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Abstract
High optical transmittance (T%) has always been an important indicator of transparent-ferroelectric ceramics for 
optoelectronic coupling. However, the pathway of pursuing high transparency has been at the experimental trial-
and-error stage over the past decades, manifesting major drawbacks of being time-consuming and resource-
wasting. The present work introduces a machine learning (ML) accelerated development of highly transparent-
ferroelectrics by taking potassium-sodium niobate (KNN)-based ceramics as the model material. It is highlighted 
that by using a small data set of 118 sample data and four key features, we predict the T% of un-synthesized KNN-
based ceramics and evaluate the importance of key features. Meanwhile, the screened (K0.5Na0.5)0.956Tb0.004Ba0.04

NbO3 ceramics were successfully realized by the conventional solid-state synthesis, and the experimental 
measured T% is in full agreement with the predicted results, exhibiting a satisfactory high T% of ~78% at 800 nm. 
In addition, ML is also used to explore the best experimental parameters, and the prediction results of T% are 
particularly sensitive to changes in sintering temperature (ST). Eventually, the predicted optimal ST is highly 
consistent with the experimental one. This study constructs a new avenue for exploring high T% ferroelectric KNN 
ceramics based on ML, ascertaining optimal process parameters, and guiding the development of other 
transparent-ferroelectrics in optoelectronic fields.
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INTRODUCTION
Transparent-ferroelectric ceramics, capable of coupling multiple properties such as light, electricity, and 
mechanical deformation, are imminently demanded in industries such as energy storage[1,2], optical-
electrical devices[3,4], and construction materials[5]. Traditionally, ferroelectric ceramics with high optical 
transparency are mainly lead-based materials in virtue of their synchronous excellent optical and electrical 
properties[6]. However, new material technology of environmental protection and low carbon, coupled with 
the industrial requirement of sustainable development, impels the urgent research of lead-free transparent-
ferroelectric ceramics. Recently, a series of lead-free potassium-sodium niobate (KNN)-based ceramics with 
perovskite structure and good transparency have been successfully fabricated to achieve coupling of high 
optical transmittance (T%) and other optical-electrical performance through reasonable component design, 
accumulating a large amount of valuable literature[7-11] and experimental data. For instance, the combination 
of solid-state reaction and pressureless sintering techniques has been employed to introduce ions (e.g., rare-
earth ion RE3+) into KNN[12] or incorporate solid solution [e.g., Ca(Sc0.5Nb0.5)O3] in the KNN host[13], leading 
to KNN-based ceramics with high T% and favorable di-/ferro-/piezoelectric properties. Nonetheless, 
substantial tentative experiments are required to validate if high performance can be obtained, which can 
exhibit inefficient and time-consuming drawbacks. Hence, the potential data value in these literature 
sources needs to be discovered via data mining. Moreover, the space of unknown components in KNN-
based ceramics remains huge, highlighting the importance of integrating novel methods to accelerate the 
experimental design[14-16].

The research paradigm of AI For Science (AI4S) is gradually standardized[17]. Many new materials with 
outstanding characteristics so far have been found through machine learning (ML)[18-22], such as high Curie 
temperature (Tc) ferroelectric material[23-25], perovskite solar cells[26], double perovskites[27], microwave 
dielectric ceramics[28], photovoltaic peroxides[29], and energy-storage ceramics[30]. By efficiently searching for 
a high piezoelectric coefficient (d33) in a huge component space of BaTiO3-based ceramics using an ML 
strategy, He et al successfully found and synthesized the best component (Ba0.95Ca0.05)(Ti0.9Sn0.1)O3, in which 
the experimental value of d33 was consistent with the ML prediction[31]. Importantly, the structure-property 
relationship was analyzed by predicting phase diagrams, demonstrating that the highest d33 tended to appear 
in the multi-phase coexistence region, especially on the side of the rhombohedral phase. Additionally, Zhai 
et al. used ML models, such as Support Vector Machine (SVR) Regression and Random Forest (RF) 
Regression, to predict the Tc of perovskites and successfully searched for potential materials with high Tc 
using the SVR model and genetic algorithms[24].

It is well known that the T% of a ferroelectric ceramic is influenced by factors such as phase structure, 
density, porosity, birefringence and crystal anisotropy, grain size, size of grain boundary and corresponding 
phase, domain walls, and surface roughness of ceramic specimen. Moreover, over the past decades, the 
pursuit of high T% ferroelectric ceramics has predominantly relied on traditional empirical trial-and-error 
methods or the development and optimization of new sintering processes. These approaches aim to 
effectively and accurately control the above-mentioned factors in materials. However, the problem is that 
the process requires a long cycle time as T% is only obtained after successfully preparing the materials, 
which is inefficient for the development of transparent-ferroelectric ceramics. Therefore, it is of great 
interest and importance to analyze the relationship between material-related structures, process parameters, 
and the optimal T% values in ferroelectric ceramics of performance using ML models.

In this work, we used ML for elemental composition space search to guide the experimental design of KNN-
based ferroelectric ceramics with high T%. We focused on specific components of KNN-based ceramics 
modified by both rare-earth ions and alkaline-earth ions. T% is used as a target function to build a mapping 
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model between quantitative structure and property, and the process parameters are also considered in it. 
Among them, the high T% is what we are pursuing, and the best component searched by this model is 
finally successfully synthesized and characterized. The features affecting the transparency of ferroelectric 
ceramics were discovered for the first time through ML, allowing us to establish a clearer set of structure-
performance correlative mechanisms and providing guidance for the accelerated design of ferroelectric-
transparent ceramics.

METHODS
An ML procedure with T% as the target property is illustrated in Figure 1, including data collection and 
preprocessing, model training, model prediction, and experimental validation. Considering the 
generalization and feasibility of the data, we chose basic elemental properties to construct the characteristic 
pools, such as melting point, electronegativity, atomic number, and radius. After proving the reliability of 
the generalization ability of the established regression model, we combined predicted values of the model 
with correlations of the features to guide the quest for components with large T% in a wide component 
space.

Dataset and feature pool
The introduction of rare-earth and alkaline-earth elements into KNN ceramics has been proven to be a 
feasible means to boost the optical T%. The corresponding component systems have so far accumulated a 
large amount of experimental data, and the hidden values contained are beneficial for data mining. The 
dataset includes 118 experimental samples from the published literature [Supplementary Information 1], 
with known sintering temperature (ST) and unified T% values (at 800 nm). All the samples were prepared 
via solid-state reaction, and the purpose is to minimize the influence of experimental parameters (holding 
temperature, holding time, pressure, etc.) on the ML model.

The features used in our study include electronegativity, ionic radius, valence electron distance, and many 
others that have been extensively reported in previous studies on ferroelectric materials[20,32,33]. In addition, 
we introduced ST as a new feature by considering the effect of process parameters on T%. And the features 
for each component were obtained by relative molar fraction weighting calculations (the calculation 
methods refer to Supplementary Information 2).

Machine Learning sections
All the algorithms used in the ML session are from the scikit-learn package. The pandas package and the 
SHapley Additive exPlanations (SHAP) package are used for data analysis and processing. The entire work 
is conducted in Python language. Optimal Extreme Tree Regression (ETR) model hyperparameters are as 
follows (n_estimators = 76, max_depth = 12, min_samples_split = 4), and the rest of the parameters are 
default. The 10-Fold Cross Validation (10-CV) is to divide the training data into ten parts, each as a test set 
and the rest as a training set, and average the results ten times to evaluate the generalization ability of the 
ML model. Leave-One-Out Cross-Validation (LOOCV) is similar to 10-CV in principle, leaving only one 
sample as the test set, which is suitable for small data sets, and LOOCV is more accurate but requires a lot of 
computational resources. The code used for feature screening, model training, and forecasting has been 
uploaded to GitHub (https://github.com/BWMa688/BWMa688/tree/jermyn_dev).

Experimental synthesis and measurements
(K0.5Na0.5)0.996-zTb0.004BazNbO3 (z = 0.01, 0.02, 0.03, 0.04, 0.05) (abbreviated as zBa-0.004Tb-KNN) ceramic 
samples were produced via traditional solid-state reaction method. According to the composition predicted 
from ML, Na2CO3 (99.99%), K2CO3 (99.99%), Nb2O5 (99.99%), Tb2O3 (99.99%), and BaCO3 (99.99%) were 
used as the raw materials (the supplier of chemicals is Shanghai Aladdin Biochemical Technology Co., Ltd., 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
https://github.com/BWMa688/BWMa688/tree/jermyn_dev
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/202309-SupplementaryMaterials.xlsx
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Figure 1. Schematic workflow of the ML process, including data collection and preprocessing, model training, model prediction, and 
experimental validation. ETR: extreme Tree Regression; GBR: gradient boosting regression; KNN: potassium-sodium niobate; ML: 
machine learning; RF: random forest; ST: sintering temperature; SVR: support vector machine; T%: transmittance.

China), and ZrO2 balls (using planetary ball mill, QM-3SP2, Nanjing Nanda Instrument Co., Ltd., China)
and anhydrous ethanol were ball-milled together for 12 h. The obtained mixture was thoroughly dried at 80
ºC and then calcined at 850 ºC for 4 h. After that, the calcined powders were again ball-milled for 12 h to
promote mixing. After being dried and sieved, the acquired powders and 6 wt% polyvinyl alcohol (PVA)
binder were mixed thoroughly and pressed with 300 MPa pressure to shape into discs (12 mm diameter and
1 mm thickness), followed by kept at 800 ºC for 2 h to dislodge the PVA. Eventually, all the wafers were
sintered at 1,165 ºC, 1,180 ºC, or 1,195 ºC for 4 h. To maintain comparability, all the as-prepared 
ceramics were thinned and polished to a desired thickness to measure the optical (~0.4 mm) and 
ferroelectric (~0.2 mm) properties.

The T% spectra of the ceramic samples were measured using an ultraviolet-visible-infrared (UV-VIS-IR)
spectrophotometer (PerkinElmer Lambda 950, USA). Their phase structures were characterized by X-ray
diffraction (XRD, Rigaku Ultima III, Japan). Microstructures on the surface and in cross-section were
observed and recorded with scanning electron microscopy (SEM, Zeiss Supra 55, Germany). According to
the SEM images, grain size statistics were calculated using the “Nano Measure” software. The polarization-
electric field (P-E) hysteresis loops were performed at room temperature under an applied electric field of
100 kV/cm by a ferroelectric test system (TF Analyzer 2000E, aixACCT Systems GmbH, Aachen, Germany).
Prior to the test, Ag paste of 2 mm in diameter was coated on both surfaces of ceramics. The samples were
then heated to 650 ºC in a box furnace and kept at that temperature for 15 minutes.

ML-BASED MODEL DESIGN FOR KNN-BASED TRANSPARENT CERAMICS
Regression models of optical transmittance
Among the constructed feature pools, we use two steps to identify the best combination of features: Pearson 
correlation analysis and model selection. The features were grouped based on the Pearson correlation 
coefficients greater than 0.8 and less than -0.8 so as to determine that the features in each group are highly 
correlated, as shown in Figure 2A. In each assigned subgroup, we picked one common feature related to the 
target attribute and then removed the remaining redundant features in each group. Supplementary Table 2 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
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Figure 2. Building a T% prediction model. (A) Plot of Pearson correlation coefficient for 28 initial features; (B) Model selection using 
seven features ST, Dve, Dce, Ven/NC, E-MB, EA, and C-c; (C) 10-CVerror from ETR model containing a subset of the retained 
descriptors; (D) Performance of ETR models trained with 4-tuple features (ST, Ven/NC, Dce, and Dve) on the training and testing sets. 
C-c: cell parameters in the c-direction; Dve: schubert valence electron distance; Dce: schubert core electron distance; EA: electron 
affinity; E-MB: matyonov-batsanov electronegativity; ETR: extreme tree regression; GBR: gradient boosting regression; GPR: gaussian 
process regression; PLS: partial least squares; RF: random forest; ST: sintering temperature; SVR: support vector machine; T%: 
transmittance; Ven/NC: the ratio of valence electron number with nuclear charge.

shows the specific feature groupings. Four features, i.e., ST, the ratio of valence electron number with 
nuclear charge (Ven/NC), electron affinity (EA), and cell parameters in the c-direction (C-c), are not 
correlated with the remaining features. The final seven features chosen are ST, Ven/NC, EA, C-c, Schubert 
valence electron distance (Dve), Schubert core electron distance (Dce), and Matyonov-Batsanov 
electronegativity (E-MB).

We use the seven features that have been retained from the feature pool to evaluate the performance of 
several common ML models, including Ridge, RF, SVR, Gradient Boosting Regression (GBR), ETR, 
Gaussian Process Regression (GPR), and Partial Least Squares (PLS), as shown in Figure 2B. Then the 
prediction accuracy was evaluated by using Eq. (1) and (2):
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where m is the number of samples in the training dataset, yi is the measured value, ŷi is the predicted value, 
and    is the average of measured values. The training error represents the performance of the ML
model on the training set, while the test error is an estimation of the ML model on unfamiliar data, and yi

for the test error is the observation that is not included. Among the seven ML models, the ETR model
exhibits the highest R2 and lowest RMSE on the test dataset and, therefore, served as the preferred ML
model. The R2 of the SVR model is 0, indicating that the SVR model has a very poor predictive effect in this
work and is not suitable for predicting T%. From Eq. (1), we know that when R2 is equal to 0, the prediction
model produces the same results as the baseline model (i.e., yi =    ). To further screen the features, we
traversed all combinatorial sets and subsets of features using the ETR model. Specifically, we evaluated the
10-CV error of the ETR model for all combinations and subsets of the seven retained features. As shown in
Figure 2C, the error of 4-tuple features is the smallest, but since the errors of multiple 4-tuple features are
close, we refer to the importance analysis [Supplementary Figure 1] of the seven retained features and select
a subset containing ST, Ven/NC, Dce, and Dve according to the feature importance ranking for further
study. To evaluate the regression model performance, we randomly divided 80% of the dataset into a
training set and 20% into a test set. The ETR model prediction with the final feature is shown in Figure 2D.
The red stars are test data, and the blue hollow boxes are training data. The data points are distributed
around the diagonal, representing the good performance of the ETR model in predicting T%. The diagonal
line indicates the most outstanding performance of the ML model. The relative error distribution of the
dataset divided by different random numbers repeated 50 times is drawn in the inset of Figure 2D. The
reliability of the ETR prediction model and test results further demonstrates that the relative error
distribution conforms to the normal distribution [Figure 2D].

Design of highly transparent ceramics
Based on the best ETR model for predicting T%, we attempted to find out the highest T% in the given
composition, (K0.5Na0.5)xRyMzNbO3, where x and z vary in steps of 0.01 with constraints 0.94 ≤ x ≤ 0.98, 0.01
≤ z ≤ 0.05, y = 0.004, 0.01, and x + y + z = 1 (R = Tb, Sm, and Pr; M = Ba, Sr, Ca, and Mg). The component
boundaries refer to the solubility of dopants, the region of dopant elements in the dataset, and the feasibility
of the experimental part. There are 60 possible compounds in the search space, among which the Pr-Ba and
Sm-Ba[34] components in the R-M system appearing in the training set exhibit high T%, and the remaining
components are not present in the training data. The ability to generalize the model in the prediction
process is important to guide the design of KNN-based material.

The component search of the ETR model for the T% of KNN-based ceramics is shown in Figure 3, and the
top 5 components sorted by T% are listed in Table 1. The rare-earth and alkaline-earth co-doped KNN-
based ceramics exhibit high T% in the predicted results, mainly existing in the Tb-doped components.
Tb[35,36] or Ba[34,37] alone doped KNN-based ceramics are easy to obtain high transparency, which is attributed

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
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Figure 3. The predicting T% of (K0.5Na0.5)xRyMzNbO3 components based on the best ETR model. (A) R = Sm, ST = 1,175 °C ; (B) R = 

Pr, ST = 1,175 °C; (C) R = Tb, ST = 1,175 °C; (D) R = Sm, ST = 1,180 °C; (E) R = Pr, ST = 1,180 °C; (F) R = Tb, ST = 1,180 °C. ETR: 
extreme tree regression; ST: sintering temperature; T%: transmittance.

to their large band gap energy (Eg). The grain size was reduced with the increase of Tb3+ doping, resulting in 
lattice distortion and then a pinning effect to inhibit the grain growth. Ba2+-modified KNN-based ceramics 
possess high relative density, high crystal structure symmetry, nanosized grains, and large Eg, benefitting in 
high optical transparency. It can be predicted that Tb and Ba co-doping may further improve the optical 
transparency of KNN ceramics. To validate the prediction, we finally chose the zBa-0.004Tb-KNN system 
with the predicted highest T% for the following experiments

Composition-property relationship for transmittance analysis
In order to in-depth understand the relationship between the optimal feature combination and the high T% 
of KNN-based ceramics, we used a SHAP interpreter that originated from cooperative game theory to 
explain the global and local aspects of the sample and prediction models. In 2017, Lundberg and Lee[38] first 
used SHAP values to explain various ML models, making them explicable. Figure 4 shows the global 
explanation of SHAP theory for the factors influencing the T% of KNN-based ceramics. We analyzed four 
features that influence the T% of KNN-based ceramics and ranked the influences. The most influential four 
features are ST, Ven/NC, Dce, and Dve. It can be observed that the contribution of the process parameter 
ST to T% is much greater than other features. This indicates that accurate ST is the key to achieving optimal 

Table 1. The top 5 components are sorted by T% value

Rank Component ST (ºC) T%

1 (K0.5Na0.5)0.956Tb0.004Ba0.04NbO3 1,180 80.1%

2 (K0.5Na0.5)0.946Tb0.004Ba0.05NbO3 1,180 76.5%

3 (K0.5Na0.5)0.966Tb0.004Ba0.03NbO3 1,180 71.3%

4 (K0.5Na0.5)0.956Tb0.004Sr0.04NbO3 1,180 65.8%

5 (K0.5Na0.5)0.95Sm0.01Sr0.04NbO3 1,180 65.0%

ST: Sintering temperature; T%: transmittance.
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Figure 4. Plot of feature importance ranking based on SHAP value. (A) each point represents a sample; each row corresponds to a 
feature. Crowded places indicate the accumulation of a large number of samples. The color indicates the size of the feature value (red 
indicates high feature value, and blue indicates low feature value), and the horizontal axis indicates the positive or negative SHAP value; 
(B) histogram of SHAP average absolute value sorting. Dve: schubert valence electron distance; Dce: schubert core electron distance; 
SHAP: shapley additive explanations; ST: sintering temperature; Ven/NC: the ratio of valence electron number with nuclear charge.

T%, in which low ST can deteriorate T%, but high ST has a very low gain in T%. And only moderate ST can
obtain high T% in KNN-based ceramics.

To further explain the relationship between each feature and the T% of KNN-based ceramics, the feature
combination was partially explained. As shown in Figure 5, the solid green box represents the region with
positive SHAP values (gain contribution region). In Figure 5A, the SHAP value of ST is maximum when ST
is near 1180 ºC, indicating that the gain to T% increases significantly at this time. As the ST increases, the
SHAP value gradually decreases and then stabilizes. As shown in Figure 5B, the SHAP value shows a clear
upward trend and increases rapidly from near 0 to ~15 as Ven/NC increases to a certain range, indicating
that higher Ven/NC has a positive effect on the T% of KNN-based ceramics. This is also consistent with the
trend of the joint distribution of Ven/NC and T%, as shown in Supplementary Figure 2. Figure 5C shows
that the SHAP value of Dce fluctuates widely, then the SHAP value mapping relationship between Dce and
ST was analyzed in Supplementary Figure 3. Obviously, a lower Dce is more favorable for KNN-based
ceramics to obtain higher T% when ST is 1,180 ºC. In Figure 5D, the SHAP value of Dve varies 
dramatically within a certain range, but as the fourth important feature, Dve combined with other features 
(i.e., ST, Ven/ NC, and Dce) enhances the performance of the ETR model.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
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Figure 5. Dependency plots of individual features versus SHAP values in the ETR mode. Each feature contributes a SHAP value to the 
predicted value, and the positive and negative SHAP values represent gains and deductions. (A) SHAP value of ST; (B) SHAP value of 
Ven/NC; (C) SHAP value of Dce; (D) SHAP value of Dve. Dve: schubert valence electron distance; Dce: schubert core electron 
distance; SHAP: shapley additive explanations; ST: sintering temperature; Ven/NC: the ratio of valence electron number with nuclear 
charge.

We mapped the feature values corresponding to the five components in Table 1 into the SHAP interpreter
(dashed part), also meeting sufficient conditions to obtain a high T%, indicating that the training effect of
the ETR model follows the prediction effect. In addition, we fine-tuned the ST when predicting the optimal
components. The ETR model was identified to be highly sensitive to the key process parameter ST, and the
highest T% was eventually considered to be at ST = 1,180 ºC. The predicted results are consistent with 
the SHAP explanation of the training set regarding ST, further demonstrating that the appropriate ST 
can promote high transparency of KNN-based ceramics. Lin et al. investigated the effect of different STs 
on the transparency of KNN-based ceramics, and a slightly varying ST (10-15 ºC) resulted in a 
change in transparency[3]. This conclusion will be verified in the subsequent experimental section.

Experimental results
In order to validate the predicted T% and prove the reliability of the ETR model, we synthesized zBa-
0.004Tb-KNN (z = 0.03, 0.04, 0.05) ceramics using the traditional solid-state reaction. T% of the ceramic
samples and T% of optimal samples sintered at different temperatures were measured. Figure 6 shows the
comparison between the T% spectrum and ML predictions of the zBa-0.004Tb-KNN ceramics. It can be
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Figure 6. (A) Optical transmittance spectra of the zBa-0.004Tb-KNN ceramics at ST = 1,180 °C and photograph of the highest 
T% sample (i.e., z = 0.04) with a thickness of ~0.4 mm (the insets); (B) Comparison between the experimentally measured T% 
and ML predictions for different Ba2+ concentrations (i.e., z); (C) Optical transmittance spectra of the 0.04Ba-0.004Tb-KNN 
ceramics at different ST; (D) Comparison between the experimental results and ML predictions for T% of 0.04Ba-0.004Tb-KNN at 
different STs. KNN: potassium-sodium niobate; ST: sintering temperature.

clearly observed from Figure 6A that T% first increases and then decreases with increasing Ba2+

concentration (i.e., z). Among them, 0.04Ba-0.004Tb-KNN exhibits the highest T% of 78% at 800 nm, and
the outstanding optical transparency can be substantiated by the photographs [Figure 6A]. Importantly, the
trend of T% and the highest experimental value (78% at 800 nm) are in line with the ML predictions (80.1%
at 800 nm) [Figure 6B]. In addition, the best sample 0.04Ba-0.004Tb-KNN with the optimal T% was used to
investigate the spectra of ceramics at different STs, as displayed in Figure 6C. The T% of 0.04Ba-0.004Tb-
KNN first increases and then slightly decreases with rising ST, showing the highest T% (monitored > 600
nm) at ST ~ 1,180 ºC. The change tendency is also compatible with that predicted by ML [Figure 6D],
demonstrating that this ML method is extremely sensitive to the key process parameter, i.e., ST.

Figure 7 shows the XRD patterns of the zBa-0.004Tb-KNN ceramics. As all samples possess typical
perovskite phases of KNN, indicating that Tb3+ and Ba2+ have well diffused into the lattice. Ion substitutions
in other reported ferroelectrics are usually based on similar ionic radii. Depending on the ionic radii of K+

(1.64 Å), Na+ (1.39 Å), Ba2+ (1.61 Å), Tb3+ (1.095 Å) having a coordination number of 12, and Nb5+ (0.69 Å)
having a coordination number of 6, most Ba2+ preferentially replace K+ at the A site and the rest of Ba2+ may
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Figure 7. XRD patterns of the zBa-0.004Tb-KNN ceramics. (A) z = 0.03, 0.04, and 0.05; (B) XRD amplification of 2θ at 45-47°. KNN: 
potassium-sodium niobate.

displace Na+ at the A site. Similarly, most Tb3+ tend to displace Na+ first and later K+ site. The content of Tb3+

in this experiment was only 0.4%, so combined with doping concentration and ionic radius, Tb mainly
replaces the A-site and does not enter the B-site. Previous studies have reported that Ba2+ and Tb3+

preferentially replace the A-site in KNN[5,36]. When the KNN-based ceramics are sintered at high
temperatures ( > 1,100 ºC), the inevitable volatilization of alkali metal elements leads to the formation 
of impurity phases. Obviously, zBa-0.004Tb-KNN does not exhibit secondary phases at z = 0.03 and 
0.04, indicating very low volatilization of alkali metal elements. With further increasing the Ba2+ content 
to 0.05, Ba2+ cannot fully enter the KNN matrix, resulting in the production of secondary phase 
BaNb3.6O10 (PDF#46-0942) at z = 0.05, which can partly reduce the T%. Similar effects of BaNb3.6O10 on 
T% were also found in other KNN-based ferroelectric ceramics[5,34]. Additionally, the phase structure 
of KNN-based ferroelectrics can be roughly judged from the diffraction peaks in the 2θ range of 45-47º. 
For the samples with z = 0.03 and 0.04, only one (200) diffraction peak can be observed at ~45.8º, 
verifying that they own pseudo-cubic phases with high symmetry. And the optical anisotropy of the 
pseudo-cubic structure is slight, which effectively reduces the light scattering and ultimately improves 
the light transmission of samples. While z = 0.05, the diffraction peak at ~45.5º shows a splitting 
tendency, and the phase structure deviates from pseudo-cubic, thus deteriorating the transparency. 
Therefore, we can conclude that the 0.04Ba-0.004Tb-KNN ceramic has the highest T%.

Figure 8 displays the SEM images of the external surfaces and cross-sections and the grain size of the zBa-
0.004Tb-KNN ceramics. Typical cubic grains are present in all ceramics. For the sample with z = 0.04,
homogeneous grains (with a size in the range of 80 - 100 nm) and smaller pores can be observed 
[Figure 8B), while the grain distribution is not uniform at z = 0.03 [Figure 8A] and z = 0.05 [Figure 
8C], especially for z = 0.05 that some grains appear to be fused to cause abnormal growth. Besides, the 
donor-doping feature of Tb3+ and Ba2+ at A-sites leads to the appearance of cation vacancies for 
maintaining the charge balance. A certain number of defects caused by these vacancies are often 
accumulated near the grain borders at low energy, which leads to restricted grain motion and suppresses 
grain growth. Defects in the zBa-0.004Tb-KNN ceramics are mainly divided into intrinsic and non-
intrinsic defects. Due to the volatilization of potassium and sodium during high-temperature sintering, 
intrinsic defects include cationic and anionic vacancies. On the other hand, aliovalent doping of Ba2+ 
and Tb3+ at the A-sites of KNN produces non-intrinsic defects. The defect equations can be obtained as 
follows:
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These point defects tend to aggregate at the grain boundaries with low energy, resulting in weakened mass
transfer and effective suppression of grain growth. This indicates that the dopants possess a grain
refinement effect in the KNN-based ceramics, consistent with the previous reports[1,7]. Other donor ion-
doped ceramics also exhibit similar grain refinement phenomena[39,40]. Fine grains with high homogeneity
are essential to achieve high optical transparency in ceramics[41]. In addition, the SEM images of 0.04Ba-
0.004Tb-KNN ceramics sintered at different temperatures are shown in Supplementary Figure 4. All three
ceramics possess small grain size (in the range of 90-100 nm) without an obvious difference, and the sample
at ST = 1,180 ºC exhibits the best uniformity of grain size, which proves that the modulation of ST is
also crucial to obtain high T%.

The P-E loops of zBa-0.004Tb-KNN ceramics are shown in Figure 9. Each ceramic sample presents a typical
P-E loop and has obvious ferroelectric properties. In Figure 9A, remnant polarization (Pr) and coercive field
(Ec) gradually increase with the increase of Ba content. Since at lower Ba content, smaller grain size of
ceramics with grain boundaries are observed [Figure 8A and B], and the ferroelectric domains are difficult
to switch near grain boundaries, resulting in lower Pr. For the 0.05Ba-0.004Tb-KNN ceramic with larger
grain size [Figure 8C], high Pr (18.9 μC/cm2) and Ec (30 kV/cm) values are obtained. Besides, high-symmetry
phase structures of the zBa-0.004Tb-KNN (z = 0.03, 0.04) ceramics (based on the XRD analysis from
Figure 7) also induce weak ferroelectricity. Additionally, the ferroelectric properties of 0.04Ba-0.004Tb-
KNN ceramics at lower STs (i.e., 1,165 and 1,180 °C) are similar, but too high STs (i.e., 1,195 
°C) can deteriorate the ferroelectricity with low Pr. The piezoelectric performances of ceramics are very 
low (d33 ~ 3 pC/N), which should be attributed to the high-symmetry pseudo-cubic phase and small 
grains. Large grain size of a ceramic commonly shows good ferroelectric and piezoelectric properties, but 
it is not conducive to obtaining high optical transparency. ST has little effect on the ferroelectric 
properties of the 0.04Ba-0.004Tb-KNN ceramic but has a great impact on transparency. Hence, there 
is a trade-off relationship between piezoelectric/ferroelectric properties and transparency. It is 
expected to obtain both excellent electrical properties and high transparency by adjusting the 
composition and ST of KNN-based ceramics in the future.

ASSUMPTIONS AND LIMITATIONS OF CURRENT WORK
In this work, the ceramic samples involved in the experimental part were all prepared by traditional solid-
state reactions, and the training data were all based on them. As a mature ceramic sintering process, this 
method involves several steps, including ball milling, pre-burning, granulation, pressing, PVA discharge, 
and sintering. These steps require multiple heat treatments at various temperatures that are closely 
associated with the optical transparency of KNN-based ceramics. Due to the limited availability of data, our 
work only considered the ST as the process parameter during data collection. With the advancement of big 
data technologies in material science, considering multiple process parameters (i.e., sintering atmosphere, 
holding time, pre-burning temperature and time, etc.) of ceramic manufacture simultaneously has the 
potential to further enhance the predictive accuracy of the model. According to the survey, research in this 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
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Figure 8. SEM images of the external surfaces and cross-sections (insets of A, B, C) of the zBa-0.004Tb-KNN ceramics. (A) z = 0.03; 
(B) z = 0.04; (C) z = 0.05, Grain size distribution and mean size of the ceramics; (D) z = 0.03; (E) z = 0.04; (F) z = 0.05. KNN: 
potassium-sodium niobate; ST: sintering temperature.

Figure 9. P-E loops of the zBa-0.004Tb-KNN ceramics. (A) ST = 1180 ºC; (B) z = 0.04. KNN: potassium-sodium niobate; ST: sintering 
temperature.

area is still lacking and ongoing.

In addition, AI4S technologies are continuously evolving. Relying solely on single-model prediction has 
certain limitations in this work. It remains to be further studied whether different model coupling strategies 
and experimental strategies based on optimized methods[30] can improve the prediction of optical T% of 
KNN-based ceramics.

CONCLUSIONS
In summary, we used ML to accelerate the discovery of KNN-based highly transparent ceramics. According 
to the data from literature and experiments, we developed a regression model with the optical T% as the 
target performance and constructed the mapping relationship with T% only using a minor number of 
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elemental properties and ST as features. Ultimately, the model was applied to search a widespread space of 
unknown components and to identify experimental subjects. Meanwhile, we synthesized (K0.5Na0.5)0.956Tb0.004

Ba0.04NbO3 with the highest T% and fine-tuned the ST to analyze the process parameter-property 
relationship. The highest T% occurs in the moderate ST range, and the experimental optimum ST (1,175 ~ 
1,180 ºC) is highly consistent with the ML predicted results (ST = 1,180 ºC). The (K0.5Na0.5)0.956Tb0.004Ba0.04

NbO3 ceramic exhibits a high T% of 78%, matching well with the ML prediction (80.1%); the transparent 
ceramic also has certain ferroelectric properties. Our work shows that accurate component tuning and 
appropriate ST act together to control the transparency of KNN-based ceramics. While traditional 
experiments often require multiple exploratory experiments to determine the optimal ST, the present work 
can determine the range of optimal ST using only computer and big data techniques, and the constructed 
ML model can be extended to accelerate the search process for new transparent-ferroelectric materials.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/5817-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202306/202309-SupplementaryMaterials.xlsx
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