologically stressed population. Other studies revealed that the stress hormones 

Figure 1. Three possible pathways that may explain how stress hormones (NE, E) could induce abnormal cytokine profiles and 
inflammatory responses. TGF: transforming growth factor; TNF: tumor necrosis factor; AR: adrenergic receptors; IL: interleukin; NE: 
norepinephrine; E: epinephrine



(NE, E) increased IL-6 expression and increased resistance in NSCLC patients[4]. Therefore, we hypothesize 
that the psychological stress (NE, E) might stimulate keloid pathogenesis by enhancing IL-6 expression 
via activating β-ARs, and the use of β-blockers such as propranolol might facilitate the efficacy of current 
keloid treatments.

IL-6 is one of the Th1 type cytokines related to pro-fibrosis and inflammation[16,17], which has been regarded 
as a marker of keloid progression. A significant increase of IL-6 and IL-6 signaling elements was observed 
in keloid fibroblasts (KFs) compared to normal fibroblasts (NFs)[7]. Moreover, the induction of IL-6 by IL-6 
peptide in NF cultures or inhibition of IL-6 or IL-6Ra by their corresponding antibodies in KF cultures 
rendered a dose-dependent increase or decrease in the synthesis of collagen type I[7]. This was possibly the 
result of the suppression of matrix metalloproteinases (MMPs) at mRNA level and pro-matrix MMPs at the 
protein level[18]. Besides, a Japanese population-based study involving IL6R genotypic and allelic analyses 
among 239 normal and 376 keloid patients revealed that the IL-6 572G/C polymorphism is associated with 
susceptibility to keloid formation and the severity of keloid scarring[19]. 

Multiple stress models have confirmed that a higher plasma level of IL-6 was also observed in people 
with depressive symptoms or at a stressed state (for example, angry couples after a domestic conflict or 
vaccination with an influenza virus vaccine)[20,21], suggesting a stress hormone (NE, E)-mediated IL-6 
augmentation. 

The importance of psycho-physiological interactions has gained increasing attention recently, and NE-
induced IL-6 elevation has been taken as a predictor of treatment resistance and poor outcomes in 
certain cancers. For example, researchers found that by binding to β2-ARs, stress hormones (NE, E) can 
subsequently induce IL-6 expression via suppressing liver kinase B1 and activating cAMP-responsive 
element-binding protein. Therefore, Combinational treatments with propranolol (β-AR inhibitor) could 
effectively lower the IL-6 concentration and prolong the progression-free survival in EGFR TKIs resistant 
patients[4]. Apart from lung cancers, it was also observed that the NE/E induced activation of ARs also 
resulted in a similar increase of IL-6 in ovarian cancer cells[5].

The β-ARs have been suggested as potential pharmacologic targets of catecholamine actions that influence 
numerous physiological and metabolic activities systemically in human bodies[22,23]. Both in vitro and in vivo 
studies of β-ARs carried out over the past decades focused mainly on their effects on cardiac function, 
whereas reported studies on non-cardiac β-blocker effects focused on their roles in the wound healing 
process[22]. Propranolol is a representative nonselective β-adrenergic blockade agent with promising 
efficacy in rhythm disturbances and hypertension. It was found that in propranolol-treated animals, wound 
contraction and the formation of the neo-epidermis and granulation tissue were delayed[22]. de Mesquita[24] 
hypothesized that systemic or intralesional injection of propranolol could serve as a novel cure of 
keloids because of its potential to induce vasoconstriction in over-proliferating tissues, trigger apoptosis 
of endothelial cells, and modulate inflammatory process during wound healing. Moreover, one single-
institution case-control study in 2017 also observed better scar formation in post-surgery patients who 
were administrated with β blockers[25]. It is noteworthy that patients with abnormal scar histories or family 
tendency are excluded in this study, and the administration of other hypertension drugs such as calcium 
channel blockers showed no association with the scar quality, a phenomenon that indirectly supports our 
hypothesis that adrenergic activation might be an independent risk factor for the pathogenesis of keloid 
and hypertrophic scars[25]. Noticeably, yearlong administration of oxandrolone and propranolol successfully 
reduced scar severity and pliability in the -post-burn hypertrophic scar patients and their emotional 
health state was also improved[26]. Encouraged by the findings of the propranolol-based study showingthe 
reduction in NE-induced IL-6 elevation with an altered prognosis of NSCLC patients and the studies 
outlined above, we strongly propose that it might be promising to use propranolol for targeting β-ARs on 
keloid cells to disrupt IL-6 mediated keloid pathogenesis.
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Stress hormones could activate α-ARs to promote keloid formation by enhancing growth-
related responses and aggravating local hypoxia environment
The α-ARs are another group of adrenergic receptors that were found to be increased in keloid tissues 
and peripheral sensory neurons of scarred skin. Stress hormones could activate α-ARs to promote keloid 
formation by enhancing growth-related responses and aggravating the local hypoxia environment. 
Furthermore, their enhanced expression was associated with cell proliferation, inflammation, and 
uncomfortable symptoms of pain and pruritus in hypertrophic scars. 

Activated α-ARs can evoke growth-related responses after bonding to stress hormones (NE, E). For 
example, the α-1B subtype stimulates cell proliferation[27-29] and the activation of the α-1A subtype 
evokes protein biosynthesis and cell hypertrophy[30]. Tissue biopsy and immunohistochemistry detected 
an increase of α-ARs in keloid scars compared to burn scars and unscarred skins in the regenerated 
epidermis, dense bands of cells in the upper dermis and collagen fibers in the deep dermis, coinciding 
with the inflammatory and proliferative stage[31]. Since it was reported that injury-induced growth-related 
responses are α1-AR subtype-dependent[32-34], over-expression of α1-ARs might result in both hyperplasia 
and hypertrophy of fibroblasts and vascular smooth muscles in keloid tissues. Moreover, the adrenergic 
activation of fibroblasts could increase the production of extracellular matrix proteins (such as collagen 
and fibronectin) and the expression of α1-ARs in peripheral sensory neurons was in line with enhanced 
sensitivity to adrenergic agents in injured tissues, suggesting that the up-regulation of α1-ARs might not 
only be involved in the inflammation and wound healing processes, but also be a significant source of pain, 
itching, and hyperaesthesia[31].

Apart from α1-AR-induced growth-related responses that have been discussed, the vasoconstriction caused 
by activated α1-ARs in vascular smooth muscles is another important aspect that could aggravate the local 
hypoxia of keloid microenvironment and trigger hypoxia-related pathogenesis. Hypoxia is a common 
environmental stress factor associated with various physiological and pathological conditions, including 
angiogenesis, cell proliferation, glucose metabolism, pH regulation, and migration[35,36]. Accumulating 
evidence suggested an anoxic microenvironment is crucial in keloid pathogenesis because of abnormal 
hypoxia-associated occluded microvessels, which is also partially responsible for keloid resistance to 
radiation therapy[37]. It was observed that the central area of keloid is severely ischemic, exhibiting higher 
hypoxia-inducible factor-1a (HIF-1a) expression and lower vascular density than their marginal areas and 
normal skin borders[38,39]. The HIF-1α is also involved in the inflammatory process by regulating angiogenesis 
and inflammatory cell functions[40-42]. Blocking HIF-1 signal pathways by either 2ME2 or HIF-1α siRNA 
has been shown to successfully increase the radiation-induced apoptosis in keloid fibroblasts[37]. Hypoxia 
can also drive the transition of human dermal fibroblasts to a myofibroblast-like phenotype via the 
transforming growth factor -β1/SMAD3 pathway[36], and increase the expression of vascular endothelial 
growth factor (VEGF) in keloids[35,38]. Glycolysis, the major glucose metabolic pattern for keloid tissues, 
could also interact with hypoxia and promote the lactate accumulation, resulting in excessive collagen 
production and fibrogenic activities[43].

Stress hormones might influence keloid formation by dysregulating the immune system and 
inflammation
The classical model of wound healing involves three distinct but overlapping phases that chronologically 
occur as the inflammatory, the proliferative, and the remodeling phases. Disturbance of these processes, 
especially the prolonged and excessive inflammatory reactions could lead to an increase of fibroblast 
activities and excessive extracellular matrix (ECM) production[44]. The available evidence indicates that 
malfunction of the immune system and inflammation might be involved in keloid formation. Keloid 
tissues are highly infiltrated with various immune cells, immunoglobulins and complements[45], as well as 
growth factors, cytokines and proteases, such as IL-6, tumor necrosis factor (TNF), transforming growth 
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factor-β (TGF-β), platelet-derived growth factor (PDGF) and epidermal growth factor (EGF)[46,47], which 
are critical for the migration, proliferation and collagen synthesis of fibroblasts. Moreover, previous studies 
have demonstrated that the expression of several immune-related genes was also dysregulated in keloid 
tissues[48,49]. 

The elevated C-reactive protein (CRP, a marker of inflammation) plasma concentration in caregivers 
of Alzheimer’s patients[50,51] also implied that psychological stress was a potent inducer of the chronic 
inflammation state. Analysis of stress models revealed that stress hormones (NE, E, glucocorticoid) have 
detrimental effects on immune functions as well as the inflammation process from various aspects[52]. Here 
are some keloid-associated inflammatory molecules or mechanisms that have been identified dysregulated 
in stressed conditions.

TGF-β
TGF-β is probably the most fibrogenic factor associated with keloid formation by acting as a strong 
chemotactic agent for fibroblasts[53] and increasing cell rigidity through TGF-β1 receptor-smooth muscle 
actin axis[54]. It is also known as a regulatory resolution factor that can induce remodeling within sites of 
damaged tissues upon mood disorder-associated inflammatory processes[15].

In the inflammatory and proliferative phase, degranulation of platelets releases and activates several 
fibrogenic growth factors and chemotactic agents including TGF-β1 and TGF-β2[44], to increase the 
corresponding receptors and responsiveness compared to fibroblasts from normal tissues[55-58]. Although 
there is no direct evidence that stress hormones can enhance the efficacy of TGF-β in keloids, it is 
nevertheless clear that TGF-β plays a pivotal role in keloid formation and stress-derived inflammatory 
conditions. 

The cells and cytokines
CD4 T cells express T helper lymphocyte (Th)1 or Th2 responses, while glucocorticoids are thought 
to cause a shift from Th1 to Th2 cytokines by downregulating Th1 cytokines and upregulating Th2 
cytokines[59]. Th1 responses produce interferons and IL-12 and are thought to be related to the attenuation 
of fibrogenesis, whereas Th2 responses (IL-4, IL-5, IL-10 and IL-13. IL-1, and IL-6) are generally related to 
fibrogenesis, among which IL-4, IL-5, IL-6, and IL-13 are thought to be essential for promoting fibroblast 
recruitment and proliferation, ECM deposition, angiogenesis and re-epithelialization[16,17,47] (except for 
IL-10, which are mainly related to anti-fibrosis[60-62]. In a published report, stress was associated with a 
decrease in IL-2 receptor (IL-2R) mRNA levels and the protein expression in peripheral blood leukocytes 
compared to the baseline[63]. In a longitudinal study over 6 years, caregivers and former caregiver’s (a kind 
of stress model) showed elevated plasma IL-6 levels that increased at a rate four times faster than those of 
age-matched controls[50]. Elevation of serum IL-6 (a marker of inflammation) levels have been previously 
described in both chronically stressed older adults[64] and keloid patients. Since a clear NE-IL-6 pathway has 
been identified in NSCLCs and ovarian cancer[4,5], we presumed that a similar NE-induced IL-6 elevation 
might exist in keloid. Stress hormones and related receptors could thus serve as feasible therapeutic targets. 

Macrophages and treg cells
Macrophages are divided into two subsets, the IL-12- and inducible nitric oxide synthase (iNOS)-expressing 
M1 type and the IL-10- and TGF-β-expressing M2 type[65]. The classically-activated (M1) cells that secrete 
pro-inflammatory cytokines, whereas alternatively-activated (M2) cells that foster tissue repair and 
regeneration[66,67]. It was found that M1-associated genes, including iNOS and IL-12, were less elevated in 
keloid tissues than M2-associated genes, including IL-10 and TGF-β[68], suggesting that macrophages in 
keloids were shifted toward the M2 polarization.
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The Foxp3+CD4+ regulatory T (Treg) cells represent a critical T cell subset, the dysfunction of which was 
implicated in multiple inflammatory diseases[69]. While the normal skin displays a relative lack of CD3+ T 
cells, the levels of Foxp3+ Treg were significantly higher in keloid tissues (range of 25.5%-72.5%) in contrast 
to those in the circulation of keloid patients (4%-10.5%)[68]. Additionally, it was also observed in the same 
research that incubating circulating CD3+ T cells with keloid macrophages could significantly raise the 
expression of Foxp3, suggesting that these keloid macrophages could promote Treg differentiation by 
upregulating Foxp3 expression.

Even though no research on the levels of macrophages and depression in patients with skin conditions has 
been reported thus far, other previous studies did show that the activation and polarization of microglia 
(central nervous system-resident macrophages) could modulate the production and secretion of pro-
inflammatory cytokines, implicating the involvement of macrophages in the etiology of major depressive 
disorder, which was referred as the “macrophage theory of depression”[70]. In light of this, it could be argued 
that an abundance of pro-inflammatory cytokines induced by the altered profile of macrophages inside 
keloids might exist, and further investigations, therefore, need to be performed in keloid patients with 
diagnosed depression. 

The tumor necrosis factor
TNF produced by monocytes and macrophages during the inflammatory phase has been known to induce 
collagen degranulation and minimize excessive scarring possibly by increasing the MMP1/TIMP3, MMP2/
TIMP3 ratios[71]. 

Various animal and patient-based clinical studies have demonstrated the associations between the 
concentration of pro-inflammatory cytokines, specifically IL-1β, IL-6, TNF, and depressive symptoms[15]. 
They also showed a general normalization (decline) of IL-6 and TNF concentration after antidepressant 
treatment[72,73].

CONCLUSION
As a benign skin tumor outgrowing the original wound boundary or growing spontaneously on the 
normal skin, keloid can bring great pain and inconvenience to patients. Although risk factors such as genes 
and infection have been noticed, the pathologic mechanisms remain unclear, leading to challenges for 
treatment resistance and keloid recurrence, including 9%-50% recurrent rate of the corticosteroid injection, 
45%-100% recurrence rate of the surgical removal and 9.59% relapse rate of the radiotherapy[44]. 

Psychological stress evoked by traumatic events and depressive conditions has huge impacts on the overall 
health state. Through stress hormones (NE, E, glucocorticoids) and their respective receptors, tissue-
specific responses are triggered as well as the general modulation of the immune system and inflammation. 
Studies have confirmed that stress hormones are critical for the initiation and development of multiple 
diseases[2,3,52], but the impact of psychological stress on keloid pathogenesis has been neglected.

As for keloid patients, the original trauma, uncomfortable feelings, together with the cosmetic concerns 
are all potent and constant underlying stressors, which make them very likely to be trapped in a stress-
intensive state. Therefore, psychological stress is a pivotal and inevitable element that should be taken into 
consideration in formulating optimal treatment regimens. In view of the reviewed literature, especially with 
regards to stress hormone-induced cellular and physiological changes observed during psychological stress, 
we advance the hypothesis that stress hormones (NE, E) may participate in the keloid formation by: (1) 
increasing the expression of keloid-associated IL-6 via activating β-ARs; (2) triggering growth responses of 
fibroblasts and symptoms(pain and pruritus) in scar tissues by directly activating α-ARs; (3) exacerbating 
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the local hypoxia conditions; and (4) dysregulating immune systems to provide an inflammatory 
microenvironment that is in favor of keloid formation, thus promoting keloid pathogenesis.

Although the impact of psychological stress on the pathogenesis of diseases, such as cancers, has been 
known for decades, its relevance and impact concerning keloid pathogenesis and therapy have barely been 
studied. Although the stressed state in keloid patients has been well-observed during clinical practice 
and demonstrated by investigations in an African population, more direct evidence are required in the 
future. For example, current studies have detected elevated adrenergic receptors, but the concentration 
and distribution of catecholamines in keloid tissues remain uninvestigated, so are specific cytokines and 
immune cells in the targeted population. Clinically, large-scale evaluations of psychological stress among 
keloid patients should also be undertaken as a follow up to “as a proof of principle” pilot studies. Moreover, 
studies combing α, β-receptor antagonists and anti-depressant medicines with conventional keloid 
therapies could be explored in future clinical trials to realize better treatment outcomes.
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