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Abstract
Obesity-related gonadal dysfunction in males has been defined recently as male obesity secondary hypogonadism 
(MOSH). Affected individuals present with signs and symptoms related to the sex hormone imbalance but also 
with a burden of metabolic risk factors and occasionally compromised fertility. In pathophysiological terms, excess 
body fat is associated with leptin and insulin resistance. Accelerated synthesis of leptin and hyperinsulinemia 
downregulate the expression of kisspeptin receptors and, consequently, the action of kisspeptin. This critical 
neuropeptide is known to control gonadotropin secretion. In obese males, enhanced activity of the aromatase 
enzyme is associated with an increase in the conversion of circulating testosterone to estrogen, further promoting a 
state of hypogonadism. In addition, high fat and low fiber intake alter the intestinal microbiome and the dysfunction 
of the gut-brain axis. Weight loss appears to be the key to readjusting the function of the hypothalamus-pituitary-
gonadal axis. It can be achieved with lifestyle measures in combination with weight loss medications or bariatric 
surgery. The degree of weight loss appears to resolve the symptoms related to hypogonadism and improve fertility 
chances. However, the role of hormone replacement is also important, as testosterone replacement has been 
shown to reduce fat mass and increase the amount of lean body mass while also contributing to weight loss and 
the regulation of body mass index and waist circumference. This narrative review analyzes the evidence on 
developing obesity-related endocrinopathies and the available management options. Further research is required to 
estimate the cut-off of body mass index associated with a higher risk for hypogonadism.
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INTRODUCTION
Undoubtedly, obesity is the new pandemic for which global attention is needed. The latest World Health 
Assembly in May 2022 predicted that by 2030 at least 1 in 5 women and 1 in 7 men would be living with 
excess body weight[1]. The problem of weight excess is complex, driven by multiple factors and important 
causes, such as learned behaviors, genetics, cultural eating habits, or societal beliefs[2]. Public awareness 
campaigns that target body positivity can help perpetuate myths around obesity and clarify the true public 
health impact of this chronic disease[3,4].

Following the "obesity paradox, “according to which the patients with extreme obesity present with lower 
cardiovascular risk, researchers tried to define the subgroups of patients with the most significant risk for 
adverse health outcomes. In this context, the obesity phenotypes stratified overweight and obese patients 
according to their cardiometabolic burden[5]. Consequently, obese patients can be classified into metabolic 
unhealthy obesity (MUO) and metabolic healthy obesity (MHO). In contrast, normal or overweight patients 
with features of metabolic syndrome can be classified as metabolic unhealthy normal weight (MUHNW). 
This category corresponds to a different stage of cardiometabolic risk[5,6].

The most common obesity-related endocrinopathy is expressed as a transient gonadal dysfunction, likely to 
be ameliorated with successful management of weight excess[4]. Obesity-related gonadal dysfunction in 
males has been recently defined as MOSH (male obesity secondary hypogonadism). Besides signs and 
symptoms directly related to the sex hormone imbalance, individuals with obesity-induced gonadal 
dysfunction also express challenges when seeking fertility[7].

Treatment for obesity-related gonadal dysfunction consists of simple measures such as lifestyle and diet and 
medical or surgical interventions to promote weight loss and restore levels of sex hormones[8]. This narrative 
review aimed to provide an update on the latest evidence addressing the link between hypogonadism in 
overweight or obese male individuals.

METHODOLOGY
For this narrative review, the following search terms were used: “obesity” or “overweight” or “adiposity” or 
“obesity-related endocrinopathies” or “male obesity secondary hypogonadism,” or “MOSH” or 
“hypogonadism” or “prevalence” or “clinical implications” or “pathogenesis” or “medical treatment” or 
“surgical treatment” or “bariatric surgery.”

THE MALE STORY: MALE OBESITY SECONDARY HYPOGONADISM
MOSH is defined in obese men (body mass index, BMI of at least 30 kg/m2) who have been found to have 
low testosterone levels with either standard or low levels of gonadotrophins and present clinical signs of 
hypogonadism[6].

Prevalence
The prevalence of hypogonadism in obese male patients has been estimated as approximately 32.3% to 
64%[4,7]. A recent study described that secondary hypogonadism was present in 56% of men with obesity 
class II (BMI 35-39.9 kg/m2) and 61% of men with obesity class III (BMI > 40 kg/m2)[9]. An earlier study 
showed that obese patients have a 2.86 times higher risk of developing secondary hypogonadism than 
patients who are either overweight or of average weight. Similarly, abdominal adiposity is associated with a 
gradient increase in the risk for MOSH, estimated as 2.64 times higher for men with a WC > 102 cm vs. 
average[8,10]. Finally, the Massachusetts Male Ageing Study (1987 to 1997) showed that obesity is a substantial 
risk factor predicting the development of testosterone deficiency (OR 2.67, 95%CI: 2.0-3.57), 
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P-value < 0.0001), and vice versa. Interestingly, the European Male Ageing Study survey explored 3369 
community-dwelling men aged 40-79 years, who were retrieved from 8 different European centers to 
analyze the possible role of predictors of hypogonadism in older men[11]. This study reported that a body 
mass index of at least 30 kg/m2 was significantly associated with secondary hypogonadism (Relative risk 
ratio of 8.74, P < 0.001), with primary hypogonadism (RRR 2.37, 95%CI: 1.01 to 5.58) and compensated 
hypogonadism (RRR 0.73, 95%CI: 0.50-1.07). (for details on more studies, see Table 1).

Pathophysiology
The temporal relationship between testosterone deficiency (TD) and obesity is complex, not well-defined, 
and remains, at best, poorly understood[26-28]. Overall, the relationship between obesity and hypogonadism is 
complex and bi-directional. Excessive body fat is linked with lower testosterone production and vice versa; 
hypogonadal men are more prone to body fat accumulation[28].

The role of obesity in gonadal function
The obesigenic environment is characterized by visceral fat accumulation and decreased fat-free mass. The 
changes in fat distribution contribute to the following pathophysiological alterations: (1) A profound 
increase in the level of inflammatory mediators (e.g., TNF-a, interleukin 6, and interleukin 1)[29]. (2) Muscle 
inflammation that leads to increased myokine levels and insulin resistance[8,30]. Both of the alterations 
mentioned above are known to affect the hypothalamus-pituitary-gonadal axis (HPG) function negatively. 
The pituitary corresponds via reduced production of gonadotrophins[10]. In addition, the HPG function is 
further downregulated by the degree of hypothalamic inflammation[8,31].

Adipose tissue and leptin
White adipose tissue produces leptin, a hormonal mediator of testicular function and metabolic regulation. 
The concentrations of leptin are proportional to the size of the adipose tissue and the number of 
adipocytes[32,33]. Leptin is a well-documented regulator of the hypothalamic production of gonadotrophin-
releasing hormone (GnRH). The effect of leptin molecules on the GnRH neurons is mediated by forebrain 
kisspeptin-producing neurons[34]. Moreover, elevated leptin levels act on Leydig cells and reduce their 
responsiveness to pituitary gonadotrophins and the subsequent steroidogenic capacity[35-37]. On the other 
hand, hyperleptinemia results in saturation of leptin transport to the brain, with a consequent decrease in 
the expression of leptin receptors. The ensuing leptin resistance contributes to HPT dysregulation, 
decreased testosterone production, increased energy accumulation, food intake, and increased appetite[28,38]. 
In addition, lower testosterone levels favor lipid accumulation in the adipose tissue[28].

Adipose tissue and aromatase activity
Visceral adiposity and increased adipocyte mass lead to increased expression of the aromatase enzyme[39]. 
The latter can mediate the conversion rate of free testosterone to 17βestradiol[40,41]. In a vicious cycle, the 
increased oestradiol levels contribute to the hypofunction of the HPG axis. However, the raised oestradiol 
levels also interact with serotoninergic respiratory pathways, contributing to obstructive sleep apnea and 
disrupted sleep[35]. On the contrary, recent evidence retrieved from population-based studies showed that 
obese men have lower levels of oestradiol compared to lean and non-diabetic men. The lower levels of 
estradiol have been suggested to induce an increase in total body and intra-abdominal fat mass, which, 
together with the age-related accumulation of comorbid burden, may contribute to the development of 
features of androgenic deficiency[42,43].

The neuronal dysregulation of the reproductive axis
Under physiological conditions, leptin interacts with the ventral premammillary neurons[44]. The latter 
group of neurons induces the function of kisspeptin neurons to upregulate the synthesis of follicle-
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Table 1. Epidemiological characteristics of the association between male obesity and hypogonadism

Study Sample characteristics Conclusion

Risk for hypogonadism among individuals with obesity

Aggerholm et al.[12] cross-sectional study of 2,139 men Obese vs. normal-weight men:  
T levels 25%-32% lower 
Overweight vs. normal-weight men: 
Slightly (↓) sperm concentration  
Slightly (↓) sperm count

Calderon et al.[13] N = 35 men pre-bariatric surgery, age 39.5 9.5, mean BMI 42.7 0.7 Prevalence of hypogonadism: 
TT < 3 ng/mL in 68.5% 
FT < 65 pg/mL in 45.7%

Calderon et al.[14] Prevalence of MOSH in 100 male patients with moderate to severe 
obesity

Low TT and/or FT concentrations in 45% (95%CI: 
35-55) of patients

Dhindsa et al.[15] HIM study evaluated the prevalence of hypogonadism in 1,451 non-
diabetic and 398 diabetic men aged > 45 years

Prevalence of subnormal testosterone levels: 
Non-diabetes, overweight and obese men 29% vs. 
40%  
diabetic, overweight, and obese men, 44% and 
50% 

Escobar - 
Morreale et al.[16]

Meta-analysis, 382 severely obese men Prevalence of MOSH in those referred for bariatric 
surgery: 64% (95%CI: 50-77) of men

Hofstra et al.[17] 149 men aged 18-66 years, BMI 42.7 ± 0.7 kg/m2, T2DM in 37% Prevalence of hypogonadism: 
TT< 3 ng/mL in 57.7% 
FT < 65 pg/mL in 35.6%

Rigon et al.[18] 29 obese men who were treated with bariatric surgery and 29 age-
matched men

Prevalence of hypogonadism 
FT < 6.5 ng/dL: 55.56% 
Both FT < 6.5 ng/dL and TT < 264 ng/dL: 82.75%

Wu et al.[19] Survey of a random population sample of 3,369 men aged 40 to 79 
years

LOH prevalence by BMI categories 
Overweight, prevalence 1.6% 
Obesity, prevalence 5.2%

Dhindsa et al.[20] Part of the Teen-Longitudinal assessment of bariatric surgery study, 34 
males with obesity were referred for bariatric surgery

Subnormal FT (< 0.23 nmol/L) prior to surgery: 
73%

Van Hulsteijn et al.[21] Meta-analysis of 68 studies with 19,996 obesity patients Pooled prevalence of hypogonadism: 
Low TT 42.8% (95%CI: 37.6 - 48.0) 
Low FT 32.7% (95%CI: 23.1 - 43.0)

Risk for general or central obesity among individuals assessed for male hypogonadism

Bonomi et al.[22] Cohort study within the national network of academic or general 
hospitals, N = 503 patients with IHH

Prevalence of overweight: 
PPO-nIHH, 23.9% 
KS 31.5% 
AO-nIHH 42.8% 
AO-doIHH 50% 
 
Prevalence of obesity: 
PPO-nIHH, 15.6% 
KS 18.1% 
AO-nIHH 14.3% 
AO-doIHH 25%

Kapoor et al.[23] Cross-sectional study of N = 355 T2DM aged > 30 years Prevalence of obesity per the severity of 
hypogonadism:  
TT ≤ 8 nmol/L vs. 8-12 nmol/L or TT > 12nmol/L: 
80% vs. 68% vs. 51% 

Liu et al.[24] Aging men (N = 819) aged 43-87 years from Taiwan  
Overweight defined as 24 < BMI ≤ 27 kg/m2. Obesity defined as BMI > 
27 kg/m2

Prevalence of overweight and obesity: 
Biochemical TD, TT < 300 ng/dL and FT < 5 ng/dL: 
overweight 39.3% and obesity 27% 
Symptomatic AD: overweight 35.3% and obesity 
17.3%

Mulligan et al.[25] Hypogonadism in males study: 2,165 men aged ≥ 45 years Prevalence of obesity in hypogonadal vs. 
normogonadal men: 32.3% vs. 17%

HIM: hypogonadism in males study; TD: testosterone deficiency; FT: free testosterone; BMI: body mass index; AD: androgen deficiency; IHH: 
isolated hypogonadotrophic hypogonadism; PPO: pre-pubertal onset; AO: adult onset; KS: Kallman syndrome; nIHH: normoosmic; AO-doIHH: 
adult onset isolated hypogonadotrophic hypogonadism with defective olfaction.

stimulating hormone (FSH) and luteinizing hormone (LH) by the pituitary gland and their release into the 
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systemic circulation[44,45]. Within the testes, LH molecules stimulate Leydig cells and induce testosterone 
production, while in combination with FSH, they support spermatogenesis[35,40]. In an obesigenic 
environment, leptin resistance negatively affects the function of the HPT axis[46,47]. Obesity-related leptin 
resistance upregulates hypothalamic release of the orexigenic agouti-related peptide neurons[48]. The agouti-
related peptide is known to suppress the activity of kisspeptin neurons, which reduces the production of 
kisspeptin [46,49,50]. Simultaneously, obese males are characterized by low-grade inflammation secondary to 
excessive adiposity and energy storage overload. This low-grade inflammation is characterized by the release 
of pro-inflammatory cytokines like TNF-a and IL-6[27]. This pro-inflammatory state has been reported to 
compromise the activity of kisspeptin neurons due to their prolonged exposure to higher concentrations of 
TNF-a[27,51]. The ensuing suboptimal expression and activation of the kisspeptin receptor disrupt the GnRH 
pulse frequency, impair LH, and lower testosterone secretion[51,52]. Higher levels of TNF-a are known to 
further affect steroidogenesis by impairing cholesterol transportation into the mitochondria of Leydig cells, 
contributing to the state of hypogonadism[27,47,52].

Metabolic endotoxinaemia
The GELDING (Gut Endotoxin Leading to a Decline IN Gonadal function) theory supports that a key 
inflammatory trigger for developing MOSH is the trans-mucosal passage of bacterial lipopolysaccharide 
from the lumen of the gut to the circulation[53]. Testicular microbiota is closely linked with the gut 
microbiota; both exert an immune modifying role in protecting against invasion from pathogens[54]. High 
fat, with or without a high caloric diet, has been described to result in changes to intestinal wall permeability 
but also to the flora of the gut microbiome, breakdown of the mucosal barrier, and passage of the altered 
endotoxins to the circulation[53]. This change appears to lead to the direct or indirect destruction of 
spermatozoa[53,54]. In addition, metabolic endotoxemia in systemic circulation correlates with the severity of 
oxidative damage of sperm DNA, even after adjustment for BMI[55]. Moreover, metabolic endotoxemia also 
correlates with oxidative stress, which affects both the hypothalamus and the pituitary gland and results in 
subsequent inhibition of the release of LH[53,56]. Simultaneously, exposure of the testis to metabolic 
endotoxins activates the function of interstitial macrophages. The latter inhibits steroidogenic activity in 
Leydig cells by further promoting testicular oxidative stress, changes that result in lower testosterone 
production. Lower testosterone levels and local oxidative stress impair spermatogenesis in the seminiferous 
tubules and decrease sperm quality[53].

The role of hypogonadism in regulating body fat accumulation
Hypogonadism (also defined as testosterone deficiency; TD) is attributed to other comorbidities, such as 
T2DM, hypertension, and increased body fat mass, which contribute to low-grade inflammation, and 
increased secretion of adipocytokines and inflammatory cytokines[27]. Prospective studies have indicated that 
males with hypogonadism at baseline are at increased risk of visceral obesity and metabolic syndrome[57,58]. 
Moreover, data from studies in patients with prostate cancer treated with androgen deprivation therapy 
(ADT) showed that ADT causes an increase in BMI, suggesting that TD contributes to obesity[59,60]. 
Testosterone plays a crucial role in regulating body composition, exerting various molecular functions. It 
acts as an anabolic hormone essential for developing muscle mass and strength. Testosterone has been 
found to inhibit the differentiation of adipocytes while enhancing the expansion of myocytes, as both cell 
types share a common developmental origin[61,62]. This effect was confirmed in a study where treatment with 
testosterone or dihydrotestosterone downregulated key regulators of adipogenesis, namely the peroxisomal 
proliferator-activated receptor gamma (PPAR-γ) and CCAAT/enhancer binding protein alpha (C/EBPα), 
promoting myogenesis[63]. Testosterone also modulates lipid metabolism by promoting lipolysis in 
adipocytes, increasing the breakdown of triglycerides into free fatty acids and glycerol[64,65]. Androgens 
enhance lipolysis by upregulating β-adrenergic receptors in adipocytes, which are stimulated by 
catecholamines[65,66].
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However, the effects of androgens on different fat depots remain controversial[67]. Studies have shown 
differential effects, with increased lipolysis observed in visceral fat explants but not subcutaneous fat 
retrieved from obese men treated with dehydroepiandrosterone (DHEA) for 24 h[67]. Moreover, low 
testosterone levels are associated with increased lipid uptake, as indicated by elevated expression of 
lipoprotein lipase (LPL), an enzyme with a central role in the lipid uptake process[68]. Testosterone 
replacement therapy in hypogonadal men has been shown to decrease LPL activity and lipid uptake, 
particularly in visceral abdominal depots[69,70]. Low testosterone levels contribute to increased adiposity by 
promoting adipogenesis, particularly in visceral fat depots[28]. In men with hypogonadism, testosterone 
levels negatively correlate with visceral fat mass and the incidence of obesity-related conditions, including 
nonalcoholic fatty liver disease (NAFLD) and obstructive sleep apnea (OSA)[71,72].

Hypogonadism and Nonalcoholic fatty liver disease
Earlier data demonstrated a bi-directional association between low testosterone levels and NAFLD in 
men[54,55]. Both obesity and NAFLD are independent predictors of developing hepatocellular carcinoma or 
cholangiocarcinoma[73]. Hence early diagnosis and appropriate management are recommended.

Hypogonadism in the setting of primary NAFLD
Andrologic conditions share cardiometabolic risk factors with metabolic syndrome and NAFLD[74]. Apart 
from the documented associations between low levels of total testosterone and sex hormone binding 
globulin (SHBG) with NAFLD[75-77], the severity of hepatic fibrosis in patients with nonalcoholic 
steatohepatitis (NASH) has been associated with diminished serum levels of DHEA[78-80]. NAFLD is 
associated with a decrease in hepatic synthesis of SHBG. This change results in hypogonadism, secondary to 
the altered feedback of testosterone to the HPG axis[74,81]. The obesigenic environment contributes to low-
grade chronic hepatic inflammation[8,49]. This state is characterized by pro-inflammatory cytokines like 
tumor necrosis factor-alpha (TNF-a) and interleukin-1 (IL-1)[82,83]. In addition, excessive weight 
accumulation is associated with a high hepatic lipid content[84]. These pathophysiological changes are 
thought to suppress the hepatic production of sex hormone-binding globulin (SHBG), a molecule that acts 
as a transporter of sex hormones. SHBG has been described to suppress inflammation and decrease the fat 
content in adipocytes and macrophages[26]. Eventually, lower levels of SHBG, further suppressed by a state of 
insulin resistance[85], increase bioavailable testosterone levels, which provide negative feedback to the HPG 
axis. Suppression of the axis downregulates the release of gonadotrophins; the release of LH is further 
decreased secondary to the chronic presence of inflammatory cytokines[74]. Eventually, the production of 
testosterone will decrease, resulting in hypogonadism[74].

Secondary NAFLD in the setting of hypogonadism
A large body of epidemiological evidence indicates that hypogonadal men are at higher risk of 
NAFLD[71,76,86,87], while testosterone replacement therapy appears to improve both the lipid profile and 
adiposity measures[80,86,88,89]. A fair amount of data supported an association between low levels of androgens 
and increased de novo lipogenesis, which is manifested via an increase in enzymes involved in hepatic 
steatogenesis[90]. Preclinical studies have shown that inhibition of the AMP-activated protein kinase α-1 
function results in the upregulation of SREBP-1 (sterol regulatory element-binding transcription factor - 1), 
fatty acid synthase and Acetyl-CoA carboxylase 1, changes that induce increased production of triglycerides 
as well as very low-density lipoprotein cholesterol. Simultaneously, the upregulation of SREBP-2 and the 
hydroxymethyl glutaryl Co-A (HMGCO) synthase and reductase, changes that promote cholesterol 
production[90]. Furthermore, activating the scavenger receptor class B type 1 (SR-B1) and stimulating hepatic 
lipase by testosterone can result in the hydrolysis of phospholipids and triglycerides. This process ultimately 
leads to increased uptake of specific cholesterol from HDL-C lipids by the liver and facilitates cholesterol 
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efflux from peripheral cells[91]. Serum DHEA plays a role in modulating homeostasis and has been linked to 
reduced insulin resistance, increased transcription levels of PPAR (peroxisome proliferator-activated 
receptor) genes, and regulation of tissue sensitivity to oxidative stress[77,78,92,93]. Expression of the transcription 
factor PPARα regulates procollagen type I, a precursor associated with the development of fibrosing NASH, 
and lipid metabolism[78,93,94]. Moreover, a large amount of evidence advocates that low gonadal function is 
also associated with the presence of cardiovascular risk factors such as both general and central adiposity 
and the ensuing cardiometabolic burden such as dyslipidemia, hypertension, and insulin resistance, which 
further contribute to the origin and progression of NAFLD[94]. Additionally, hypogonadism is linked to 
intestinal dysbiosis, as seen in animal studies, which may play a role in the development of NAFLD. Finally, 
changes in gut microbiota composition, such as alterations in Lactobacillus numbers and Firmicutes/
Bacteroidetes ratio, can occur due to androgen loss[95]. The development of steatosis in castrated rodents fed 
a high-fat diet may be influenced by alterations in the abundance and composition of the intestinal 
microbiome and changes in hepatic lipid assembly and secretion[96]. Testosterone supplementation in 
castrated rodents has been shown to ameliorate hepatic steatosis induced by a high-fat diet[96]. These 
findings highlight the multifaceted influence of androgens on various factors implicated in the pathogenesis 
of NAFLD.

Role of NAFLD in the progression of obesity phenotypes
The development of hepatic steatosis with or without fibrosis is associated with obesity itself rather than 
metabolic health status[97]. A growing amount of data supports an association between the presence and 
severity of NAFLD and the progression of obesity phenotypes[98]. Individuals with a BMI-based definition of 
MHO have an almost 6 times higher risk for NAFLD, and those with the waist-circumference-based 
definition of MHO have an almost 7 times higher risk for NAFLD[99]. Patients diagnosed with the MHO 
phenotype who remain metabolically healthy over time do not appear at risk for NAFLD[100,101]. However, 
patients who progress to the MUO phenotype over time have a 2 times higher risk of baseline 
NAFLD[100,101]. Recent evidence highlighted the marked effect of disorders related to metabolic syndrome, 
such as NAFLD, rather than weight excess upon the progression between obesity-related metabolic 
phenotypes[98].

The interplay between hypogonadism, NAFLD, and depressive disorders
Low androgen levels occurring either in spontaneous cessation of gonadal function or androgen deprivation 
therapy are known to be related to mood disorders, including depression and anxiety[102]. In humans, 
testosterone has been shown to modulate neurobehavioral pathways[103]. Dihydrotestosterone has been 
shown to exert both neuroprotective and anti-neuroinflammatory effects on microglial cell lines and 
neurons[104], a group of cells closely related to the development of future depression[105]. Further in vivo 
evidence showed that androgens modulate the degree of neuroinflammation secondary to endotoxemia[106]. 
Depression is equally common in older hypogonadal men and middle-aged men with low-normal levels of 
testosterone[107,108]. Moreover, in a cohort retrieved from an erectile dysfunction clinic, hypogonadal middle-
aged men have an almost 2 times higher risk for overt depression in comparison to normogonadal men[109].

Cognitive disorders, as well as depression and anxiety, are frequently encountered in patients diagnosed 
with NAFLD[110-113]. In pathophysiological terms, early stages of chronic liver disease have been shown to 
affect the cerebellum, prefrontal cortex, and hippocampus. The latter areas are essential for regulating 
mood, cognition, and memory[114,115]. In addition, NAFLD has been associated with developing a 
prothrombotic state, neuroinflammation, and dysregulation of the insulin and IGF-1 (insulin growth factor) 
pathway, expressed specifically in the brain. These changes contribute to neurodegeneration of the 
hippocampus and the prefrontal cortex, resulting in disorders of the central nervous system[112]. Patients 
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with biopsy-proven NAFLD present both subclinical and clinical depression (54% and 14%) and anxiety 
(45% and 25%, respectively). Subclinical and clinical depression were mainly associated with 2.1 times and 
3.6 times higher grades of hepatocyte ballooning[116]. Evidence retrieved from murine models of NAFLD 
highlighted that hepatic lipid metabolism is interrelated with mitochondrial toxicity secondary to oxidative 
stress as well as with the serotonin pathway[117,118].

Given the above data, hypogonadal men with or without NAFLD are at higher risk for depression, which 
might require dedicated treatment. Treatment choices should be carefully selected to minimize the risk of 
further dysregulation of the metabolic profile[119]. Accordingly, the following drugs are known to affect blood 
pressure control: psychostimulants, antidepressants, antipsychotics, and mood stabilizers. The following 
drugs can modify insulin resistance and glycemic control, namely antipsychotics, mood stabilizers, and 
antidepressants. The prevalence of dyslipidemia is modified by antipsychotics and mood stabilizers, which 
are known to induce hypertriglyceridemia, as well as antidepressants known to induce 
hypercholesterolemia. Finally, weight gain is exacerbated by antipsychotics, mood stabilizers, and 
antidepressants[119].

Hypogonadism - visceral adiposity and Chronic kidney disease
Advanced CKD is also a risk factor for future hypogonadism[120]. In pathophysiological terms, renal failure is 
associated with various alterations of the pituitary and gonadal function, including the cyclic release of 
gonadotropin-releasing hormone (GnRH)[121], suppressed production of LH[122], and reduced clearance of 
prolactin[123,124]. The ensuing apparent hyperprolactinemia can further suppress LH production, resulting in 
a decrease in testosterone production[123]. In addition, the clearance of GnRH, LH, and FSH is 
downregulating, resulting in an apparent elevation of gonadotrophin levels[122,123]. The latter fails to induce 
testosterone production, either due to Leydig cell resistance or secondary to the downregulation of LH 
receptors in Leydig cells within a uremic environment[122]. CKD-related hyperparathyroidism also stimulates 
the synthesis of prolactin, further contributing to the development of hypogonadism.

Commonly prescribed medications in end-stage renal disease settings compete for androgen receptors and 
directly inhibit the synthesis of sex hormones[123]. Examples of such medications are spironolactone and 
cimetidine. Another effect observed in patients treated with spironolactone and ketoconazole is the further 
suppression of testosterone synthesis, achieved by reducing the activity of the 17a hydroxylase and C17-20 
lyase enzymes. In addition, various other drugs are known to decrease the production of gonadal steroids 
through different mechanisms[123,125]: (a) Glucocorticoids, which interact with steroid receptors and the HPG 
axis, can downregulate steroid production; (b) Immunosuppressants affect the HPG axis and modify the 
function of Leydig cells, thereby reducing the production of gonadal steroids; (c) Drugs such as 
benzodiazepines, opiates, and tricyclic antidepressants hinder FSH and LH signaling, thereby blocking their 
effects.

Hypogonadism has also been highlighted to represent one of the significant hormonal disorders related to 
future CKD risk[125]. Pathophysiologically, low testosterone levels induce visceral fat accumulation, further 
downregulating testosterone levels. Through multiple mechanisms[126,127]. These mechanisms include[126,127]: 
(a) insulin resistance and increased pro-inflammatory cytokines; (b) hyperleptinemia; (c) suppression of the 
HPG axis; and ultimately, reduced testosterone production. Thus, testosterone deficiency and metabolic 
disorders create a cyclical relationship, where one condition perpetuates the other in a complex interplay of 
hormonal and metabolic dysregulation.



Page 9 of Armeni. Metab Target Organ Damage 2023;3:9 https://dx.doi.org/10.20517/mtod.2023.05 17

Visceral adiposity is a novel predictor of future CKD risk[128-130]. The pathophysiological link remains under 
investigation, yet there is evidence of a relation between intrahepatic fat accumulation and metabolic risk 
factors in CKD[131]. A growing amount of data indicate that the NAFLD diagnosis is related to a heightened 
risk of incident CKD, even after controlling for obesity, diabetes mellitus, and cardiovascular risk factors[132]. 
The balance of the “kidney-liver” axis in patients with NAFLD is modified by the effect of the following 
parameters [132]: (a) shared genetic polymorphisms for NAFLD and CKD; (b) modifiable lifestyle factors 
such as obesity; (c) adipose tissue changes which promote de novo hepatic lipogenesis and steatosis; (d) 
metabolic dysfunction of skeletal muscles known as myosteatosis; (e) intestinal dysbiosis, a link between 
physical inactivity and unhealthy dietary habits, which manifests in the form of increased production of a 
variety of microbial metabolites, nephrotoxins, and hepatotoxins; (f) increased nephrotoxic burden, 
secondary to the hepatic metabolism of the previously mentioned metabolites.

Hypogonadism and Obstructive sleep apnea
The relation between hypogonadism and obstructive sleep is bi-directional[133]. Patients diagnosed with 
OSA, a frequent complication encountered in states of obesity, have significant evidence of sleep 
fragmentation, less REM (rapid eye movement) sleep, reduced deep sleep time and efficiency, and more 
frequent night-time wakings and arousal[133]. These changes contribute to a lowering of testosterone 
levels[134]. In turn, OSA and the related sleep disorders are associated with disruption of testosterone’s 
circadian manner, with attenuation of the nocturnal increase in testosterone levels[135,136]. Consequently, the 
downregulation of the GnRH waves results to lower LH levels, which downregulate the function of Leydig 
cells, contributing to hypogonadism[133]. In addition, a recent cross-sectional study of young male obese 
participants reported that a short sleep overnight is associated with a greater risk for MOSH in this 
population[137].

MANAGEMENT OPTIONS IN OBESITY-RELATED HYPOGONADISM
Treatment options in patients with MOSH
The efficacy of weight loss management in controlling obesity-related hypogonadism largely depends on the 
extent of weight loss. In this context, preliminary evidence showed that 10% of weight loss, induced by 
changes in lifestyle as well as physical activity and diet therapy, is associated with beneficial effects on the 
severity of MOSH[138]. In addition, a diet plan which consists of probiotic and synbiotic supplements can be 
beneficial, as it has been demonstrated to reduce free radicals in the semen and to enhance sperm quality 
and motility[54]. However, a low-calorie diet remains inferior to bariatric surgery concerning weight loss 
efficacy and the related restoration of hypogonadism in male patients with obesity[139].

Weight loss and the role of bariatric surgery
Evidence from a meta-analysis and small prospective studies on weight loss following bariatric surgery 
showed that the restoration of sex hormones at 12 months post-surgery is related to the percentage of 
weight lost[13,16,140]. Bariatric surgery is beneficial for severely obese patients, as it results in the resolution of 
MOSH in 87% of affected men[16]. A small study on severely obese men showed that the weight loss induced 
by laparoscopic gastric bypass or restrictive bariatric techniques (e.g., sleeve gastrectomy and adjustable 
gastric banding) is comparable and results in comparable restoration of insulin resistance and increased free 
testosterone levels[13]. A small prospective study of 12 obese males, who underwent obesity surgery, showed 
that MOSH was resolved six months post-surgery[141]. A recent meta-analysis demonstrated the beneficial 
effect of the ketogenic diet, adherence to which improved levels of total testosterone; however, the extent of 
the effect was mediated by the patient’s age and weight loss. More specifically, adherence to very low calorie 
vs. normo-caloric ketogenic diet was associated with a significantly more pronounced increase in 
testosterone levels[142].
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Many studies evaluated the association between weight loss and physical disorders associated with MOSH. 
For example, bariatric surgery has been reported to improve scores of erectile functions at 12 months after 
the intervention[143]. Another meta-analysis described that obese males with surgically induced weight loss 
were associated with improved erectile function, erection, and ejaculation scores, as well as overall sexual 
satisfaction[129].

The effect of weight loss on the results of the semen analysis remains inconsistent. The majority of studies 
demonstrated that obese or severely obese men who went through bariatric surgery did not experience a 
change in semen volume, concentration, motility, and total sperm count after the surgery[143,144]. One more 
small study showed that laparoscopic roux-en-Y-gastric bypass was associated with an increase in semen 
viability and semen volume, decreased sperm DNA fragmentation, and seminal interleukin-8 levels[145]. The 
same study supported that BMI variations correlated with alterations in sperm number and morphology, 
and semen volume[145]. An earlier meta-analysis showed that gastric bypass surgery was associated with an 
increase in semen volume, whereas semen morphology was found to be increased after sleeve 
gastrectomy[144]. Results evaluating the effect of bariatric surgery on sperm morphology are still inconsistent, 
with small prospective studies reporting a decrease in the percentage of semen with normal 
morphology[141,146]. On the contrary, a recent meta-analysis described that bariatric surgery was associated 
with increased sperm morphology 12 months post-surgery[143] Table 2 .

Other options for medical treatment
In an attempt to regulate the severity of the hypogonadism related to MOSH, medications focusing on 
controlling the enzyme aromatase have started gaining attention. Evaluating the effect of weight loss with 
and without aromatase inhibition, a small study of 23 male patients with severe obesity described that the 
combination of weight loss/aromatase inhibition vs. weight loss/placebo is associated with an improved 
hormonal profile but no significant improvement in symptoms of hypogonadism[147]. In addition, a small 
study of hypogonadal and subfertile men (BMI ≥ 25 kg/m2) who received treatment with 1 mg anastrozole 
for five months evaluated the efficacy of this fourth-generation aromatase inhibitor in features of 
hypogonadism. This study showed an increase in FSH, testosterone, and testosterone-to-estradiol ratio, as 
well as an increase in sperm concentration, strict morphology, and total motile count[148].

Τestosterone replacement has been proven to be beneficial in the treatment of hypogonadal patients. 
Although changes in lifestyle aiming to achieve significant weight loss should be the basis of treatment, in 
some cases, testosterone therapy may be indicated, as in those men with multiple signs and symptoms of 
hypogonadism and concomitantly reduced levels of testosterone[149]. Furthermore, testosterone therapy in 
men with TD causes weight loss and reduces BMI. These facts suggest that testosterone treatment 
contributes to reversing obesi[150]. According to the latest guidelines, treatment with testosterone 
replacement for the short term (3-6 months) can be offered individually to patients with obesity-related 
hypogonadism, provided other reasons for hypogonadism have been excluded. The gel preparations are 
preferred over the depot injections, and treatment should be discontinued if there is no improvement in 
clinical symptoms in 3 months[8,151]. In obese men with hypogonadism, this treatment has been shown to 
improve body composition and have beneficial effects on metabolic risk factors and the underlying 
pathophysiological mechanisms. Its use has not been shown to increase the risk of cardiovascular events in 
this population[27,150].

Personalized medicine approach
Considering the close interrelation between hypogonadism and multiple metabolic manifestations, the 
evaluation of male hypogonadism in daily clinical praxis will benefit from a personalized medicine approach 
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Table 2. Practical recommendations for the assessment of patients with suspected or confirmed hypogonadism. Αdapted from[151]

Recommendations

(A) If presenting in the obesity clinic:  
Biochemical assessment of gonadal function (i.e., free testosterone, follicle-stimulating hormone, luteinizing hormone, total testosterone, sex 
hormone binding globulin, free testosterone) and clinical investigation for hypogonadal symptoms 
(B) If presenting in the andrology clinic:  
Evaluate anthropometric parameters (i.e., weight, height, waist circumference) for possible generalized obesity or central adiposity

Blood test for assessment of liver and kidney function, blood lipids, and glycemic control

Assess for a possible underlying mood disorder. If needed, treat with a cardiometabolic neutral agent

Investigate for possible obstructive sleep apnea

Detailed medical history for possible intake of medications interfering with gonadal steroid production

concerning the assessment of metabolic disorders[152]. The practical recommendations for assessing patients 
with suspected or confirmed hypogonadism are outlined in Table 2.

CONCLUSION AND RESEARCH AGENDA
The state of obesity-induced male gonadal dysfunction, most commonly known as MOSH, manifests with 
various symptoms which can affect not only gonadal function per se but also the overall quality of life. The 
link between male hypogonadism and weight excess, including the related cardiometabolic and hepatorenal 
complications, remains bidirectional. We discussed the pathophysiology of these associations and the most 
indicated management approach. In addition, the extent of additional body weight is associated with the 
degree of the gonadal compromise, with obese patients experiencing more symptoms and complications 
compared to their overweight or lean counterparts. Consequently, weight loss remains the most eligible 
treatment option, which should either be attempted with lifestyle and dietary measures or with the use of 
medical agents and bariatric surgery. However, further research is required to estimate the BMI and/or WC 
cut-off, which will predict gonadal dysfunction with reasonable sensitivity and specificity. Moreover, further 
research is required to explore the role of clinical or subclinical hypogonadism with regard to the balance of 
the “kidney-liver” axis in patients with a NAFLD diagnosis.
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