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INTRODUCTION

Homocysteine  (Hcy) is an intermediary metabolite 
of amino acid, methionine, during methylation. 
Elevated plasma level of homocysteine  (eHcy) 
have been observed in many neurologic and 
psychiatric disorders including stroke,[1,2] cognitive 
impairment, dementia,[3,4] Alzheimer’s disease,[5,6] 
Parkinson’s disease,[6,7] amyotrophic lateral sclerosis,[8] 
depression,[6,9‑12] schizophrenia and bipolar disorders 
and in an animal model,[13,14] indicating eHcy may 
adversely cause central nervous system dysfunction.[15] 
Whether eHcy interferes with central conduction as the 
pathophysiologic background relevant to the central 
processing slowness is unknown. We, therefore, studied 
the central conduction in patients with eHcy.

METHODS

Neurophysiology laboratory databank of evoked 
potentials and the charts of subjects with a clinical 
diagnosis of eHcy‑induced neuropathy[16] seen in the 
Neuromuscular Clinic were initially retrospectively 
reviewed. The symptoms and signs of neuropathy 
included the presentation of numbness and tingling 
in the distal limbs with a decreased sensation in a 
glove‑  and/or stocking‑like pattern. Data of clinical 
presentations, physical and neurological examinations, 
history of concomitant comorbidities; and laboratory 
findings including plasma levels of homocysteine, 
methyl malonic acid, vitamin B12 and folic acid were 
collected. Laboratory data included mean corpuscular 
volume of red blood cells, glucose, creatinine, 
glycosylated hemoglobin, thyroid stimulating hormone, 
lipids and liver function panels; inflammatory and 
infectious studies including erythrocyte sedimentation 
rate, C‑reactive protein, antinuclear antibody, rapid 
plasma reagin, lyme titers, hepatitis profile, and human 
immunodeficiency virus.[8] Subjects with an isolated 
eHcy who completed evoked potential studies were 
included. Subjects with an identifiable etiology, other 
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than eHcy, such as deficiency of vitamin B12 and/or 
folic acid, metabolic, toxic, endocrinologic, infectious, 
inflammatory, renal or liver diseases were excluded. 
Additionally, subjects with history of degenerative or 
inflammatory disorders, such as dementia, Parkinson’s, 
amyotrophic lateral sclerosis, multiple sclerosis, lupus, 
sarcoidosis, seizures/epilepsies, cervical spondylosis 
or traumatic injury, were excluded. This study was 
approved by the Temple University Institutional 
Review Board.

Recording conditions and data acquisition
Conventional evoked potential studies, including 
somatosensory, visual, and brainstem auditory evoked 
potentials  (SSEP, VEP, and BAEP, respectively), were 
performed using Viking Select 10.0.0 (Nicolet, Madison, 
Wisconsin). Individual peak latency, interpeak latency, 
interlateral latency and amplitude were analyzed.

Somatosensory evoked potential (median nerve)
Each median nerve was stimulated at the wrist with 
square pulses above the motor threshold using 0.2 ms 
stimuli. Two independent trials were performed on 
either nerve. The stimulus frequency was 5.1 Hz and 
recording time 50 ms. Filters were set at LFF 10 Hz and 
HFF 3 kHz. Resultants were recorded and averaged from 
2,000 responses from the montage of CPc‑CPi, CPi‑Epc, 
C5s‑Epc and Epi‑Epc. The generators for the waveforms 
of N9, N13, and N20 are believed to be ipsilateral 
brachial plexus at the Erb’s point, dorsal column 
and contralateral nucleus cuneatus, and contralateral 
parietal somatosensory cortex, respectively. Alteration 
in interpeak latency of N13-N20 reflects central 
conduction abnormality.

Visual evoked potential
Two modalities were used in VEP study: pattern reversal 
full field VEP’s performed monocularly utilizing 
28‑inch checkerboard stimuli, and goggles fitted with 
a mosaic of light‑emitting diodes. The stimulating 
reversal frequency was 1.1 Hz in 25 ms with a filter 
setting at LFF 0.5 Hz and HFF 100 Hz. Two separate 
trials were performed on each eye. The resultants were 
recorded for 250 ms and averaged from 150 recordings 
from LO‑MF, MO‑MF, RO‑MF and MF‑A1 derivations. 
P100 latency was obtained and analyzed.

Brainstem auditory evoked potential
Each ear was stimulated independently utilizing 
broad rarefaction and alternating clicks in a frequency 
of 9.7 Hz in 100 ms with a filter setting of LFF 30 Hz 
and HFF 3 kHz. Masking noise was delivered to the 
contralateral ear. For each series of responses, two 
trials were performed separately from each ear and 
resultants were recorded for 10 ms and averaged 

from 4000 responses from Cz referenced to ipsilateral 
and contralateral ears (Cz‑A2 and Cz‑A1). The peak 
latency of waves I, III and V; interpeak latency of 
waves I‑III, III‑V and I‑V; the amplitudes of wave I and 
V; and the ratios of the amplitudes of waves V and 
I (V/I) were measured. The generators for waves I, III, 
and V of BAEP are believed to involve the structures of 
the cochlear nerve, superior olive complex, and lateral 
lemniscus nuclei the mesencephalon, respectively.[9]

RESULTS

From 507 records, 9 subjects who fulfilled the inclusion 
criteria were included  (age: 63.3  ±  7.5  years 
old, mean  ±  standard deviation, range: 51-75, 
male/female: 4/5). Of these 9 subjects, 9 SSEP, 7 VEP, 
and 6 BAEP that were simultaneously performed, were 
included. Their plasma level of homocysteine was 
elevated (16.3 ± 2.3 μmol/L, normal: < 11.4) but with 
normal plasma levels of B12  (621.4 ± 322.0  pg/mL; 
normal: 200-1100), folic acid  (15.7  ±  5.2  ng/mL; 
normal: > 5.4), methylmalonic acid  (165.1  ±  72.8 
nmoI/L; normal: 73-376), and a normal mean 
corpuscular volume of red blood cells (90.6 ± 7.8 fl; 
normal: 80-100).

With respect to the recordings, delayed SSEP was 
observed in peak latency of N9 (5/9/55.6%, abnormal/
studied subjects/percentage), N13  (7/9/77.8%), 
N20  (6/9/66.7%) and in interpeak latency of 
N9-N13  (5/9/55.6%), N13-N20  (5/9/55.6%), and 
N9-N20  (4/9/44.4%). No significant difference in 
interlateral latency was noted. There was only one 
delayed VEP observed (1/7/14.3%). BAEP was within 
normal limits in all the 6 subjects studied [Tables 1‑4].

DISCUSSION

In this study, we observed central conduction slowness 
in approximately half of the adult patients with an 
isolated eHcy. The central conduction slowness 
preferentially affected the somatosensory, but not 

Table 1: Evoked potentials
Abnormal Percentage

SSEP (n = 9)
N9 5 55.6
N13 7 77.8
N20 6 66.7
N9‑N13 5 55.6
N13‑N20 5 55.6
N9‑N20 4 44.4

VEP (n = 7)
Delayed 1 14.3

BAEP (n = 6)
All normal

SSEP: somatosensory evoked potentials; VEP: visual evoked potentials; 
BAEP: brainstem auditory evoked potentials
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the visual and auditory, pathways. To the best of our 
knowledge, there is no report on central conduction in 
adult patients with eHcy.

Somatosensory evoked potential evaluates the integrity 
of the somatosensory pathway from peripheral to 
the cortex. The pathway initiates from peripheral 
segment of the large sensory fibers whose cell 
bodies, the pseudomonopolar neurons, reside in the 
dorsal root ganglia.[17] The central processes of the 
pseudomonopolar neurons enter the ipsilateral posterior 
column of the spinal cord, decussate and synapse at the 
contralateral dorsal column nucleus (cuneate nucleus) 
at the cervico‑medullary junction where the secondary 
order fibers start and synapse at ventro‑posteriolateral 
nucleus of thalamus, from which the third order fibers 
advance to the somatosensory cortex.[17] It is commonly 

accepted that SSEP evaluates only the large diameter 
fibers.[17]

The current study provided evidence that the large 
fiber dysfunction occurs in central conduction, 
involving somatosensory pathway, in addition 
to the peripheral conduction delay.[16,18] We have 
recently reported that eHcy is an independent 
risk factor for the development of peripheral 
neuropathy.[16] The estimated incidence of the 
isolated eHcy‑induced neuropathy was as low as 
1.81% of peripheral neuropathy  (our unpublished 
data). The electrophysiologic features of the isolated 
eHcy‑induced peripheral neuropathy are a mild, 
large fiber sensorimotor neuropathy with mixed 
neurophysiologic features of mild demyelination and 
distal axonal degeneration, although the involvement 
of small diameter fibers cannot be dismissed.[18]

Elevated plasma level of homocysteine may result 
from deficiency of vitamin B12  and/or folate, and 
genetic predispositions such as C677T polymorphism 
of MTHFR.[19,20] Additionally, it may also result from 
various pathophysiologic conditions including 
aging,[21,22] obesity,[23,24]  diabetes mellitus,[25‑27] renal 
function impairment,[27] medications and/or toxic 
substances such as levodopa,[7,28] anti‑gastric acid 
agents,[29,30] anti‑epileptics,[31,32] tobacco,[33] and 
alcohol.[34‑36] Because of its excitatory property which 
may promote the vulnerability of neuronal cells to 

Table 3: Brainstem auditory evoked potentials
Number/
gender/age

I‑L I‑R III‑L III‑R V‑L V‑R Amp‑L Amp‑R I‑III/L I‑III/R III‑V/L III‑V/R I‑V/L I‑V/R

3/female/68 1.78 1.5 3.7 3.7 5.52 5.54 2.4 2.16 1.92 2.2 1.82 1.84 3.74 4.04
6/female/71 1.7 1.64 3.74 3.86 5.84 6 2.06 1.2 2.04 2.22 2.1 2.14 4.14 4.36
23/male/62 1.68 1.7 3.96 3.86 5.86 5.72 1.98 1.76 2.28 2.16 1.9 1.86 4.18 4.02
28/female/58 1.38 1.42 3.52 3.54 5.42 5.38 1.07 1.08 2.14 2.12 1.9 1.84 4.04 3.96
29/male/75 1.74 1.48 4 4.08 6.18 6.24 2.05 0.974 2.26 2.6 2.18 2.16 4.44 4.76
30/female/65 1.76 1.76 3.92 4.02 5.86 5.94 1 1.97 2.16 2.26 1.94 1.92 4.1 4.18
Mean ± SD 1.7 ± 0.1 1.6 ± 0.1 3.8 ± 0.2 3.8 ± 0.2 5.8 ± 0.3 5.8 ± 0.3 1.8 ± 0.6 1.5 ± 0.5 2.1 ± 0.1 2.3 ± 0.2 2 ± 0.1 2 ± 0.2 4.1 ± 0.2 4.2 ± 0.3
Range 1.4‑1.8 1.4‑1.8 3.5‑4 3.5‑4.1 5.4‑6.2 5.4‑6.2 1‑2.4 1‑2.2 1.9‑2.3 2.1‑2.6 1.8‑2.2 1.8‑2.2 3.7‑4.4 4‑4.8
Normal ≤ 2.2 ≤ 2.2 ≤ 4.5 ≤ 4.5 ≤ 6.5 ≤ 6.5 ≤ 2.6 ≤ 2.6 ≤ 2.4 ≤ 2.4 ≤ 4.7 ≤ 4.7
SD: standard deviation; L: left; R: right

Table 2: Somatosensory evoked potentials
Number/
gender/age

N9‑L N9‑R N13‑L N13‑R N20‑L N20‑R N9‑ 
N13/L

N9‑ 
N13/R

N13‑ 
N20/L

N13‑ 
N20/R

N9‑ 
N20/L

N9‑ 
N20/R

3/female/68 10.3 10.3 13.9 13.2 19 18.5 3.6 2.9 5.1 5.3 8.7 8.2
6/female/71 11.9 12.3 17.4 17.4 24.8 26.2 5.5 5.1 7.4 8.8 12.9 13.9
10/male/64 12.7 12.8 16.4 16.8 22.4 23 3.7 4 6 6.2 9.7 10.2
16/male/51 11.6 11.3 17.4 14.9 22.2 22.1 5.8 3.6 4.8 7.2 10.6 10.8
23/male/62 11.6 11.8 15.3 15.1 21.7 21.2 3.7 3.3 6.4 6.1 10.1 9.4
24/female/56 11.8 11.6 15.3 16.5 22 20.8 3.5 4.9 6.7 4.3 10.2 9.2
28/female/58 8.7 8.6 16.2 16.2 Abs Abs 7.5 7.6 Abs Abs Abs Abs
29/male/75 10.6 11.3 16.9 17.6 Abs 27.4 6.3 6.3 Abs 9.8 Abs 16.1
30/female/65 9.9 10.5 15.2 14.6 Abs 23.8 5.3 4.1 Abs 9.2 Abs 13.3
Mean ± SD 11 ± 1.2 11.2 ± 1.2 16 ± 1.2 15.8 ± 1.5 22 ± 1.9 22.9 ± 2.9 5 ± 1.4 4.6 ± 1.5 6.1 ± 1 7.1 ± 2 10.4 ± 1.4 11.4 ± 2.7
Range 8.7‑12.7 8.6‑12.8 13.9‑17.4 13.2‑17.6 19‑24.8 18.5‑27.4 3.5‑7.5 2.9‑7.6 4.8‑7.4 4.3‑9.8 8.7‑12.9 8.2‑16.1
Normal ≤ 11.3 ≤ 11.3 ≤ 14.9 ≤ 14.9 ≤ 22.1 ≤ 22.1 ≤ 5.0 ≤ 5.0 ≤ 6.8 ≤ 6.8 ≤ 10.9 ≤ 10.9
SD: standard deviation; L: left; R: right

Table 4: Visual evoked potentials
Number/
gender/age

P100‑P‑L P100‑P‑R P100‑G‑L P100‑G‑R

3/female/68 98.5 97.5 125 130
6/female/71 122 131 131 132
23/male/62 103 114 116 112
24/female/56 101 103 80.5 77.5
28/female/58 105 99.5 99.5 105
29/male/75 99.5 91 90.5 104
30/female/65 100 104 91 108
Mean ± SD 104.1 ± 8.2 105.7 ± 13.2 104.9 ± 19.5 109.8 ± 18.3
Range 98.5-122 91-131 80.5-131 77.5-132
Normal ≤ 117 ≤ 117 ≤ 132 ≤ 132
SD: standard deviation; P: pattern reversal; G: goggles techniques; L: left, R: right
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excitotoxic‑ and oxidative‑stress‑induced injury, Hcy, 
especially eHcy, can be neurotoxic.[4,37‑39]

Elevated plasma level of homocysteine has been 
observed in a number of neurological disorders 
including stroke,[1,2] Alzheimer’s disease,[5] Parkinson’s 
disease,[7] and amyotrophic lateral sclerosis.[8] In 
addition, eHcy may also play a role in psychiatric 
disorders, such as depression,[6,9‑12] bipolar disorders 
and schizophrenia.[13,14] Importantly, eHcy has been 
linked to cognitive impairment and dementia.[3,4] The 
findings of slowness of the central conduction in our 
study may suggest an electrophysiologic background 
for the central process slowing relevant to memory and 
cognitive functions. Notably, VEP was performed using 
two different modalities with only one out of 7 subjects 
showing abnormality. It is not clear the reason why 
visual and auditory pathways were spared. It may be 
related to the susceptibility of eHcy‑induced nerve fiber 
damage or the tolerability of the fibers to eHcy‑induced 
insults. An alternative explanation is that there may be 
a yet to be determined protective mechanism against 
eHcy‑induced toxicity in special sensory pathways.

Vitamin B12 deficiency is a well‑documented etiology 
for both central and peripheral nervous system 
dysfunction.[40] The current study provided evidence 
that the large fiber dysfunction occurs in central 
conduction, involving the somatosensory pathway. 
The findings combining our previous[16,18] and current 
observations suggest that, in addition to B12 deficiency, 
eHcy may be a potential risk factor in interfering with 
peripheral and central conduction of the somatosensory 
pathway. In other words, it is possible that the 
mechanism by which B12 deficiency causes central and 
peripheral nervous system dysfunction maybe partly 
via eHcy.[3] A clinical observation that administration 
of antifolate agent such as methotrexate induced a 
clinical phenotype compatible with that of vitamin B12 
deficiency favored this notion.[40,41] However, laboratory 
evidence is needed to support this claim.[3,4,19,38,39]

As the central large fiber conduction slowing is evident 
electrophysiologically in some patients with eHcy, it may 
be relevant to the central nervous system dysfunction 
and raise the concern regarding eHcy‑related central 
neurodegeneration, such as dementia.[3] Therefore, early 
recognition of the condition and prompt treatment may 
be critical. Since there is no cure currently available 
for neurodegenerative disorders, the best approach in 
clinical practice should be on prevention by modifying 
acquired risk factors, including eHcy. Thus, eHcy 
may become a therapeutic target. The efficacy of 
reducing eHcy with a regimen of combined vitamin 
B12, folate, and B6 in preventing the development of 

neurodegenerative disorders needs to be explored.[42] 
Nevertheless, our finding of central conduction slowing 
in adults with eHcy suggests clinically relevant 
significance and warrants further investigation. The 
limitation of this report was a retrospective study with 
a small number of subjects.

In summary, our pilot study on adults with isolated 
eHcy showed neurophysiologic evidence of slow 
central conduction involving the large fibers in the 
somatosensory, but not the visual and auditory, white 
matter pathways. The neurophysiologic changes may 
occur in parallel to eHcy‑induced central processing 
decline. Additional large cohort studies may be needed 
to validate the finding.
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