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Abstract
Aim: Tyre wear particles (TWPs) have been indicated as one of the main sources of microplastics (MPs) in aquatic 
environments, yet they receive little attention in the published literature. They have never been reported in 
Guanabara Bay in spite of several published analyses of the abundance, distribution, type, chemical composition 
and color of MPs in this area. We aimed to develop a method to allow ready detection of these particles in 
sediments.

Methods: Nine sediment samples were taken from locations over a wide geographic cover of the bay. They were 
collected from different depths using a Van Veen grab sampler. MPs were separated using peroxide degradation of 
organic matter followed by floatation and filtration. TWPs were identified  using a binocular stereo 
microscope,Scanning Electron Microscopy (SEM) and Fourier transformed infrared spectroscopy.
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Results: The combined use of these MP detection methods allowed the visualization and identification of high 
numbers of TWPs in the bay. Exact quantification was impossible because of the large size range of the particles 
and the use of a sedimentation system already shown to be sub-optimal.

Conclusion: High levels of TWPs were detected in Guanabara Bay sediments. Future studies to quantify these 
particles in coastal environments will necessitate the development of more robust methods, possibly using specific 
TWP markers. Various options are discussed.

Keywords: Marine contamination, chemical pollutants, microplastic analytical methods, urban runoff, coastal 
waters

INTRODUCTION
The presence of microplastic (MP) particles has become one of the most serious forms of pollution in the 
aquatic environment worldwide[1,2,3,4]; the slow degradability of these particles leads to their accumulation in 
the environment[5,6]. Within this category, tyreMPs (tyre wear particles, TWPs) and, to a lesser extent, other 
related MP sources like recycled tyre crumb (RTC) and tyre repair-polished debris (TRD)[7], have been 
indicated as one of the major contributors to MP pollution[8,9]; there is, however, little information on the 
latter two particle types[7]. Tyres consist of a mix of natural and synthetic rubbers, carbon black, steel cord, 
fibres, and other organic and inorganic components, which are used to improve their stability[10]. Any of 
these could be present in TWPs, although not all qualify as plastics. In the EU alone, an estimated 500,000 
tonnes of TWPs reach the marine environment every year and this is expected to increase with the 
introduction of electrically-powered and hybrid vehicles[11], which are 24% heavier than others, leading to a 
20-30% increase in TWP production[12,13].

The number of tires produced annually reaches the mark of billions of tires produced each year around the 
world, making their disposal one of the most serious environmental problems today. The global production 
of tyres is estimated to reach 2.7 billion pieces of tyres by 2022[14]; indeed, in China alone, this figure had 
reached 818 million in 2020[15]. The highest numbers of automobiles are found in the USA, followed by 
Australia, Italy, Canada, Japan, Germany, the UK, France, Malaysia, and Russia[5].The increasing pollution is 
greater in developing countries, such as China, India, and Brazil[16]. Due to exponential growth in the 
production and use of passenger cars, buses, motorcycle trucks and off-the-road vehicles in these countries, 
the amount of tyres manufactured and discarded has increased considerably. It is estimated that one billion 
tyres end their useful lives every year. Their improper disposal has become a major environmental problem 
worldwide. Few are recycled, and a huge volume ends up in landfill, often discarded in an uncontrolled 
manner in the environment, especially in developing countries. In countries like Brazil, tyre disposal has 
been a very serious environmental problem. It is estimated that thousands of tons of scrap tyres are 
abandoned in both marine and continental areas.

Before disposal, tyre particles originate from abrasion between the tyre and the road surface. They contain 
natural and synthetic rubber, fillers, and plasticizers. During the lifetime of a passenger car tyre, around 30% 
of its rubber is released into the environment[17].TWPs contain a broad range of chemicals, such as 
polyaromatic hydrocarbons (PAHs), sulfenamides, phthalates, thiazoles, guanidines, thiurams, 
dithiocarbamates, sulfur donors, phenolics, phenylenediamines and heavy metals, together with short fibers, 
that are potentially harmful to health and the environment[18,19]. Many of these chemicals can  pose risks to 
health. When tyre particles reach the oceans, various substances can be leached, including toxic metals (e.g., 
zinc, lead, cadmium), and organic compounds like hydrocarbons and benzothiazole derivatives[19]. Thus, 
this type of particle is an important source of chemicals and metals in the environment[20]. Particles derived 
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from tyre wear have received more attention in recent years, mainly in relation to their analysis and 
methods for confirming their identity and quantification, the leaching of various compounds and their 
toxicity.

MPs have been identified in Guanabara Bay, both in the water column and the bottom sediments[21-25], as 
well as in thebay sand beaches environments[26,27] and in the Bay biota[28]. This became a great problem, 
because it increased the inventory of pollutants present in this already so impacted bay. However, tyre 
fragments have never been considered. Guanabara Bay is located within the second largest metropolitan 
area of Brazil, with more than 7.500,000,000 automobiles, as well as being crossed by a bridge that connects 
two main cities in the metropolitan region. About 150,000 vehicles cross this bridge each day. Without a 
doubt, these various sources will contribute to the presence of TWPs in the bay.

Transport has been identified as one of the most important sources of pollution for the environment[29-31,18] 
and urban surface runoff is an important and complex form of diffuse contamination. Road traffic 
emissions comprise not only tailpipe exhaust gasses but also particles derived from wear and tear of vehicle 
parts, such as brakes, tyres, discs, etc., added to the vehicle-induced resuspension of dust deposited on the 
road. High concentrations of hydrocarbons[32,33], heavy metals[34-36], and calcium oxalate[37,38] have been found 
at the roadside, demonstrating the complexity of this pollution. Surface runoff from roads is characterized 
by containing hundreds of different chemical compounds, making identifying potential toxicants far from 
straightforward[39]. Since TWPs have never been separately considered in previous studies in Guanabara 
Bay, this article aims to, at least partially, rectify this omission by developing and applying a simple method 
to identify these particles in the bottom sediments of the bay.

METHODS
Area of study
Guanabara Bay is one of the largest bays on the Brazilian coast. It has an area of approximately 384 km2 with 
a water surface of 328 km2, due to its numerous islands; it is a very important coastal environment on the 
Brazilian littoral. It is one of the most beautiful scenery on the coast of the state of Rio de Janeiro, marked by 
the presence of Sugar-loaf Mountain and Corcovado, as well as many other natural beauties[40]. Guanabara 
Bay is located between the coordinates 23°41'-23°56'S and 43°02'-43°18'W. Due to its physical 
characteristics, this shallow bay is classified as a partially mixed estuary[41]. The humid tropical climate is 
marked by heavy rains in the summer (November to March) and drought in the winter (June to 
August)[40,41]. The entrance and central channel of Guanabara Bay are marked by sandy sedimentation and 
dominated by tidal and wave processes. The inner part of the bay is characterized by a flat bottom and 
muddy sedimentation, dominated by fluvial processes. These muddy sediments are rich in organic matter 
and various pollutants. Between these two distinct sedimentation areas, there is a transitional zone, 
represented as the decrease in the speed of tidal currents; this area is characterized by a mixture of sandy 
and muddy sediments[42].

Due to its location within the metropolitan region of Rio de Janeiro, Guanabara Bay is one of the most 
polluted environments on the Brazilian coast, where a large volume of untreated urban sewage is 
discharged, in addition to urban, industrial and agricultural effluents, urban surface runoff sediments are 
added to this.All this flow enters the bay through 45 rivers that drain a hydrographic basin of 4000 km2[41], in 
a highly urbanized area and characterized by a significant low-income population[40,43]. The vast majority of 
the rivers that drain into the bay are highly polluted. Since the rivers such asGuapimirim, Iguaçu, Caceribu, 
Estrela, Meriti and Sarapuí, alone account for 85.5% of all water flow into the bay[41].The drainage basin 
hosts 6000 industries, 2 airports, harbors, several shipyards, oil terminals and several untreated sewage 
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outlets around the coastline. The lack of planning for the development of urban centers around Guanabara
Bay has led this environment to the current stage of degradation. Nowadays, this bay can be considered one
of the most polluted bays on the Brazilian coast[40,41,43-49].

Field work and laboratory analyses
In order to describe the quantity and distribution of different types of MP in the bottom sediments of
Guanabara Bay, surveys were carried out throughout the bay. Nine sediment samples were taken from
different areas inside of the bay, labeled “GB” in Figure 1. They were collected from different depths, 3 to 7
meters on average [Figure 1], using a stainless steel Van Veen grab (Husky Duck Equipamentos e Serviços
LTDA) from a boat. At each sampling station, 1-2 kg of sediment were collected. After collection, the
samples were stored in sterilized polythene bags and were then sent to the laboratory. In order to eliminate
the organic matter present in the bottom sediments of the bay, hydrogen peroxide was used. In this
procedure, 20 mL (30% hydrogen peroxide) were added to the beakers and placed on a hot plate at 60 °C for
30 minutes. Every 10 minutes, the solution is mixed for one minute using a glass rod.If organic matter
remains in the sample, the entire procedure is repeated as many times as necessary. The flotation method
was used, using a saline solution (250 g NaCl/L distilled H2O) to separate the microplastic from the
sediments previously treated with hydrogen peroxide.500 grams of sediment was placed in a beaker with 7
liters of saline solution, and then this mixture was continuously stirred for 3   2 min using a magnetic
stirrer, with a rest period of 1-2 minutes between stirrings, depending on the observed clearance rate of the
sediment from suspension[50]. Using a 10 mL pipette, the supernatant was transferred onto 0.8-1 m pore-
size, 47 mm gridded nitrocellulose filters (Millipore) using a vacuum system. After all the supernatant was
collected, an additional 100 ml of saline was added to each sample, and the procedure was repeated to
extract any remaining MPs. After saline extraction, the filters are placed in sterilized glass Petri dishes and
dried in ovens at room temperature (21 °C). Once dry, the filters are taken to be examined under a
microscope. For this work, a binocular stereo microscope (Zeiss STEMI 2,000 C) was used to count the PM,
and categorize it by type and color and photographs were taken. SEM images of gold-coated plastic surfaces
were obtained using a JEOL scanning electron microscope fitted with an energy dispersive X-ray fluorescent
(EDXRF) spectrometer. For the chemical characterization, the samples were analyzed by attenuated total
reflectance Fourier-transformed infrared spectroscopy (ATR-FTIR, Thermo Nicolet 6,700, Thermo Fisher
Scientific). Identification based on infrared (IR) spectroscopy and known spectra was used in selected
samples. The types of spectroscopy used for MP identification were IR, FTIR, and near-infrared. The
chemical composition of the polymer was identified by comparing the entire range of the unprocessed
spectra with published references. Spectra were identified with Open Specy, version 0.9.5[51].

RESULTS AND DISCUSSION
The bottom samples collected at different sites within Guanabara Bay were very muddy and rich in organic 
matter. The processing for analysis of TWPs became very difficult, especially when hydrogen peroxide was 
not used. Even after the peroxide processing, black particles like those from tyres were difficult to identify 
[Figure 2]. We were only able to confidently identify them by the use of a binocular stereo-microscope 
confirmed by SEM [Figure 3]. The SEM images were compared to the works by[52,53] because the authors 
used the same technique, and showed a similar pattern observed in this study. As soon as this method was 
developed, the TWP number became so large that it was impossible to determine accurately; for this reason, 
the numerical results are not shown. The fact that SEM is necessary to positively identify TWPs without 
chemical analysis perhaps explains why other MP investigations carried out in the bay did not identify the 
presence of tyre fragments[21-27]. Two of the few studies worldwide to tentatively identify TWP pollution in 
the ocean are those of[54] and[55]. The first one[54] hypothesized that synthetic rubber-carbon filled particles in 
the sediments of a stormwater floating treatment wetland were derived from tyres. They comprised 15-38% 
of all MPs. The second one used benzothiazole as a marker for TWPs in an attempt to determine the major 

×
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Figure 1. Sampling sites in Guanabara Bay, metropolitan area of Rio de Janeiro, Brazil.

pathways of TWPs to the ocean[55].

The presence of TWPs in Guanabara Bay has not previously been proven, but recently a study carried out 
on theNiteróicoastline[56] observed high concentrations of abandoned tyres in an area close to Niterói 
Harbor. This “sea of tyres” [Figure 4] was so called because of the difficulty of counting them. The discarded 
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Figure 2. Binocular microscope images of MPs and tyre fragments indicated by the yellow arrows in the bottom sediment of Guanabara 
Bay.

tyres are used for mooring and as a protection for boats. This tendency in harbor areas has been extant for 
many years, with boat owners recognizing the worth of these unwanted and otherwise unusable tyres. 
Whether these discarded tyres may also, under some in situ conditions, produce MPs similar to TWPs is 
not known. It doubtless depends on the surrounding environment and its degrading potential. However, 
some of the particles we detected were rather large [Figure 4], and it seems possible that these are products 
of discarded tyres, degraded by other factors rather than direct road contact. In addition to low cost, old 
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Figure 3. SEM image of tyre fragments from Guanabara Bay

Figure 4. SideScan image of the “Sea of Tyres” near Niterói Harbor, Guanabara Bay [Modified from Oliveira et al. (2021)[56]].

tyres are easy to obtain and there is little caution regarding their use in Brazil[56], although a number of 
European countries have beenattempting to introduce legislation about their disposal[57].
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Urban runoff in Guanabara Bay is largely responsible for the contribution of tyre particles to its water; it is 
surrounded by busy highways and is crossed by a bridge that unites the Cities of Niterói and Rio de Janeiro, 
with vehicle movement reaching 150,000 per day. Research using benzothiazole, detected by pyrolysis GC-
MS[48], as a marker for TWPs, determined that surface runoff drainage was the major contributor of these 
MPs to the marine environment from conurbations off the southern coast of England. Runoff was also 
determined to be the major contributor to TWPs in a rural highway environment in Sweden[58]. They 
analyzed sieved fractions by SEM-EDX and single particle analysis, using a machine learning algorithm to 
classify them.

Tire wear is a major source of micro- and nanoplastics, which are often difficult to detect[59]. In the case of 
tyres, in addition to the composition of the rubber and the braking process, the production of PM particles 
is influenced by the structure of the tire, tire age, climate, type of road surface, vehicle speed, vehicle weight 
and distance traveled, and style[60].

The great problem in identifying TWPs is the fact that they have the same color as organic sediments and 
heavy minerals. This makes it difficult to separate them from the rest of the materials present in the 
sediments. The difficulty of identifying tyre particles due to the lack of appropriate reference standards has 
been highlighted[31]. Tyre particles are difficult to detect using conventional (micro)plastics methods such as 
FTIR; one problem is that they contain carbon black, which absorbs in the infrared region. In our study, we 
were, however, able to identify high density polyethylene as a component of some of the tyre particles 
[Figure 5].

It is likely that the polyethylene component of the TWPs is derived from the carcass, or casing, of the tyre. 
This is a textile-based material of 2-3 layers that keeps the tyre in shape under pressure and helps transfer 
the workload. Among the plastic fibers that are used to make the carcass is polyethylene[61-63].

A review of the ecotoxicological effects of tyre wear particles in the environment discussed the toxicity of 
tyre leachate, determined using various leaching procedures and test organisms[19]. More recently, the 
growth of marine phytoplankton was shown to be affected by these leachates[64]. Exposure of clams and 
ragworms to artificially produced TWPs (0.2% - 10% in estuarine sediment) indicated that both animals 
were adversely affected, showing reduced protein content after 3 days at 10% and various negative effects on 
feeding and burrowing[65]. In fact, most studies are still simulations, with almost no investigations of “real-
life” situations. The former often use conditions removed from those actually found in the natural 
environments. The problems associated with studies on the toxic effects of TWPs are discussed by[66]. 
Several studies have pointed out that zinc and organic compounds are among the most important tyre 
constituents that can leach out in the environment[67]. Zinc, as ZnO, is used as an activator for the rubber 
vulcanization process for the manufacture of vehicle tyres, along with various sulfur-containing organic 
complexes (e.g., dithiocarbamates and thiazoles) as vulcanization accelerators[68]. The finished product 
typically contains up to about 1%-2% of the total weight of tyres, mainly as excess ZnO but also as ZnS (20), 
and the leaching of this element into water represents an important environmental concern. Considering 
the large concentrations of zinc found in the bottom sediments of Guanabara Bay by several 
investigators[43,49], tyre fragments clearly play a large role in the inventory of zinc concentrations in the bay. 
Other chemical compounds present in automobile tires include polyaromatic hydrocarbons (PAHs), 
phthalates, sulfenamides, thiurams, thiazoles, dithiocarbamates, sulfur donors, phenolics, 
phenylenediamines and heavy metals[18,69-72]. These chemicals not only pose a threat to the environment, but 
also have a major impact on the biota and are a risk to human health.
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Figure 5. A tyre wear fragment and its FTIR spectrum, identifying it as HDPE

Not only chemicals, but also the specific biofilm associated with TWPs, are identified as a health hazard. It 
is of interest to note that the TWP biofilm is different from those on other substrates. The biofilm on TWPs 
has been found to be less diverse than those on HDPE and wood particles, with a relatively high proportion 
of putative hydrocarbon degraders[73]. Differences in biofilm thickness have also been found; in a freshwater 
laboratory system inoculated from a wastewater treatment plant, TWPs encouraged the growth of a thick 
biofilm containing rapidly growing and potentially pathogenic bacteria, different from PET particles, which 
did not encourage bacterial growth[74].

One of the major problems associated with tyre particles is extraneous forms of pollution. Accumulation of 
organic materials and chemical compounds on the surface of TWPs occurs in various parts of the 
environment. This not only represents a risk to the environment, but also makes FTIR analysis difficult. 
Various extraneous chemical compounds have been associated with tyre degradation. Some authors[75,76] 
observed the presence of bisphenol A leaching from tyres in the sea, indicating that TWPs can be important 
sources of this endocrine disruptor for the marine biota. Research carried out in Guanabara Bay, studying 
the same samples used in the current study[77], found important concentrations of BPA in all sediment 
samples. Bisphenol A may have been adsorbed to the particle surface from external sources, although this 
compound is used, in small amounts, as a stabilizer of polymerization in tyre manufacture. Release of the 
latter from tyres is considered low environmental risk[78].

Although there is considerable understanding of the adverse effects of chemicals leaching from MPs in 
general, and of the composition of tyres (and, therefore, of presumptive TWPs), there are, as yet, no well-
defined methods for analyzing and quantifying these particles[79]. The use of the sedimentation technique 
used by us and many others has been criticized[80]; the authors found that only 63% of tyre and road wear 
particles were retained by this sedimentation method.  There are two ISO technical specifications, ISO/TS 
22687:2018 - Rubber, and ISO/TS 20593:2017 - Pyrolysis-GC-MS method, but these make assumptions on 
the standard composition of tyre rubber that are not valid[81]. The same group as[80] devised a method based 
on LC-MS/MS and pyrolysis GC-MS to evaluate the release of both TWPs and their additives in an 
Australian tributary[82]. However, these methods presume that tyres contain homogeneous natural and 
synthetic rubbers[83]. This can underestimate the TWP concentrations by a factor of 5 or even more[81].
Research carried out recently[84] suggested that Raman Tweezers (optical tweezers plus Raman spectroscopy) 
could be used as a reliable quantification method. However, the recently developed methods do not 
necessarily all produce the same results[58]. The latter authors used automated single-particle SEM/EDX 
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analysis coupled to a machine-learning classifier in a mostly successful attempt to differentiate TWP, 
bitumen wear particles, road marking particles (paint and glass beads), metal particles, and mineral particles 
in environmental samples. However, the most common analytical method at the moment is the detection of 
a specific chemical, such as the benzothiazole mentioned previously[55]. The same authors discuss the various 
markers and techniques that have been used to detect and enumerate these particles in the air, concluding 
that no current method meets the requirements sufficiently well[85]. The development of improved methods 
is of immense importance for the determination of the real levels and environmental effects of TWPs.

CONCLUSIONS
There have been several reports of MPs in Guanabara Bay, but tyre wear particles (TWPs) have never been 
included as a separate class. The location of this bay, with the surrounding intense urbanization and road 
systems, indicates that these particles will be present, but their detection and identification are difficult 
because of the characteristics of the bottom sediments of the bay, which are very fine and organic, and of the 
dense nature of the particles themselves. Indeed, TWPs have been neglected in the literature because they 
are difficult to detect. The most commonly used techniques for MP detection do not transfer well to TWPs. 
Using a binocular stereo-microscope and confirming with SEM and FTIR, we were able to detect TWPs of 
various sizes in large quantities in the bottom sediment of Guanabara Bay. Despite Guanabara Bay receiving 
a great impact from urban surface runoff and being crossed by a bridge connecting two important cities, 
and there are already several articles published about microplastics in the bay, this article presents for the 
first time the occurrence and distribution of TWPs in the bay. Characterizing the ecological impact of 
TWPs requires further analyses and a standardized and improved methodology. This article presents 
preliminary methods and results in a continuing study to determine the impact of these materials on 
estuarine and coastal ecosystems. The most important future development in this area will be the 
development of a reliable and generally accepted method for the identification of TWPs. It seems likely that 
this will be based on the detection of a specific chemical compound, possibly based on polybutyldiene, 
although even this is found in some non-tyre-derived MPs. The current lack of a reliable analytical method 
for the detection of TWPs is considerably retarding the acquisition of knowledge of these particles.
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