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Abstract
Solar-driven photocatalysis hydrogen evolution is a promising method to generate hydrogen from water, a green 
and clean energy source, using solar and semiconductors. Up to now, TiO2 still represents the most inexpensive 
and widely studied metal oxide semiconductors for photocatalysis. TiO2 coupling with other semiconductors to 
form heterojunctions is considered an efficient way to improve photocatalytic performances. In this review, TiO2-
based heterojunctions are classified into conventional, p-n type, Z-scheme, S-scheme, and other heterojunctions 
based on their band structures. The photocatalytic mechanisms of various types of heterojunctions are described in 
detail. In order to rationally design and better synthesize heterojunctions with excellent performance, the 
contribution of theoretical calculations to the field of TiO2-based heterojunction photocatalysts and the key role of 
theoretical prediction are also discussed. Finally, the opportunities and current challenges to promote 
photocatalytic performance are provided to assist the design of TiO2-based heterojunction photocatalysts with 
superior performance.

Keywords: TiO2-based heterojunction, photocatalytic hydrogen evolution, DFT and experiment, heterojunction 
type
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INTRODUCTION
Energy and environmental crises are the two key global issues in the wake of rapid industrial development 
and population growth[1-3]. Developing new and cleaner energy technologies to address the problems is 
extremely necessary[4,5]. Among the numerous emerging new energy technologies, photocatalysis hydrogen 
evolution technology that mainly utilizes solar energy to generate hydrogen from water is a clean, green, 
and environmentally friendly way and thus has been favored by increasing researchers[6-8].

Since the discovery by Fujishima in 1972, water could be decomposed into oxygen and hydrogen on TiO2 
electrodes under light[9]. TiO2 represents a typical photocatalyst that is an inexpensive, environmentally 
friendly, and stable n-type semiconductor [Figure 1][10]. Currently, TiO2-based photocatalysts play a pivotal 
role in the fields of pollutant degradation treatment, hydrogen evolution, and oxygen evolution [Figure 1]. 
Due to the high specific surface area of anatase TiO2, more active electrons are generated more easily by 
photoexcitation. So, anatase TiO2 is the most studied photocatalyst[11]. However, due to the wide bandgap of 
TiO2, it is only responsive to ultraviolet (UV) light, limiting its development in photocatalysis[12,13]. To 
address this problem, it has been reported that coupling TiO2 with other semiconductors to form 
heterojunctions can effectively improve the light absorption range and promote the separation of 
photogenerated electron-hole(e-/h+) pairs to enhance the photocatalytic activity. At present, researchers 
have developed a large number of TiO2-based heterojunction photocatalysts, such as g-C3N4/TiO2

[14], b-N-
TiO2/Ag3PO4

[15], and TiO2/FePS3
[16].

In recent decades, TiO2-heterojunction photocatalysts have achieved substantial advancements in 
photocatalytic H2 evolution. This review primarily examines the progress of TiO2 heterojunction 
modifications for H2 evolution photocatalysis since 2019. Given the growing interest in photocatalytic H2 
evolution, summarizing recent studies on TiO2-based heterojunction photocatalysts is crucial to propel 
practical applications. Herein, heterojunctions are categorized as Type-I, II, III, p-n, S-scheme, Z-scheme, 
and other semiconductor types based on energy band arrangement. Emphasis will be placed on (1) the 
mechanism of TiO2 photocatalysis hydrogen evolution; (2) details of the mechanism of action of various 
types of heterojunctions and recent advances in the field of photocatalysis hydrogen evolution; (3) a 
summary and comparison of the hydrogen evolution rates for different types of heterojunction 
photocatalysts; (4) the importance of density-functional theory (DFT) calculation in the field of 
heterojunction photocatalysis is outlined; and (5) challenges and prospects for the construction of advanced 
TiO2-based heterojunctions.

FUNDAMENTAL UNDERSTANDING OF PHOTOCATALYSIS HYDROGEN EVOLUTION
It is well known that the bandgap and position of band edges of a semiconductor are very important for 
photocatalysts. The bandgap needs to be at least 1.23 eV for water splitting. Moreover, the Conduction band 
(CB) edge should be more negative than the reduction potential of H2 (  = 0 V vs. NHE at pH = 0), and 
the Valence band (VB) edge should be more positive than the oxidation potential of O2 (  = 1.23 V vs. 
NHE at pH = 0)[17]. As shown in Figure 2, under light irradiation, when the energy of incident light (hv) is 
greater than or equal to the forbidden bandgap (Eg) of the semiconductor, the electron (e-) in the VB will 
jump to the CB under photoexcitation, and at the same time, a hole (h+) is left on the VB, after which the e- 
and h+ will migrate to the semiconductor surface. Then, the photogenerated electrons and holes will react 
with the adsorbates on the surface for reduction and oxidation reactions, respectively. At last, the products 
will be desorbed from the surface of the photocatalyst[18]. In photocatalytic hydrogen evolution, e- will react 
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Figure 1. The advantages and applications of TiO2-based photocatalysis heterojunctions.

Figure 2. Schematic diagram of photocatalysis water splitting mechanism.

with H+ in a reduction reaction to produce H2, and h+ will react with H2O in an oxidation reaction to 
generate O2

[19]. However, some photogenerated e-/h+ pairs may combine during migration, which is 
unfavorable for photocatalysis[20]. In order to obtain high overall efficiency, rapid transfer of e-/h+ pairs to the 
surface while inhibiting the recombination of e-/h+ pairs is imperative but a huge challenge. TiO2, due to the 
low efficiency of e-/h+ pairs separation and easier recombination, presents challenges for real application[21]. 
To improve the performances, researchers have put forward various methods. For example, Gao et al. 
introduced O vacancies based on N-doped TiO2 and enhanced the photocatalysis hydrogen evolution rate 
to 3,183 μmolg-1h-1[22]. An et al. reported Au clusters on a TiO2 substrate, resulting in an astonishing two-
order-of-magnitude increase in hydrogen evolution activity[23]. Although loading metal single atoms or 
clusters can improve the photocatalytic activity, the separation of photogenerated carriers remains limited. 
Whereas constructing heterojunctions has the advantages of heterojunctions in solving the photogenerated 
e-/h+ pairs combination, a detailed discussion of TiO2-based heterojunctions in the field of photocatalysis 
hydrogen evolution will be given below.

TIO 2-BASED HETEROJUNCTION PHOTOCATALYSTS
The coupled heterojunctions could facilitate the separation of photogenerated carriers, reduce the 
recombination of e-/h+, and improve the photocatalysis efficiency. Heterojunctions can be classified into 
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traditional type-I, type-II, type-III, p-n heterojunction, Z-scheme, and emerging S-scheme heterojunction 
according to their energy band structures. Among them, the energy band structures of type I, type II, and 
type III are the straddling[24], staggered[25], and broken gaps[26], respectively. The p-n heterojunction 
composed of p- and n-type semiconductors with type-II energy band arrangement driven by built-in 
electric field[27], the Z-scheme heterojunction with electron-dielectric-driven charge separation[28], and the 
emerging S-scheme heterojunction formed by band bending due to the difference in Fermi energy levels[29].

Conventional semiconductor heterojunction photocatalyst
Conventional heterojunctions can be categorized into type-I, type-II, and type-III [Figure 3]. In straddling 
gap type-I heterojunction, the CB of semiconductor A and VB of semiconductor B are more negative than 
the CB of semiconductor B and VB of semiconductor A. In staggered gap type-II heterojunction, the CB 
and VB of semiconductor A are more negative than those of semiconductor B, respectively. In type-III 
heterojunction with a broken gap, both CB and VB of semiconductor A are more negative than CB of 
semiconductor B.

In type-I heterojunction, the electrons of both semiconductors transition from VB to CB and leave holes in 
the VB under the photoexcitation [Figure 3A]. Based on the characteristics of the band edge position, the h+ 
will gather in the VB edge of semiconductor B, and photoelectrons will accumulate in the CB of 
semiconductor B. Among the three conventional heterojunctions, Type-II is one of the most popular 
photocatalysis heterojunctions studied due to its suitable energy band structure, band-edge position, and 
high photogenerated carrier separation efficiency. As shown in Figure 3B, when the two semiconductors are 
in contact, under light excitation, the e- on the CB of semiconductor A will migrate to the CB of 
semiconductor B, and the holes on the VB of semiconductor B will gather on the VB of semiconductor A. 
The oxidation-reduction reaction will be conducted in the CB of semiconductor B and the VB of 
semiconductor A, respectively, so that the photogenerated e-/h+ pairs will be effectively separated, thus 
improving the photocatalysis activity[31]. Figure 3C demonstrates the structural features of type-III 
heterojunction photocatalysts. Obviously, in type-III heterojunction, both CB and VB of semiconductor B 
are more positive than those of semiconductor A. Such energy band relationship is not conducive to 
separating photogenerated electron-hole pairs[32], and the photocatalytic performance is inferior. Therefore, 
this review will not further elaborate on the TiO2-based type-III heterojunction.

Table 1 summarizes the efforts and progress of TiO2-based photocatalysis type-I and type-II heterojunctions 
for photocatalysis hydrogen evolution from 2019 to 2023. Cao et al. prepared Cu2O/D-TiO2 type-I 
heterojunctions, and a series of composites with Cu2O contents ranging from 1% to 10% were 
synthesized[33]. Among them, the heterojunction with 5 wt% Cu2O loading showed the highest H2 evolution 
rate of 4.81 mmol-1h-1 under UV-visible light [Figure 4A-C]. The work functions of D-TiO2 and Cu2O were 
4.69 and 5.46 eV, respectively. Only the e- of the CB of D-TiO2 flowed to the CB of Cu2O when contacted in 
the dark environment. Under photoexcitation, both photogenerated e-/h+ pairs of D-TiO2 transfer towards 
CB and VB of Cu2O, respectively. Luo et al. prepared CdS quantum dots and ultrathin TiO2(B) nanosheets 
by photodeposition and hydrothermal methods[34], respectively, where the heterojunction (PCT) prepared 
by photodeposition belongs to the type-II heterojunction and the heterojunction (HCT) prepared by 
hydrothermal method belongs to the type-I heterojunction [Figure 4D]. Under visible light excitation, 
10-HCT will be excited only by CdS. However, under full-spectrum irradiation [Figure 4E], the 
photogenerated e- and h+ on the CB and VB of B-TiO2 will be transferred to the CB and VB of CdS, 
respectively, which will improve the photocatalytic activity. Whereas in 5PCT [Figure 4F and G] and 
5PCT(PVP) [Figure 4H and I], which satisfy the type-II energy band arrangement, the e- on the CB of 
B-TiO2 will be transferred to the CB of CdS under the visible-light excitation, while the holes are retained in 
the VB of B-TiO2, and the full-spectrum irradiation will stimulate the hole transfer on the VB of CdS to the 
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Table 1. Comparison of typical type-I and type-II TiO2-semiconductor heterojunctions in the last five years

Photocatalyst Method Light 
source

H2-production rate 
(µmolg-1h-1)

IPCE/photocurrent 
density Year Ref.

TiO2/UiO-66-NH2 Solvothermal UV light 593.53 / 2022 [27]

Cu2O/D-TiO2 Solvothermal, photodeposition Xe lamp 4,810 / 2023 [33]

CdS/TiO2(B) Hydrothermal Xe lamp 1,776 / 2020 [34]

In2S3/TiO2 Hydrothermal Xe Arc lamp / 2.82 mAcm-2 2021 [35]

g-C3N4 quantum dots/a-
TiO2/r-TiO2

Heat treatment Simulated 
sunlight

49.3 / 2020 [36]

TiO2 (A)/TiO2 (R)/In2O3 One-step in situ calcination Xe lamp 268 / 2022 [37]

TiO2@ZnIn2S4 
nanospheres

Hydrothermal Xe lamp 4,958 / 2019 [38]

ZnO/ZnCr2O4@TiO2-
NTA

Electrochemical reduction-
oxidation

Xe lamp 1,680 C 2019 [39]

Ti3C2@TiO2/ZnIn2S4 Two-step hydrothermal Xe lamp 1,185.8 / 2020 [40]

BiVO4-TiO2/rGO Template Xe lamp 
(420 nm)

6,998 20 mAcm-2 2020 [41]

CdS/Ti3+/N-TiO2 Self-assembly, hydrothermal Xe lamp 
(420 nm)

1,118.5 0.77 mAcm-2 2020 [42]

GaAs (QD)/TiO2 DFT / / / 2021 [43]

3-Cd0.5Co0.5S/SN-TiO2 Electrospinning Xe lamp 4,550 / 2022 [44]

TiO2 nanotubes/ZB CdS-
CH3COO-NPs

Electrospinning- 
solvothermal, chemical deposition 

/ 15,025.38 / 2022 [45]

TiO2/ZnIn2S4/Co-Pt Hydrothermal, 
annealing process

/ / 1.82 mAcm-2 2022 [46]

3DOM CdS/In2O3-TiO2
(Pt)

Colloidal crystal template Xe lamp 3,428 / 2023 [47]

4.216TiO2/CdS/g-C3N4 Hydrothermal, wet chemical, 
ultrasonic sonication processes

Xe lamp 116.5 4.16%/10.17 mAcm-2 2023 [48]

Figure 3. Schematic illustration of (A) type-I, (B) type-II, and (C) type-III heterojunctions. Quoted with permission from Low et al.[30].
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Figure 4. (A-C) Cu2O/D-TiO2 type-I heterojunction. Quoted with permission from Cao et al.[33]. (D-I) photocatalysis mechanism 
diagrams of 10-HCT, 5-PCT and 5-PCT (PVP). Quoted with permission from Luo et al.[34].

VB of B-TiO2 at the same time based on the visible-light excitation, thus effectively separating the 
photogenerated carriers and improving the photocatalytic activity. The photocatalysis hydrogen evolution 
rates of 10-HCT and 5-PCT reach 11,317 and 34,937 μmolg-1h-1, respectively. This shows that type-I 
heterojunction can improve the photocatalysis hydrogen evolution efficiency but is much less efficient than 
type-II heterojunction.

Type-I heterojunction effectively reduces the band gap and accelerates the photoexcited electron and hole 
transfer, However, it is rarely reported due to the difficulty of type-I heterojunction to separate the 
photogenerated e-/h+ pairs.

TiO2/UiO-66-NH2 type-II heterojunction was constructed by Kuang et al. by photo-induced activation 
treatment [Figure 5A and B][27]. Before contact, the CB and VB of UiO-66-NH2 were more negative than 
those of TiO2, respectively. After contact, under photoexcitation, in situ X-ray photoelectron spectroscopy 
(XPS) characterization revealed that UiO-66-NH2 acted as an electron donor to transfer photogenerated 
electrons from the Lowest Unoccupied Molecular Orbital (LOMO) to CB of TiO2, while h+ of TiO2 was 
transferred to the Highest Occupied Molecular Orbital (HOMO) of UiO-66-NH2, which led to the 
separation of the photogenerated electron-hole pairs, the inhibition of the combination of photogenerated 
carriers, and the improvement of photocatalytic performance, with the photocatalytic hydrogen evolution 



Page 7 of Yang et al. Microstructures 2024;4:2024042 https://dx.doi.org/10.20517/microstructures.2024.06 23

Figure 5. (A and B) Schematic diagram of UiO-66-NH2 heterojunctions. (A and B) is quoted with permission from Kuang et al.[27]. (C) 
Energy band position of Pristine TiO 2, S, N-doped TiO 2, In2S3 NPs on TiO 2, and In2S 3, (D) S, N-doped TiO2/In2S3 heterostructure and 
photocatalytic mechanism diagrams. (C and D) is quoted with permission from Park et al.[35].

rate reaching 593.53 μmolg-1h-1. Park et al. synthesized In2S3/S, N-doped TiO2 nanostructures by a 
hydrothermal method[35]; it has been observed that S, N doping significantly decreases the work function of 
TiO2, enhances the electron concentration, effectively reduces the distance between CB and Ef, and 
increases the carrier concentration. Furthermore, the formation of In2S3/TiO2 heterojunctions can effectively 
inhibit carrier combination, and its carrier lifetime is increased by a factor of 20 compared with that of the 
monomer. Specifically, the carrier lifetimes of TiO2, S- and N-doped TiO2, and S, N-doped TiO2/In2S3 are 
72.4, 50.3 ns, and 1.16 µs. The band edge positions [Figure 5C] show that the VB and CB of the S, N-doped 
TiO2 are more positive than those of In2S3. This conforms to the type-II energy band arrangement, and the 
bandgap of the heterojunction is only 2.27 eV. Under the photoexcitation [Figure 5D], h+ will accumulate 
on the VB of In2S3, while e- will gather on the CB of S, N-doped TiO2. Ultimately, the oxygen evolution 
(OER) and hydrogen evolution reactions will be performed on the VB of In2S3 and the CB of S, N-doped 
TiO2, respectively, thus realizing photocatalytic water splitting.

In addition, the excellent photocatalysis properties of binary type-II heterojunctions have led to great 
interest in ternary and even multicomponent type-II heterojunctions. Recently, Zhou et al. have designed a 
Type-II/Type-II energy band arrangement of g-C3N4 quantum dots/a-TiO2/r-TiO2 heterojunctions for 
photocatalysis total water splitting[36]. Figure 6A-F shows the Type-II/Type-I and Type-II/Type-II energy 
band arrangement and photocatalytic mechanism diagrams. In addition, its photocatalysis hydrogen and 
oxygen evolution efficiencies reached 1,526.4 and 198.8 μmol h-1, respectively, and it can be extended to the 
decomposition of methylene blue (MB). Yang et al. prepared Mxene-derived anatase-TiO2/rutile-TiO2/In2O3 
heterojunctions to enhance the hydrogen evolution rate to 1,488 times that of In2O3

[37].
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Figure 6. (A-F) Energy band arrangements and photocatalytic mechanisms diagrams of T-II/T-II, T-II/T-I, T-II/T-II Stairs, T-II/T-II 
Concave and T-II/T-II convex. Quoted with permission from Zhou et al.[36].

Although type II heterojunctions can effectively inhibit the compounding of photogenerated electron-hole 
pairs, their study is limited by the fact that the original electrons inside the semiconductor will impede the 
foreign electron transport, which results in a significant reduction of their oxidation-reduction capability.

p-n heterojunction photocatalysts
The reaction mechanism of p-n heterojunction photocatalysis differs from that of type-II heterojunctions. 
In p-n heterojunctions, photocatalytic efficiency enhancement primarily stems from energy band 
engineering and improved carrier separation driven by internal electric fields (IEF)[31]. As illustrated in 
Figure 7A and B, p-n heterojunctions have two different type-II energy band arrangements[31]. Both generate 
an IEF pointing from the n- to the p-type semiconductor in the heterojunction formation[49]. In Figure 7A, 
the CB and VB of p-type semiconductors in the first type of p-n heterojunction are higher than those of 
n-type semiconductors, respectively, and e- will be transferred from the CB of the p-type semiconductors to 
the CB of the n-type semiconductors and h+ will be transferred from the VB of the n-type semiconductors 
to the VB of the p-type semiconductors[50]. Since the direction of the IEF is the same as that of charge 
transfer, the separation of e-/h+ pairs is accelerated by the IEF. However, in the second type of p-n 
heterojunction [Figure 7B], the type-II energy band arrangement is opposite to that of Figure 7A, and the e- 
will be transferred from CB of an n-type semiconductor to CB of a p-type semiconductor, and the h+ will be 
transferred from VB of a p-type semiconductor to VB of an n-type semiconductor. In this case, we will find 
that the direction of IEF is opposite to that of the charge transfer, which will result in the separation 
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Figure 7. Type-II energy band arrangement of (A) the first type and (B) the second type of p-n heterojunction. (A, B, I) is quoted with 
permission from Ding et al.[49]. (C) catalysis mechanism of Co3O4/TiO 2. (D and E) GH of TiO2 and Co3O4 and (F and G) work function 
for the TiO2 and Co3O4 facets. (C-G) is quoted with permission from Wang et al.[54]. (H) band structure diagram for Ag3PO4/b-N-TiO 2. 
(H) is quoted with permission from Zhou et al.[15]. (I) The charge segregation mechanism of Cu2O/Ni(OH)2/TiO2.

decelerated by restricting the movement of the e-/h+ pairs[31]. In addition to the above two types of p-n 
heterojunctions, some researchers have also suggested that the mechanism of the second type of p-n 
heterojunctions should be consistent with the direct Z-scheme heterojunctions[51-53]. The distinction and 
categorization of p-n and direct Z-scheme heterojunctions has been controversial. Therefore, their 
difference should be thoroughly verified in future heterojunction studies.

The above two p-n heterojunctions with different action mechanisms have been reported and synthesized 
experimentally in many cases [Figure 7C-G]. Wang et al. synthesized 2D/1D and 3D/1D Co3O4/TiO2 
composites by a hydrothermal method with a hydrogen evolution rate of up to 3,460 µmolg-1h-1[54], and DFT 
calculations were used to explore the reason for their high activity. Theoretical calculations show that the 
Fermi level of Co3O4 is significantly higher than that of TiO2 [Figure 7D and E], resulting in a greater e- 
transfer to TiO2 and a significant increase in electron concentration. Additionally, due to the difference in 
Fermi energy levels, an IEF is generated within TiO2 towards Co3O4, accelerating the transfer of e- from the 
CB of Co3O4 to that of TiO2 and h+ from the VB of TiO2 to that of Co3O4. This effectively promotes 
photogenerated carrier separation, increases carrier concentration, and improves catalytic activity. 
Figure 7F and G shows the Gibbs free energies after heterojunction formation on TiO2 and Co3O4 of 0.23 
and -0.35 eV, respectively. As reported in Figure 7H, Zhou et al. reported p-n heterojunctions have opposite 
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band edge positions[15]; the CB of Ag3PO4 is lower than the CB of b-N-TiO2, and the VB of Ag3PO4 is higher 
than the VB of b-N-TiO2. An IEF pointing from b-N-TiO2 to Ag3PO4 will be generated at the interface, 
which balances the Fermi energy levels, leading to a photogenerated e-/h+ pairs separation by moving the e- 
at the CB of b-N-TiO2 towards the CB of Ag3PO4, while the h+ move in the opposite direction of the e-. 
Overall, the p-n heterojunctions composed of two different type-II energy band arrangements both can 
effectively improve the transfer and separation of electron-hole pairs and the photocatalytic activity.

Table 2 summarizes some of the applications of p-n type heterojunctions for photocatalytic hydrogen 
evolution from 2019 to 2023. Most current research has focused on synthesizing a single p-n heterojunction, 
which is certainly effective, but the utilization efficiency of photogenerated e-/h+ pairs is still poor. 
Accordingly, researchers have begun to turn their attention to exploring dual p-n type heterojunctions. As 
presented in Figure 7I, Ding et al. adopt chemical precipitation and ultrasound-assisted glucose reduction to 
synthesize Ni(OH)2/TiO2,Cu2O/TiO2 and Cu2O/Ni(OH)2/TiO2 photocatalysts[49]. It is found that the 
hydrogen evolution rate of Cu2O/Ni(OH)2/TiO2 is 6,145 µmolg-1h-1 which is much higher than that of 
Ni(OH)2/TiO2 (3,265 µmolg-1h-1) and Cu2O/TiO2 (2,285 µmolg-1h-1). The excellent photocatalytic activity is 
attributed to the synthesized Cu2O/Ni(OH)2/TiO2 being a fully depleted p-n junction with IEF. Under 
photoexcitation, the e- on the CB of Ni(OH)2 and Cu2O will be transferred to the CB of TiO2 because the CB 
of TiO2 is more positive than the CB of Ni(OH)2 and Cu2O, while the h+ will be transferred from the VB of 
TiO2 to the VB of Ni(OH)2 and Cu2O, respectively, because the VB of TiO2 is more positive. The direction of 
the IEF is directed from TiO2 to Ni(OH)2 and Cu2O, respectively, which is opposite to the motion direction 
of the e- and the same as that of the h+, thus promoting the carrier migration and effectively improving the 
separation of the photogenerated e-/h+ pairs, which effectively improves the photocatalytic activity. In 
addition, Chen et al. prepared a 3D g-C3N4-Cu2O-TiO2 by a sacrificial template strategy and photo-
deposition with a maximum hydrogen evolution rate of 12,108 μmol g-1h-1[55]. Overall, p-n heterojunction 
plays an indispensable role in heterojunction catalysts due to their unique energy band properties and 
excellent photocatalytic activity, but it does not overcome the disadvantages of the type II heterojunction.

Z-scheme heterojunction photocatalysts
Comparing the limited carrier oxidation-reduction capacity of type-II and p-n heterojunctions, the 
Z-scheme can not only effectively promote carrier separation but also enhance the carrier oxidation-
reduction capacity. Z-scheme heterojunctions can be classified into three main categories: liquid-phase, all-
solid-state, direct, and dual.

The liquid-phase Z-scheme heterojunction [Figure 8A] is characterized by a pair of electron acceptor-donor 
(A-D) between the two semiconductors as a transport medium for e-[65]. At this time, the e- on CB of 
semiconductor 1 and the h+ on VB of semiconductor 2 will react within A and D, respectively. After the 
formation of the heterojunction, the oxidation reaction is carried out on the VB of semiconductor 1, and the 
reduction reaction is conducted on the CB of semiconductor 2, which effectively separates the 
photogenerated carriers. However, the existence of the reverse reaction and the light shielding effect will 
reduce the number of e- and h+. In addition, the liquid medium is easy to deactivate, and all of these 
uncertainties will affect the photocatalytic activity to a certain extent[17].

The all-solid-state Z-scheme heterojunction is proposed to circumvent the disadvantages of liquid-phase 
Z-scheme heterojunction. Its main feature is to insert a piece of conductor between two semiconductors to 
promote carrier migration and improve photocatalytic activity. For example [Figure 8B], Han et al. reported 
that Au was inserted as the most electron-mediated medium between TiO2 and TrTh[66]. At this time, the e- 
of CB of TiO2 would combine with the h+ on the VB of TrTh through Au, and the oxidation and reduction 
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Table 2. Comparison of selected research results on TiO2-based p-n heterojunction photocatalytic hydrogen evolution from 2019 to 

2023

Photocatalyst Method Light source H2-production rate 
(µmolg-1h-1)

IPCE/photocurrent 
density Year Ref.

Cu2O/Ni(OH)2/TiO2 Hydrothermal, calcination Xe lamp 6,145 / 2021 [49]

CuS/TiO2 Solvothermal Xe lamp 705.8 / 2023 [50]

0D Co3O4/1D TiO2 Hydrothermal, electrospinning Xe lamp 
(200-780 nm)

3,460 / 2022 [54]

g-C3N4-Cu2O-TiO2 Sacrificial template, 
photodeposition

/ 12,108 / 2021 [55]

Cu2O/TiO2 (P25) One-pot hydrothermal Xe lamp 
(λ > 420 nm)

2,550 0.75 mAcm-2 2021 [56]

NiO-TiO2 Sol-gel, hydrothermal Xe lamp 23,500 / 2021 [57]

Co0.85Se/TiO2 Two-step hydrothermal Xe lamp 
(365 nm)

2,312.5 10 mAcm-2 2022 [58]

Cu3Mo2O9/TiO2 Mechanical mixing Xe lamp 
(350-780 nm)

3,401.9 6.4 mAcm-2 2022 [59]

Co3O4/Ti3+-TiO2/NiO Chemical-hydrothermal-
annealing-reduction

/ 2,134.63 / 2022 [60]

Cu2NiSnS4/TiO2(B) Hydrothermal Direct sunlight 7,144 / 2023 [61]

Li@g-C3N4/F@TiO2-
B(001)

DFT / / / 2023 [62]

Ni(OH)2-TiO2-Cu2O Hydrothermal-calcination Xe lamp 8,384.84 / 2023 [63]

NiO-TiO2 Hydrothermal Xe lamp 8,000 / 2023 [64]

reactions would take place on the VB of TiO2 and the CB of TrTh, respectively. The selection and design of 
electron mediators is a particularly important aspect in all-solid-state Z-scheme heterojunctions. However, 
the high price of the electronic medium seriously limits the development of the all-solid-state Z-scheme 
heterojunction.

In 2009, Wang et al. addressed the challenge of costly all-solid-state Z-scheme heterojunctions by 
introducing electron-mediator-free, direct-contact Z-schemes[67]. In 2013, Yu et al. further proposed direct 
Z-scheme heterojunctions enhanced by IEF[68]. The key distinction of this design from liquid Z-schemes lies 
in its elimination of the need for an electron transfer medium. As illustrated in Figure 8C, when TiO2 and 
ZnIn2S4 form a heterojunction, their energy bands align in a staggered configuration due to disparities in 
Fermi energy levels and work functions, causing band bending at the contact interface. IEF direct from 
ZnIn2S4 towards TiO2, and coupled with band bending, facilitates electron transfer from the CB of TiO2 to 
the VB of ZnIn2S4 to recombine with h+, while simultaneously impeding the reverse flow of electrons from 
the CB of ZnIn2S4 and holes from the VB of TiO2. This mechanism both guarantees sufficient charge carriers 
for redox reactions and spatially separates photogenerated carriers, thereby contributing to enhanced 
photocatalytic performance.

The direct Z-scheme has been widely studied in academia due to its unique energy band structure and 
efficient photocatalytic ability. Consequently, we will focus on the direct Z-scheme heterojunctions in 
photocatalysis hydrogen evolution. Ran et al. used liquid exfoliation, precipitation-hydrothermal methods 
to prepare the ReSe2/TiO2 direct Z-scheme heterojunctions[69]. These prepared heterojunctions exhibited a 
photocatalysis hydrogen evolution rate of up to 2,081 µmolg-1h-1 and were combined with DFT to show that 
the presence of an IEF promotes the electron transfer from TiO2 to ReSe2. Moon et al. successfully 
synthesized the Pt/g-C3N4/TiO2/IrOx heterojunctions [Figure 8D] through the classical Stöber method[70]. 
The formation of Z-scheme heterojunctions [Figure 8E] accelerated the surface charge separation and 
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Figure 8. (A) liquid-phase Z-scheme heterojunction. Quoted with permission from Bai et al.[65]. (B) Au@TiO2-12%TrTh all-solid-state 
Z-scheme heterojunction. Quoted with permission from Han et al.[66]. (C) photocatalytic mechanism of TiO2-ZnIn2S4 nanoflowers. 
Quoted with permission from Zuo et al.[71]. (D) physical structure of Pt/g-C3N4/TiO2/IrOx (PCTI). (E) The charge-transfer process 
within PCTI upon light irradiation. (F) H2 evolution rate. (D-F) is quoted with permission from Moon et al.[70]. (G) Photocatalytic 
mechanism diagram of double Z heterojunction TMOP. Quoted with permission from Sun et al.[72].

reaction kinetics, resulting in catalysts with apparent quantum yields, hydrogen evolution rates, and oxygen 
evolution rates as high as 24.3%, 8.15 mmolg-1h-1 [Figure 8F], and 443.9 μmolg-1h-1, respectively. 
Photogenerated e- was reduced to H2 on the CB of Pt/g-C3N4 and h+ was oxidized to oxygen on the VB of 
TiO2/IrOx to achieve total water splitting.

Double Z-scheme heterojunction can further enhance the separation of photogenerated e-/h+ pairs and 
improve the photocatalytic activity. As shown in Figure 8G, MP-1, MP-2, and MP-3 are contacted to form a 
double Z-scheme heterojunction. After photoexcitation, the e- on the CB of MP-2 will combine with the h+ 
on the VB of MP-1 and MP-3, respectively. The remaining photogenerated e- on the CB of MP-1 and MP-3 
will participate in the reduction reaction, and the h+ on the VB of MP-2 will engage in the oxidation 
reaction. It should also be noted that the double Z-scheme heterojunction is not a simple superposition of 
the three components but rather utilizes the synergistic effect among them to accelerate the electron transfer 
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and the separation of the photogenerated carriers to extend the lifetime of the carriers, thus improving the 
photocatalytic activity.

Table 3 demonstrates some research results of TiO2-based Z-scheme heterojunctions in photocatalysis 
hydrogen evolution from 2019 to 2023.

S-scheme heterojunction photocatalysts
Xu et al. reported the first S-scheme heterojunction photocatalysts in 2019[29]. Zhang et al. extended the 
S-scheme heterojunction which can only be of an n-n type to n-p, p-n, p-p type in 2022[86]. However, the 
condition is that the CB position and Fermi energy level of the reduced semiconductor (RP) should be 
higher than those of the oxidized semiconductor (OP) simultaneously at this time; the OP and RP can be 
either n- or p-type semiconductors [Figure 9A-D]. As in Figure 9E-G, taking the n-n junction as an 
example, when both the CB and Ef of RP are higher than those of OP, due to the difference in Ef, an IEF 
pointing from RP to OP will be formed between the interfaces, which will lead to the energy band bending, 
and the photogenerated e- on the CB of OP and the photogenerated h+ on the VB toward RP will be 
combined under the action of the IEF. The h+ on the VB of OP and the e- on the CB of RP will stay on the 
energy band due to the bending of the energy band, which promotes the separation of the photogenerated 
e-/h+ pairs. In the photocatalytic process, oxidation-reduction reactions will be carried out by the e- and h+ 
retained in RP and OP, respectively[87]. Overall, S-scheme heterojunctions greatly enhance photocatalytic 
efficiency due to their strong oxidation-reduction capacity and unique carrier migration mode. However, 
currently, S-scheme heterojunctions are mostly focused on powder catalysts, and their kinetics need to be 
well studied and understood. Finally, Table 4 summarizes the 2020 to 2024 S-scheme TiO2-based 
heterojunctions for photocatalytic hydrogen evolution.

Other TiO2-based photocatalytic heterojunctions
In addition to the common type-II, p-n, Z-scheme, and S-scheme heterojunctions discussed above, 
researchers have also devoted themselves to studying 2D van der Waals heterojunction formed by the IEF 
dominated by van der Waals forces, phase heterojunction formed by the same semiconductor that exists 
only in several different crystalline phases, facet heterojunction dominated by exposed surfaces, and 
Schottky heterojunction formed by semiconductor interacting with metal[104]. However, these 
heterojunctions are mostly used for the degradation of organic matter and the photoreduction of CO2, and 
fewer of them have been applied to the photocatalytic hydrogen evolution [Table 5], so they will not be 
specifically discussed in this review.

Application of DFT calculation to investigate TiO2-based photocatalytic heterojunctions
In recent years, theoretical calculations based on DFT can provide accurate predictions of the electronic 
structure, optical properties, and photocatalytic activity of materials[19]. The first is the binding energy of the 
heterojunction. In DFT calculations, the positive and negative values of the binding energy of the 
heterojunction can determine whether the two semiconductors need external energy injection in the 
coupling process. Next, the value of the binding energy can qualitatively determine the difficulty of forming 
heterojunctions for different semiconductors. Secondly, DFT calculations can confirm the amount of 
electron transfer in the heterojunction and the direction of charge transfer. Wang et al. constructed 0D/2D 
Co3O4/TiO2 Z-scheme heterojunctions, and DFT calculations demonstrated that the work functions of 
Co3O4 and TiO2 were 5.69 and 4.84 eV, respectively[51]. The difference in the Fermi energy levels drove the 
charge transfer from TiO2 to Co3O4. Moreover, the hybrid function calculations can accurately obtain the 
bandgap, HOMO, and LOMO of semiconductors. Density of states (DOS) can analyze the coupling of 
impurity orbitals in the forbidden bands of semiconductors after modification in a more detailed way and 
explore the essential reasons for the catalytic performance enhancement of semiconductor catalysts more 
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Table 3. Some research results of Z-scheme TiO2-based heterojunction for photocatalytic hydrogen evolution from 2019 to 2023

Photocatalyst Method Light source H2 production rate 
(µmolg-1h-1)

IPCE/photocurrent 
density Year Ref.

Au@TiO2-X%TrTh Situ polymerization Visible light 4,288.54 0.13 µAcm-2 2022 [66]

ReSe2/TiO2 Liquid exfoliation, hydrothermal, 
DFT

Xe lamp 2,081 / 2023 [69]

Pt/g-C3N4/TiO2/IrOx Classical Stöber Xe lamp 8,150 / 2022 [70]

TiO2-ZnIn2S4 Hydrothermal, DFT Xe lamp 18,077.2 / 2021 [71]

TMOP Tricolor-typed 
microfiber

Tri-axial parallel electrospinning 
technology

Simulated 
sunlight

536.7 / 2023 [72]

3D/2D TiO2 /g-C3N4 Hydrothermal Xe lamp 4,128 / 2019 [73]

fluorinated-TiO2 
/CdSe-DETA

Mild solvothermal Xe lamp 
(λ ≥ 420 nm)

12,381 / 2020 [74]

ZrO2@TiO2 Solvothermal, calcinating Xe lamp 39,700 / 2020 [75]

Bi2S3/MoS2/TiO2 Facile microwave-assisted 
hydrothermal

Xe lamp 
(λ ≥ 420 nm)

2,195 / 2020 [76]

Ni (OH)2-CuxO-TiO2 Hydrothermal tungsten 
halogen lamp

15,789 / 2020 [77]

g-C3N4/TiO2@Pt Hydrothermal Xe lamp 15,360 15 µAcm-2 2021 [78]

Cu2O/TiO2 Hydrothermal, DFT Xe lamp 14,020 20 µAcm-2 2021 [79]

MoS2 /TiO2 
nanosheets

Spin coating Xe lamp 
(420 nm)

5,423.77 / 2022 [80]

2D/2D TiO2/g-C3N4 Thermal polymerization, colloidal, 
electrostatic self-assembly

Xe lamp 
(380 nm)

3,875 / 2022 [81]

ZnIn2S4/TiO2(MOFs) Hydrothermal, calcination Xe lamp 
(400 nm)

2,451.5 1.42 µAcm-2 2023 [82]

Bi2WO6/TiO2 One-step solvothermal Xe lamp 12,900 / 2023 [83]

g-C3N4/TiO2 nanotube Electrospinning / 4,122 / 2023 [84]

TiO2 (116)/red 
phosphorus (001)

Chemical vapor deposition / 12.9(μmol·h-1) 
(λ > 300 nm)

/ 2023 [85]

precisely. For example, Li et al. constructed defective RuO2/TiO2 heterostructures [Figure 10A-C][107]. DFT 
calculations showed that Ru defects were surrounded by more positrons, which favors water decomposition, 
and the Gibbs free energy after the formation of the heterojunction decreased from 0.32 to -0.12 eV, which 
accelerates the separation of photogenerated e-/h+ pairs by the interfacial effect of the heterostructures, 
decreases the adsorption energy of H2, and accelerates the precipitation of hydrogen. Di Liberto et al.[108]. 
proposed the SrTiO3/TiO2 [Figure 10D-E] heterostructure and found that the CB and VB of SrTiO3 became 
more positive after the heterojunction formation and conformed to the type-II energy band arrangement 
with TiO2 by hybrid functional theory calculations. Li et al. put forward a TiO2/ZnS heterojunction and 
investigated the electronic properties and excitation electron dynamics heterostructure by using Vienna 
ab-initio simulation package (VASP) and NAnoscale Molecular Dynamics (NAMD)[99]. It was found that 
[Figure 10F-H] the work functions of TiO2, ZnS, and TiO2/ZnS were 6.89, 5.74, and 5.80 eV, respectively. 
The differences in the work functions and the Fermi energy levels resulted in the transfer of e- from ZnS to 
TiO2 until the charge equilibrium at the interfaces. The plane-averaged and differential charge densities 
demonstrated in Figure 10I proved the existence of strong interactions between the interfaces. In addition, 
[Figure 10J-K] the light absorption is significantly enhanced, and the STH conversion efficiency is as high as 
23.46% both in acidic, neutral, and alkaline environments. Although DFT calculations have matured and 
provided much effective guidance for experiments, providing effective support for catalytic mechanisms, 
they still have many limitations. First, the bandgap of semiconductors is often underestimated in Perdew-
Burke-Ernzerhof (PBE) calculations. While DFT + U, DFT-1/2 and Hybrid functional methods have been 
proposed to correct the bandgap value, they encounter multiple constraints, such as the lack of 
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Table 4. Comparison of some research results of S-scheme TiO2-based heterojunction photocatalysis hydrogen evolution from 2020 

to 2024

Photocatalyst Method Light source H2-production 
rate (µmolg-1h-1)

IPCE/photocurrent 
density Year Ref.

α-Fe2O3/TiO2-Pd Impregnation UV lamp 
(λ ≥ 420 nm)

3,490.54 / 2021 [88]

3D/2D/0D TiO2/
g-C3N4/Ti3C2 QDs

Solvothermal reaction, DFT Xe lamp 
(420 nm)

5,540.21 / 2021 [89]

Co2P/PC-b-TiO2 Pyrolyzing a mixture of cobalt 
phosphonate and TiO2 under H2 
atmosphere

Xe lamp 1,530 / 2022 [90]

ZnCo2S4/TiO2 Solvothermal Xe lamp 
(420 nm)

5,580 / 2022 [91]

Co3Se4/TiO2 Hydrothermal Xe lamp  
(350-780 nm)

6,065 / 2022 [92]

1D/2D TiO2/ZnIn2S4 Hydrothermal LED lamp  
(365 nm)

6,030 / 2022 [93]

O-ZnIn2S4/TiO2-x Hydrothermal, liquid 
assembly, DFT

Xe lamp 
(420 nm)

2,584.9 / 2022 [94]

TiO2-CeO2/g-C3N4 Thermal calcination, DFT / / 10 mAcm-2 2022 [95]

porous ZnS/TiO2 One-pot hydrothermal Xe lamp 1,718 / 2023 [96]

20 wt% Co9S8/TiO2 In-situ deposition hydrothermal Xe lamp  
(350-780 nm)

3,982 / 2023 [97]

g-C3N4/TiO2 Time-domain ab initio analysis / / / 2023 [98]

TiO2/ZnS DFT, NAMD / / / 2023 [99]

Mxene@CdS/TiO2 / / 16,200 9.03 µAcm-2 2023 [100]

CdS/g-C3N4/TiO2 Self-assemble, solvothermal, DFT Xe lamp  
(200-1,000 nm)

26,840 40.2% 2023 [101]

Cu3P/TiO2 Microwave hydrothermal, DFT Xe lamp 5,830 / 2023 [102]

C3N5/TiO2 Sol-gel, thermally assisted in situ 
growth

Xe lamp 
(λ > 420 nm)

1,833.86 / 2024 [103]

Table 5. Comparison of selected research results on Other TiO2-based heterojunction photocatalytic hydrogen evolution from 2019 

to 2023

Photocatalyst Method Light 
source

H2-production rate 
(µmolg-1h-1) IPCE/photocurrent density Year Ref.

MoS2/TiO2 DFT / / / 2022 [104]

TiO2 core-shell In situ chemical growth 500 W 
xenon lamp

/ 59.7%/3.88 mAcm-2 2019 [105]

TiO2@CMS/carbon-fiber Solvothermal Simulated-
solar light

/ / 2022 [106]

self-consistency and the fact that hybridized functional calculations are unsuitable for calculating crystal 
structures with a large number of atoms due to their high accuracy and computational effort[109].

On the other hand, with the rapid development of DFT calculation and machine learning (ML) in the field 
of materials, DFT calculation can predict new heterostructures, provide new heterostructures for 
experiments, and allow rational design of efficient photocatalytic heterojunctions. For example, Li et al. 
used it to obtain the Gibbs free energy of RuO2/TiO2 as only -0.1 eV and then guided the experimental 
synthesis of RuO2/TiO2 for photocatalytic hydrogen evolution[107]. However, due to the large number of 
atoms (> 200) in TiO2-based heterojunctions, the traditional DFT calculation for heterostructure prediction 
is highly costly and inefficient, and thus, less research has been carried out so far. Conversely, ML has the 
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Figure 9. (A) n-n junction, (B) p-p junction, (C) n-p junction, (D) p-n junction (E-G) Photogenerated carrier migration process and 
photocatalytic mechanism before and after contact. Quoted with permission from Li et al.[87].

characteristics of high efficiency, strong model generalization ability, and self-learning ability, which solves 
the problem of low efficiency of DFT prediction, and can be used for high-throughput screening of 
heterostructures according to the set conditions[6,108]. Currently, ML is in the stage of rapid development; in 
future research, it can reveal the physicochemical properties of materials, quickly screen the materials that 
meet the conditions for the construction of heterostructures, optimize the design of catalysts, quickly find 
the location of active sites and factors affecting the activity of catalysts, and modulate the composition of the 
material, so as to guide the experiments to synthesize the higher-efficiency heterostructures.

SUMMARY AND OUTLOOK
This review systematically discusses the research progress of TiO2-based heterojunction photocatalysts in 
photocatalytic hydrogen evolution since 2019. Different heterojunctions, including type-I, type-II, type-III, 
p-n type, Z-scheme, and the S-scheme heterojunctions, and their photocatalytic mechanisms are discussed 
in detail, along with their advantages and disadvantages. Direct Z- and S-scheme heterojunctions have 
optimal photocatalytic activity. Both generate a strong IEF at the interface to promote the separation of 
photogenerated carriers while maintaining a good oxidation-reduction capacity. The construction of TiO2-
based heterojunctions for photocatalytic hydrogen evolution is a promising approach to solving the energy 
crisis. In addition, some challenges of TiO2-based heterojunctions still exist, outlined as follows:



Page 17 of Yang et al. Microstructures 2024;4:2024042 https://dx.doi.org/10.20517/microstructures.2024.06 23

Figure 10. (A) D-RuO2/TiO2 nano-heterostructure, (B) Electron localization function analysis mapped, (C) ΔGH of TiO 2, RuO2/TiO 2, 
Pt/C and D-RuO2/TiO 2. (A-C) is quoted with permission from Li et al.[107] Band offsets of (D) SrTiO3 and TiO2 slabs (E) SrTiO3/TiO2 
heterostructure. (D and E) is quoted with permission from Di Liberto et al.[108] work function of (F) TiO2(101), (G) ZnS (110), (H)TiO2

/ZnS. (I) Planar-averaged charge density difference for the TiO2/ZnS heterojunction. (J) Absorption spectra, (K) STH efficiency of the 
TiO2 (101), ZnS (110), and TiO2/ZnS heterojunction. (F-K) is quoted with permission from Li et al.[99].

(1) Among the conventional heterojunctions, type-II heterojunctions have a weak oxidation reduction 
capacity due to the carriers in the original catalysts that hinder the electron transfer. These problems may be 
overcome by modifying type-II heterojunctions into Z-type or S-type heterojunctions.

(2) The p-n heterojunctions have two types of energy band arrangements and charge transfer, in which the 
classification and difference between the second type of p-n junction and the Z-scheme remain greatly 
controversial, and more precise characterization and calculations should be employed to reveal the 
difference in the mechanism.

(3) The p-n heterojunction inherits most of the qualities of type-II, and the oxidation-reduction capacity of 
the catalyst has been improved, but it is still insufficient and hinders the development of the p-n 
heterojunction. Although the double p-n heterojunction can further improve the oxidation-reduction 
ability of the catalyst, it requires the synergistic action of three semiconductors.
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(4) Direct Z-scheme heterojunction accelerates surface charge separation and reaction dynamics, but the 
exact mechanism of the carrier transfer in direct Z-scheme heterojunctions remains controversial currently. 
In addition, the bandgap of the two semiconductors in the Z scheme is easily mismatched, severely affecting 
the catalytic performance. In further studies, tuning the bandgap and band edge positions of the two 
semiconductor monomers is essential for Z-scheme heterojunctions, and the experimental characterization 
should be closely coupled with DFT to accurately explore the mechanism of Z-scheme heterojunctions.

(5) The S-scheme heterojunction realizes photogenerated charge separation, reduces photogenerated 
electrons and hole recombination through IEF and band bending, and improves the photoelectric 
conversion efficiency, and the generated electrons and holes have strong oxidation-reduction ability. 
However, it has been proposed for a short time, and its deeper action mechanism remains to be explored. 
Furthermore, it is unsuitable for photoelectrochemistry and is limited to powder photocatalysts. In the 
future, we should focus on improving the catalytic activity by adjusting the Fermi level of RP and OP and 
designing its surface morphology reasonably.

Developing novel and advanced photocatalysts is important to boost the photocatalytic hydrogen evolution 
rate. Well-constructed heterojunctions could greatly enhance the promotion of photogenerated electron-
hole pair separation; thus, designing highly efficient photocatalysts with good charge separation is extremely 
important. To better design and synthesize high performance TiO2-based heterojunctions, some suggestions 
can be considered:

(1) Current experimental characterization mostly illustrates charge transfer using XPS and 
photoluminescence spectroscopy, but it is not accurate to indicate whether the electron transfer is the 
contribution of the heterojunction or a single catalyst. Therefore, it is important to develop more advanced 
characterization techniques to explore the charge transfer pathway, such as high spatial and temporal in situ 
detection at the atomic level, high precision time-resolved surface photovoltage (SPV) imaging and 
scanning tunneling microscopy.

(2) Employing more accurate DFT computation methods, such as time-containing DFT, transient DFT, and 
transient charge-carrier dynamics, can provide more precise evidence for the charge-transfer paths and 
migration dynamics of heterojunctions.

(3) The rapid development of ML provides more accurate predictions for the experimental synthesis of 
semiconductor heterojunctions. Conventional DFT is inefficient and time-consuming because it can only 
couple heterojunctions one by one and then simulate and predict their catalyst performance. However, ML 
is an efficient and economical approach to synthesizing thousands of heterojunctions and obtaining 
semiconductor heterojunctions with excellent catalyst performance through the high-throughput screening. 
In a word, the advancement of ML will further promote the development of photocatalysts.
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