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Abstract
End-of-life products recycling can reduce the waste of resources, and disassembly line scheduling planning can 
effectively improve the recycling efficiency and reduce the pollution of the environment. This work addresses a 
bi-objective disassembly line scheduling problem with considering time interference between tasks. The weighted 
sum of the cycle time and hazard coefficients is optimized. First, a mathematical model of the disassembly line 
scheduling problem is established under the constraints of priority and time interference relationships. Second, four 
meta-heuristics are improved to solve the concerned problems, including particle swarm optimization, artificial bee 
colony, genetic algorithm and variable neighborhood search. Ten objective-oriented local search operations are 
designed for improving meta-heuristics’ performance. A reinforcement learning algorithm, Sarsa, is employed to 
guide task assignment among workstations and local search selection during iterations, respectively. Finally, 
experiments are carried out for 10 instances with different scales. The effectiveness of the improving strategies is 
verified; the meta-heuristics combined with Sarsa based task assignment and local search strategies has better 
robustness and stability than the classical ones. Comparisons and discussions show that the particle swarm 
optimization with improved strategies outperforms other algorithms.
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INTRODUCTION
As economic and societal development progresses, governments are introducing regulations aimed at 
safeguarding the environment, while people’s consciousness regarding environmental protection is steadily 
increasing. The emergence of recycling economy is playing a pivotal role in propelling the growth of the 
remanufacturing industry[1]. The rapid pace of product obsolescence, coupled with technological 
advancements, is considerably shortening the lifespan of products[2]. In contrast to methods such as 
incineration and landfill, the processes of disassembly and recycling offer notable economic and 
environmental benefits. Consequently, there is a growing demand for the proper treatment of a substantial 
volume of discarded products. In this context, the recycling of End-of-Life (EOL) products holds immense 
significance, yielding advantages for both environmental preservation and the principles underpinning the 
circular economy. Since the recycling trend is unavoidable, the disassembly of EOL products emerges as a 
pivotal undertaking, bearing considerable research importance[3,4].

To address the challenges posed by large-scale disassembly, Güngör and Gupta introduce the concept of 
disassembly lines, underscoring their vital role in product disassembly and recycling[5]. Disassembly 
sequence planning focuses on optimizing the disassembly sequence of EOL products’ components, aiming 
to minimize disassembly costs, enhance recycling efficiency, and maintain a reasonable level of stability 
throughout the disassembly process[6]. Planning and scheduling EOL products’ disassembly order is a 
challenge to enhance the efficiency and stability of disassembly lines. The disassembly line scheduling 
problem (DLSP) has been proven to be NP-hard[7]. Literature[8] introduces the concept of sequentially-
dependent disassembly line balance problems (DLBPs) and formulates the corresponding mathematical 
models. Emrah[9] applies constraint programming for the first time to the disassembly line balancing 
problem, improving the optimal solution for several medium-sized benchmark instances. ÇİL presents a 
mixed-integer linear programming (MILP) model for multiplayer disassembly line balancing and develops 
constraint programming methods to solve large-scale instances[10]. Meng et al. present a mixed-integer 
linear model for solving disassembly planning and scheduling problems[11]. Some publications tackle DLSP 
using diverse traditional mathematical methods[12-14]. However, they are not suitable for the challenges from 
large-scale instances in real-life situations[15]. Compared to the traditional mathematical optimization 
methods, the meta-heuristics are suitable for a wider range of problem structures and can obtain high-
quality solutions for large-scale problems quickly. However, meta-heuristics are usually only able to find 
near-optimal solutions. In recent years, many kinds of advanced meta-heuristics have been proposed for the 
exploration of decision-making problems in various domains. Chen et al. propose a self-adaptive fast 
fireworks algorithm (SF-FWA) that enables linear computational complexity in terms of problem 
dimensionality and makes the overall able to automatically adapt to a rich set of function landscapes[16]. 
Singh et al. solve the proposed multi-objective mathematical model for resource allocation through exact 
approaches and meta-heuristics[17]. Pasha et al. design a customized multi-objective hybrid meta-heuristic 
that directly considers problem-specific attributes to solve a multi-objective optimization model of the 
vehicle path problem in a box factory[18]. Singh et al. extend the research by proposing a novel ant-based 
generative structural hyper-heuristic to investigate how different pheromone graphs affect their 
performance[19]. Experiments demonstrate key differences in performance between two different pheromone 
spaces. Furthermore, researchers in various fields solve decision-making problems through meta-
heuristics[20-27].

ZMeta-heuristics are gradually applied for solving disassembly scheduling problems due to their excellent 
performance in balancing the computation cost and solution quality[28-30], including particle swarm 
optimization (PSO)[31-36], artificial bee colony (ABC)[37-40], genetic algorithm (GA)[41-46], and variable 
neighborhood search (VNS)[40,47-50]. Kalayci et al. propose a PSO based on variable neighborhood mutation 
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operators to solve DLBPs[31]. A problem-specific swarm optimization method is designed to modify the
adaptive parameters in disassembly sorting, thereby controlling the update mechanism of the disassembly
process[34]. Wang et al. establish a DLBP model that balances the economy and environment, considering
the precedence constraints, and develop a discrete multi-objective ABC algorithm to solve the problem[37].
For solving the DLSP, Zhang et al. use a hybrid graph to represent constraints and precedence relationships
and propose a hybrid ABC algorithm[39]. Slama et al. propose a block-based GA to solve the DLSP[41]. The
DLSP is efficiently addressed by Wu et al. through the proposal of a hybrid local search GA, along with the
implementation of a four-layer encoding and decoding strategy[42]. A new genetic simulated annealing
algorithm is proposed by Wang et al. to optimize the model[46]. According to the advantages of GA, two-
point mapping crossover and single-point insertion mutation operations are constructed to guarantee the
sequence’s priority and disassembly constraints. To balance the disassembly line, Ren et al. combine
variable local search algorithms with multi-criteria decision making to propose an improved general VNS
(GVNS)[48]. Liu et al. formulate a disassembly planning model that revolves around the achievement rate of
disassembly[50]. They introduce a comprehensive variable local search algorithm and integrate four distinct
local search operators into their approach to mitigate the impact of unforeseeable variables.

In many publications, traditional mathematical methods and meta-heuristics are used to solve various
scheduling and optimization problems, aiming to obtain optimal or approximate optimal solutions. In
recent years, reinforcement learning algorithms have been employed separately or combined with meta-
heuristics for addressing various scheduling problems, including disassembly scheduling problems. Tuncel
et al. utilize a reinforcement learning algorithm based on Monte Carlo to address the disassembly line
problem[51]. It can solve large-scale problems within a reasonable time frame. Zhao et al. employ ensemble
reinforcement learning to tackle the challenge of structural uncertainty in EOL products, effectively
adapting to the optimal disassembly sequence[52]. The literature[53] combines a brainstorming optimization
algorithm with reinforcement learning and uses a reward feedback mechanism to guide the selection of four
mutation strategies. By integrating metaheuristics and machine learning techniques, Karimi-Mamaghan
et al. solve combinatorial optimization problems[54]. Furthermore, some researchers employ metaheuristics
in conjunction with    -learning strategies within the framework of reinforcement learning to effectively
address scheduling problems[55-57].

In summary, most research has predominantly centered on optimizing the disassembly sequence or
maximizing factors such as disassembly time, energy consumption, or profit across multiple objectives. Yet,
comparatively less attention is directed toward assessing the impact of environmental protection pressures
on disassembly time and costs, especially for potential harm from hazardous products. To address this gap,
this study focuses on two objectives: cycle time (CT) and the hazard coefficients. The hazard coefficients are
related to the position of the hazard tasks in a solution and the average disassembly time of all tasks. The
contributions of this paper are given as follows:
(1) A mathematical model is developed for DLSP with optimizing the weighted sum of CT and hazard
coefficients.
(2) For task assignment, two workstation allocation strategies are first designed, and Sarsa algorithm is used
to select a premium one during iterations.
(3) Sarsa algorithm is employed to guide the selection of ten local search operators, which are designed for
improving convergence of meta-heuristics.

The remaining sections of this study are structured as follows: Section “INTRODUCTION” presents a
mathematical model for optimizing DLSP with CT and hazard coefficients. In Section “METHODS”, the
proposed algorithms are described. Experimental results and comparisons are provided in Section

Q
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Figure 1. Task disassembly sequence diagram.

“RESULTS”. Finally, Section “CONCLUSIONS AND FUTURE WORK” offers a summary of this work with 
several future directions.

METHODS
Problem description
Disassembly is a comprehensive manufacturing process that detaches a variety of components at multiple 
workstations. During a disassembly process, n tasks need to be allocated among m workstations. To 
streamline the complexity of the problem, we assume that all workstations can disassemble any task and are 
functionally identical[40]. A disassembly task involves a series of operations. Once a task is completed, the 
resulting components or sub-components can be further disassembled into their constituent parts until the 
core is entirely disassembled. In essence, the disassembly process is a progressive dismantling of the core 
into its individual components and subassemblies through a sequence of tasks. Upon satisfying the 
constraints, we allocate the disassembly tasks to specific workstations on the disassembly line, adhering to 
the disassembly order that meets the requirements. Once a task is assigned to a workstation, it becomes 
fixed and cannot be transferred to another workstation. It must be completed at the workstation. The 
number of available workstations remains constant, while different disassembly sequences can result in 
variations in disassembly time and hazard coefficients. The DLSP includes three sub-problems: (1) assigning 
tasks to workstations; (2) task sequencing; and (3) adjusting the task sequence to minimize the CT and 
hazard coefficients.

In DLSP, there are priority and time interference relationships between disassembly tasks. An example is 
shown in Figure 1, and the detail data is reported in Table 1. The numbers inside the circle represent 
disassembly tasks, and the solid arrow represents the priority order between tasks. Task 1 is the predecessor 
of Tasks 2, 3, and 4, indicating that Task 1 must be disassembled before proceeding with Tasks 2, 3, and 4. 
Tasks with the same background lines have a time interference relationship between them. Table 1 provides 
a detailed description of the example. For example, if Task 4 is disassembled first, it will increase the 
disassembly time of Task 5 by two units, and the actual disassembly time of Task 5 is 3 + 2 = 5 units. 
Conversely, if Task 5 is disassembled first, it will also increase the actual disassembly time of Task 4. 
Figure 2 shows the Gantt chart of a solution for the example.

Mathematical models
In this section, a mathematical model of DLSP is developed with minimizing CT and hazard coefficients. 
The following notations s are used to express the concerned problems, and the detail data is reported in 
Table 2.
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Table 1. The process of task disassembly

Disassembly sequence
Workstation

1 3 4 6 2 5 7
Run time Idle time CT Hazard coefficients

1 5 3 5 13 8

2 5 + 1 3 + 2 11 5

3 4 2 6 6

21 23.14

Actual disassembly time

CT: Cycle time.

Pl

Table 2. Notations description

Notation Description
Parameters

i Task index, i ∈ {1, 2, …, N}.

j Task index, j ∈ {1, 2, …, N}.

k Index of workstation, k ∈ {1, 2, …, M}.

M Workstation number.

N Task number.

ti Disassembly time for task i.

ta The average processing time of all tasks.

sdij The increasing disassembly time of task i, if task j interferes with task i, and j is disassembled before task i.

uij If task i and task j have an interference relationship, uij = 1; otherwise, uij = 0.

ti
’ The actual disassembly time of task i is the sum of the standard time and the interference time.

Bi The start time for disassembly task i.

Fi The completion time of task i.

Tk The completion of workstation k.

G An infinite positive number.

Pl lth element in a disassembly sequence, e.g., for sequence {1, 4, 2, 3, 6, 8, 7, 5}, P2 = 4.

CT Indicates the maximum completion time of all opening workstations.

Dij If task i can be disassembled before task j, Dij = 1; otherwise, Dij = 0.

Decision
variables

xik If task i is assigned to workstation k, xik = 1, else xik = 0.

h if the lth element in a disassembly sequence is hazardous,     = 1; otherwise,     = 0.

wij If task i is disassembled before task j, wij = 1, else wij = 0.

yikj The disassembly sequential relationship between tasks i, j. If part i is a precursor part of j and i is assigned to workstation k,
yikj = 1, else yikj = 0.

CT: Cycle time.

With defined notations, the mathematical representation of the DLSP can be formulated, as shown in 
Table 3.

Objective function (1) is calculated by assigning different weights to objective functions (2) and (3), where 
λ + ω = 1. Objective function (2) is to maximize the actual completion time among the running 
workstations. Objective function (3) is the total hazard coefficients of all hazard tasks. Constraint (4) 
indicates that there is a precedence relationship between task i and task j in the disassembly process. 
Constraint (5) states that the actual disassembly time for a task is the sum of its standard time and the 
interference time. Constraint (6) means that the processing order of tasks needs to satisfy the disassembly 
priority relationship. Constraint (7) ensures that the task is executed only once. Constraint (8) calculates the 

hPl Pl
h
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Table 3. The mathematical model of the DLSP

min f1 = λf2 + ωf3 (1)

min f2 = CT = max{Tk | 1 ≤ k ≤ M}, k ∈ {1, 2, …, M} (2)

min f3 = ∑l=1
N  (l × hPl

 × ta) (3)

wij + wji = 1, i ≠ j, i, j ∈ {1, 2, …, N} (4)

ti’ ≥ ti + sdji × wij × uij, i, j ∈ {0, 1, …, N}, i ≠ j (5)

wij ≤ Dij, i, j ∈ {0, 1, …, N} (6)

wii = 0, i ∈ {0, 1, …, N} (7)

ta = ∑i=1
N ti/N, i ∈ {1, 2, …, N} (8)

Bj ≥ Fi - G × (1 - wij), i, j ∈ {0, 1, …, N} (9)

Fi = Bi + ti’, i ∈ {0, 1, …, N} (10)

∑k=1
M xik = 1, i ∈ {1, 2, …, N} (11)

Tk = max{Fi × xik}, i ∈ {1, 2, …, N}, k ∈ {1, 2, …, M} (12)

xik ∈ {0, 1}, i ∈ {0, 1, …, N}, k ∈ {1, 2, …, M} (13)

wij ∈ {0, 1}, i, j ∈ {0, 1, …, N} (14)

yikj ∈ {0, 1}, i, j ∈ {0, 1, …, N}, k ∈ {1, 2, …, M} (15)

t’ ≥ 0, Bi ≥ 0, B0 = 0, Fi ≥ 0, Tk ≥ 0, i, j ∈ {0, 1, …, N}, k ∈ {1, 2, …, M} (16)

DLSP: Disassembly line scheduling problem.

average processing time of all tasks. Constraint (9) enforces that the start time of a subsequent task should 
be greater than or equal to the completion time of the previous one. Constraint (10) states that the 
completion time of a task is equal to the sum of its start and the actual disassembly time. Constraint (11) 
defines that each task can be assigned to only one workstation. Constraint (12) represents the actual 
completion time of workstations. Constraints (13) to (16) give the sign constraints on the decision variables.

Solution representation
In DLSP, the order of disassembly tasks is optimized to minimize the CT and hazard coefficients, while 
ensuring the priority constraint of tasks. For example, there is an initial disassembly order, s = (7, 3, 4, 6, 2, 
5, 1), representing the disassembly tasks in Figure 1. As depicted in Figure 1, s does not meet the priority of 
tasks. Consequently, by considering prioritization of tasks appropriately, s can be adjusted to s’ as follows: 
s’ = (1, 3, 4, 6, 2, 5, 7).

According to the characteristics of fixed workstations for this problem, two workstation assignment 
schemes are designed.

(1) The first step is to allocate the tasks among workstations randomly. Subsequently, based on task order 
and priority relationships, the tasks are sequentially disassembled on each workstation. According to the 
sequence s’, seven tasks were assigned to three workstations with 2, 2, and 3 tasks, respectively. The 
workstation 1 is for tasks 1 and 3, while workstation 2 processes tasks 4 and 6. The remaining three tasks are 
disassembled on workstation 3, as depicted in Figure 3. The detailed data is reported in Table 4.

(2) The tasks in a feasible sequence are assigned to the workstation list one by one. In one round, each 
workstation has only one task. A new round starts if there are remaining tasks in the sequence. Finally, all 
tasks can be assigned to all workstations. For example, according to the sequence s’ = (1, 3, 4, 6, 2, 5, 7), the 
total number of tasks is 7, and workstation number is 3. In the first round, task 1 is assigned to workstation 
1, task 3 is assigned to workstation 2, and task 4 is assigned to workstation 3. In the next round, task 6 is 
assigned to workstation 1; the remaining tasks are assigned in the same way until all tasks are assigned. The 
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Table 4. Task disassembly process for random workstation allocation scheme

Disassembly sequence
Workstation

1 3 4 6 2 5 7
Run time Idle time CT Hazard coefficients

1 5 5 + 1 11 6

2 3 4 7 10

3 2 3 + 2 5 12 5

17 23.14

Actual disassembly time

CT: Cycle time.

Figure 2. The Gantt chart for task 7.

Figure 3. The Gantt chart for the random workstation assignment scheme. CT: Cycle time.

final Gantt chart is depicted in Figure 4. The detailed data reported is in Table 5.

To clearly demonstrate the performance improvement of meta-heuristics combined with Sarsa, an example 
of 8 tasks is solved. Sarsa’s reward feedback can be utilized to select the appropriate task assignment for the 
problem size and through better choosing local search to obtain higher quality solutions. From Figure 5 to 
Figure 7, it can be clearly seen that the results by the meta-heuristics with Sarsa strategies are better than the 
algorithm without Sarsa strategies.

Meta-heuristics
This section describes four meta-heuristics: PSO, ABC, GA, and VNS. They start from parameter and 
population initialization. Then, the initial solutions are evaluated. After that, new solutions are generated by 
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Table 5. Task disassembly process for the second workstation allocation scheme

Disassembly sequence
Workstation

1 3 4 6 2 5 7
Run time Idle time CT Hazard coefficients

1 5 4 5 14 3

2 5 2 + 1 8 9

3 3 3 + 2 8 9

17 23.14

Actual disassembly time

CT: Cycle time.

Figure 4. The Gantt chart for the second workstation assignment scheme. CT: Cycle time.

Figure 5. The Gantt chart for task 8. CT: Cycle time.

Figure 6. The Gantt chart for task 8 applying only meta-heuristics. CT: Cycle time.
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Figure 7. The Gantt chart for task 8 applying the combination of metaheuristics with Sarsa. CT: Cycle time.

algorithm-specific strategies to update population. These steps are repeated until the termination condition 
is satisfied. The unified framework of the four algorithms is presented in Figure 8.

Sarsa
As a reinforcement learning algorithm, Sarsa is introduced to improve the adaptability and performance of 
Q-learning[58]. The main difference between Sarsa and Q-learning is the strategy to update Q-value. The 
schematic representation of the Sarsa framework is depicted in Figure 9.

The updating formula of Q-value in Sarsa is expressed as Equation (17).

where Q (St, At) is the Q-value of taking an action At at state St, α represents the learning rate, and R is the 
reward after executing action At. According to the problem of DLSP, the reward value formula is designed 
as Equation (18). γ is the discount factor, which takes values in the range [0,1].

Different from Q-learning, Sarsa can select an action under state St+1 according to different distributions of 
possible future returns for the current state, rather than directly selecting the largest expected Q-value to 
execute actions under the next state St+1. When updating the Q-table, Sarsa is still selecting the next action 
on the Q-table, which has not been updated yet. However, Q-learning chooses the next action on the 
updated Q-table.

For DLSP problems, we design a strategy π based on a probability distribution and set four values P = (0.7, 
0.8, 0.9, 1), respectively. The action with the highest expected value is selected in the probability of P, and 
random selection is executed under the probability of (1 - P), as depicted in Equation (19).

Sarsa based task assignment
Two workstation assignment schemes are presented in Section “Solution representation”. The Sarsa algorithm
is used to select an appropriate workstation assignment scheme (action) during meta-heuristics’ iterations. The
initial Q-table is shown in Table 6. Each solution corresponds to a state S, while each action A represents a
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Table 6. Initial Q-table

a1 a2 a3 … an

s1 0 0 0 … 0

s2 0 0 0 … 0

s3 0 0 0 … 0

Q (st, at) =

sn 0 0 0 … 0

Figure 8. The unified framework of the four algorithms.

Figure 9. The framework of Sarsa.

workstation assignment scheme. If a solution is improved by executing a workstation allocation strategy,
a reward is obtained and the corresponding Q-value is updated. The ratio of the workstation allocation

… … … … …
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scheme being selected for the next iteration is increased. Conversely, if a solution is not improved, there is 
no reward and its selection probability in the next iteration decreases. The π strategy is employed for 
action selection. Through continuous exploration and feedback in the learning process, the algorithm can 
discern better task allocation methods tailored to different requirements. Algorithm 1 describes the 
steps of this task assignment strategy.

Sarsa based local search
This article introduces ten local search operators for enhancing the performance of the meta-heuristics, 
which includes the adjustments for CT time and hazard coefficients. The detailed procedures of ten local 
searches are delineated below: 
(1) Swap: Swap the positions of two random tasks in the sequence [Figure 10A]. 
(2) Double swap: Repeat the swap operation twice [Figure 10B]. 
(3) Insertion: Randomly take out a task from a sequence and insert it into a new position in the sequence 
[Figure 10C]. 
(4) Bind insertion: Randomly select two consecutive tasks from a task sequence and insert them at the 
position with the lowest desired target value [Figure 10D]. 
(5) Block insertion: Randomly select multiple consecutive tasks from a task sequence and insert them at the 
position with the lowest desired target value [Figure 10E]. 
(6) Insert sequentially: Randomly select multiple tasks in a task sequence and insert them into the sequence 
one by one with the lowest desired target value [Figure 10F]. 
(7) Inverse: Randomly select several consecutive tasks from a task sequence in their reverse order 
[Figure 10G]. 
(8) Sort: Adjust the hazard task to the next position that satisfies the priority relationship [Figure 10H]. 
(9) Random sort: Randomly adjust the hazardous task to the sequence position with satisfying the priority 
relationship [Figure 10I]. 
(10) Sort sequentially: Adjust the hazardous tasks in sequence to a new position with satisfying the priority 
relationship and the lowest target value [Figure 10J].

Sarsa is employed to select premium local search operators during iterations. The solutions are as states 
while ten local search operators are taken as actions. In the learning process, the π strategy is used to select 
actions for the next state. If the current action gets a better solution, there is a position reward, increasing its 
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Figure 10. The framework of Sarsa.

iteration is decreased.

If the sequence obtained by local search does not satisfy the priority relationship, we need to update it to a 
feasible solution. The steps of Sarsa based local search are described in Algorithm 2.

probability of being selected in the next iteration. In contrast, the probability of being selected in the next 
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Framework of the proposed algorithms
The improved strategies are embedded in four meta-heuristics. The unified framework of them is shown in 
Figure 11. All algorithms start from an initial population and iteratively update population with their 
respective strategies. During iterations, two Sarsa based strategies are employed to improve the exploration 
and exploitation of meta-heuristics. Finally, the best result is output if the termination condition is met.

RESULTS
Experimental setup
To verify the effectiveness of the proposed strategies, ten instances with different scales are solved[59]. All the 
algorithms are compiled in C++; the running platform is a desktop computer with an Intel Core i7-10,700 
CPU @ 2.90 GHz and 16 GB of RAM under Microsoft Windows 11.

To ensure a fair comparison, all algorithms are executed for the same termination time, four seconds, while 
their parameters are experimentally determined to achieve the optimal combination. The algorithm’s 
performance is assessed by comparing its average value, minimum value, and the coefficient of variation 
(CV) in 20 runs. The smaller the CV value, the better the stability and robustness of the algorithm is.

The formula for calculating CV is as follows:

where AVE is the average of the target values obtained in 20 runs, and SD is the corresponding standard 
deviation.

Parameter setting
The orthogonal experiment design method is used to test the influence of parameters on the performance of 
the four combined algorithms. Taking the SPSO_SD as an example, there are four parameters, which are 
limited iterations (L), population size (Ps), learning rate (α), and discount rate (γ). Each parameter is set to 
four values, L ∈ {10, 20, 30, 40}, Ps ∈ {10, 20, 30, 40}, α ∈ {0.2, 0.4, 0.6, 0.8}, and γ ∈ {0.05, 0.1, 0.15, 0.2}. 
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Figure 11. The framework of the proposed algorithms.

The orthogonal matrix L16 (44) is shown in Table 7. By solving each group of parameters in the SPSO_SD 
and analyzing the target values obtained from experimental results, a corresponding main effect diagram is 
constructed, as depicted in Figure 12. It is evident that the SPSO_SD has the best results under the 
parameter combination, L = 20, Ps = 20, α = 0.8, and γ = 0.1, which is adopted for further test and 
comparisons.

In ABC, there are three parameters, employed bees (Ep), onlooker bees (Op), and scout bees (Sp), Op = 1 - 
Ep - Sp. By the trend of the parameter hierarchy of Figure 13, we choose the combination Ep = 0.5, Op = 0.2, 
and Sp = 0.3. In GA, there are two important parameters: crossover probability and mutation probability. 
After parameter tuning experiments, we choose Pc = 0.7 and Pm = 0.3, as depicted in Figure 14. In VNS, the 
maximum number of iterations and the number of domain operations have an important impact on the 
performance, and experimentally, the algorithm performs best when L = 20 and M = 30, as depicted in 
Figure 15.

We design a strategy π based on probability distribution. To choose a better probability setting, the largest 
instance is solved under six probabilities (P = 0.5, 0.6, 0.7, 0.8, 0.9, 1) with 20 runs independently. The first 
20 optimal values under six probabilities are selected to judge the number of distributions in each 
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Table 7. Orthogonal experiments for parameter setting

No. L Ps α γ Target
1 10 10 0.2 0.05 6,564

2 20 10 0.4 0.10 7,525

3 30 10 0.6 0.15 6,455

4 40 10 0.8 0.20 5,433

5 10 20 0.4 0.15 4,386

6 20 20 0.2 0.20 2,765

7 30 20 0.8 0.05 7,188

8 40 20 0.6 0.10 8,576

9 10 30 0.6 0.20 8,421

10 20 30 0.8 0.15 6,144

11 30 30 0.2 0.10 5,053

12 40 30 0.4 0.05 7,799

13 10 40 0.8 0.10 3,402

14 20 40 0.6 0.05 4,316

15 30 40 0.4 0.20 8,608

16 40 40 0.2 0.15 8,584

Figure 12. The main effects plot for SPSO_SD.

probability, as shown in Figure 16. The best four probability values are selected, (P = 0.7, 0.8, 0.9, 1).

Verifying the effectiveness of improved strategies
To verify the effectiveness of the proposed strategies, four meta-heuristics are compared to their respective 
variants. For all cases, the average (Ave) and minimum (Min) values of results are reported in Tables 8-11. 
From Table 8, SPSO_SD has the best results, with the best results for all cases and the smallest mean values. 
As shown in Table 9, SABC_SD has the smallest mean values for all cases and gets the best results in seven 
examples. The SABC_RD gets the best results for one case, while ABC_SD gets the best results in four cases. 
As reported in Table 10, SGA_SD obtains the smallest mean values for all cases and achieves the best results 
for five cases. The SGA_RD achieves the best results for only 1 case, while the GA_SD gets the best results 
for five cases. In Table 11, SVNS_SD has the smallest mean values for all cases and achieves the best result 
for seven cases. The SVNS_RD achieves the best result for one case. The VNS_SD achieves the best result 
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Table 8. Internal comparison of PSO algorithm

PSO SPSO_RD PSO_SD SPSO_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 96.70 69.00 48.60 35.00 66.60 52.00 47.65 32.00

27 68.95 36.00 58.35 35.00 67.50 47.00 48.90 27.00

36 130.75 55.00 96.50 65.00 82.05 47.00 79.90 32.00

47 406.95 357.00 368.30 343.00 235.20 427.00 358.85 241.00

51 19,936.95 16,538.00 15,067.15 12,411.00 15,790.50 8,716.00 13,557.10 8,082.00

55 12,709.25 4,439.00 8,992.80 6,892.00 10,276.60 4,095.00 7,074.25 3,431.00

66 185.70 70.00 79.15 54.00 73.35 47.00 59.00 41.00

70 1,417.25 619.00 514.15 443.00 1,104.15 778.00 406.65 338.00

79 8,933.20 4,452.00 3,669.45 2,995.00 6,384.45 4,003.00 2,765.60 2,173.00

83 42,163.30 37,139.00 25,487.15 23,013.00 38,521.55 30,081.00 23,561.05 17,316.00

PSO: Particle swarm optimization; Ave: the average; Min: minimum.

Table 9. Internal comparison of ABC algorithm

ABC SABC_RD ABC_SD SABC_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 78.95 44.00 77.05 49.00 67.40 44.00 50.30 32.00

27 65.35 45.00 61.20 36.00 64.55 41.00 46.30 28.00

36 114.55 64.00 106.15 66.00 88.85 34.00 78.05 32.00

47 325.65 160.00 400.85 244.00 314.40 145.00 252.85 142.00

51 20,681.80 13,558.00 19,207.40 13,500.00 19,485.65 10,062.00 15,820.65 12,411.00

55 13,492.05 4,383.00 8,385.50 3,431.00 9,209.25 5,088.00 8,056.40 3,431.00

66 150.55 82.00 124.85 50.00 102.95 43.00 79.45 43.00

70 1,456.90 784.00 780.95 331.00 824.40 323.00 502.40 331.00

79 7,894.50 3,759.00 5,679.85 2,489.00 5,489.55 2,157.00 4,316.85 2,022.00

83 39,651.25 33,843.00 33,654.65 27,724.00 36,514.05 32,823.00 30,152.20 18,980.00

ABC: Artificial bee colony; Ave: the average; Min: minimum.

for two cases while the VNS does not obtain the best mean value and minimum value for any case. It can be 
concluded that the meta-heuristics combined with Sarsa based task assignment and local search strategies 
have better robustness and stability than the compared ones.

The CV is employed as a metric to assess the influence of enhancement strategies on algorithms’ stability 
and robustness. Tables 12-15 show the comparisons of CV among the four classical meta-heuristics and 
their variants, respectively. In Table 12, SPSO_SD receives the best Min values for eight out of ten cases. As 
shown in Table 13, the SABC_SD obtains the minimum values for eight cases, while the ABC_SD obtains 
the minimum values for two cases. As reported in Table 14, the SGA_SD obtains the minimum values for 
seven out of ten cases, while GA_SD gets the minimum values for two cases. In Table 15, SVNS_SD obtains 
the minimum values for eight cases, while the VNS_SD and SVNS_RD obtain the minimum value for one 
case. In each group, the algorithm with two Sarsa based strategies has smaller CV values for most instances. 
This means that the Sarsa based strategies can improve the stability and robustness of four meta-heuristics.
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Table 10. Internal comparison of GA algorithm

GA SGA_RD GA_SD SGA_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 99.25 46.00 97.75 70.00 78.20 44.00 76.45 41.00

27 79.55 38.00 81.85 47.00 56.20 26.00 56.50 27.00

36 126.15 54.00 125.45 86.00 115.05 38.00 109.60 42.00

47 430.50 250.00 512.45 323.00 408.10 100.00 355.45 145.00

51 21,068.85 8,514.00 20,795.40 14,013.00 23,868.20 6,804.00 18,098.50 8,158.00

55 13,754.80 6,701.00 11,878.70 8,340.00 12,657.45 6,587.00 10,375.50 3,770.00

66 171.30 75.00 151.25 45.00 164.35 52.00 99.35 45.00

70 1,542.10 830.00 1,175.40 345.00 1,056.60 298.00 869.10 345.00

79 10,334.10 5,658.00 7,799.50 2,922.00 7,925.75 4,057.00 5,816.80 2,658.00

83 48,563.35 42,158.00 34,561.05 32,401.00 38,771.85 36,486.00 32,511.60 26,868.00

GA: Genetic algorithm; Ave: the average; Min: minimum.

Table 11. Internal comparison of VNS algorithm

VNS SVNS_RD VNS_SD SVNS_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 110.35 78.00 72.25 44.00 79.75 54.00 50.20 32.00

27 64.75 38.00 64.20 39.00 52.85 26.00 55.35 29.00

36 136.05 91.00 89.85 64.00 104.35 63.00 74.10 32.00

47 539.95 361.00 344.90 234.00 338.80 206.00 325.30 159.00

51 27,138.80 19,890.00 19,278.10 8,496.00 17,015.30 15,880.00 14,763.85 8,082.00

55 15,715.95 10,327.00 7,821.25 7,182.00 10,730.45 3,888.00 7,046.95 3,534.00

66 167.95 103.00 125.25 49.00 130.80 43.00 63.10 47.00

70 1,490.85 867.00 961.95 333.00 999.55 418.00 438.20 311.00

79 11,858.90 7,249.00 6,547.10 2,030.00 9,293.40 3,123.00 3,402.20 2,444.00

83 34,658.30 29,843.00 29,021.35 25,637.00 36,524.55 31,450.00 27,563.35 19,765.00

VNS: Variable neighborhood search; Ave: the average; Min: minimum.

Table 12. Comparison of CV values for the PSO variant algorithm

No. Tasks PSO PSO_SD SPSO_RD SPSO_SD
1 25 19.69% 3.67% 6.64% 7.50%

2 27 10.87% 7.32% 4.45% 3.89%

3 36 18.14% 9.90% 10.86% 3.96%

4 47 10.90% 6.31% 5.09% 4.96%

5 51 17.89% 8.99% 6.76% 5.42%

6 55 19.36% 4.44% 5.42% 6.96%

7 66 12.75% 8.59% 9.38% 2.61%

8 71 14.54% 9.20% 7.68% 2.42%

9 79 15.19% 2.39% 8.01% 1.04%

10 83 19.08% 8.83% 11.41% 7.32%

CV: Coefficient of variation; PSO: particle swarm optimization.
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Table 13. Comparison of CV values for the ABC variant algorithm

No. Tasks ABC ABC_SD SABC_RD SABC_SD
1 25 12.47% 9.87% 9.00% 3.48%

2 27 15.86% 5.24% 8.77% 2.65%

3 36 15.25% 4.51% 3.82% 2.73%

4 47 18.74% 5.39% 9.59% 6.76%

5 51 17.69% 5.47% 7.33% 6.84%

6 55 18.41% 8.99% 8.79% 8.79%

7 66 16.51% 8.28% 7.33% 6.96%

8 71 18.64% 6.12% 6.52% 8.08%

9 79 11.42% 7.70% 8.84% 6.67%

10 83 18.76% 12.47% 16.29% 7.76%

CV: Coefficient of variation; ABC: artificial bee colony.

Table 14. Comparison of CV values for the GA variant algorithm

No. Tasks GA GA_SD SGA_RD SGA_SD
1 25 11.13% 8.11% 9.03% 5.05%

2 27 16.44% 7.49% 9.42% 5.48%

3 36 17.59% 8.34% 7.75% 8.37%

4 47 14.05% 9.63% 6.53% 4.11%

5 51 19.88% 7.39% 8.29% 7.40%

6 55 14.67% 9.74% 12.77% 6.51%

7 66 16.34% 5.19% 10.62% 6.73%

8 71 15.00% 8.44% 13.17% 6.60%

9 79 17.12% 7.22% 18.05% 7.17%

10 83 14.56% 10.28% 12.77% 9.03%

CV: Coefficient of variation; GA: genetic algorithm.

Table 15. Comparison of CV values for the VNS variant algorithm

No. Tasks VNS VNS_SD SVNS_RD SVNS_SD
1 25 12.82% 9.26% 8.99% 4.67%

2 27 14.76% 8.25% 8.28% 4.36%

3 36 12.14% 6.76% 6.12% 4.49%

4 47 17.31% 6.76% 7.70% 3.72%

5 51 12.48% 9.95% 6.61% 5.01%

6 55 19.13% 7.34% 7.33% 7.64%

7 66 12.61% 9.03% 7.18% 6.35%

8 71 10.60% 3.96% 9.00% 3.59%

9 79 18.63% 3.48% 8.84% 4.32%

10 83 19.13% 10.49% 9.95% 6.32%

CV: Coefficient of variation; VNS: variable neighborhood search.
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Figure 13. Parameter level trend of ABC. ABC: Artificial bee colony.

Figure 14. Parameter level trend of GA. GA: Genetic algorithm.

Further comparisons and discussions
To further verify the performance difference among four algorithms with Sarsa based strategies, the 
Friedman test and Nemenyi post-test are executed. The results are represented in Table 16, Figures 17 and 
18. In Table 16, the obtained asymptotic significance (Asymp.Sig) is far less than 0.05, indicating 
noteworthy disparities among the four algorithms. It implies that there exist significant variations in their 
performance. Figure 17 shows the mean rank of algorithms by Nemenyi post-test. It is obvious that the 
SPSO_SD has the smallest rank value (1.70). Figure 18 visually presents the algorithm ranking distribution 
for all cases. It can be seen from Figure 18 that the SPSO_SD ranks first for six out of ten instances and 
second for two cases. The SABC_SD and SVNS_SD have ranked first for 2 out of 10 instances, respectively. 
The SGA_SD has a bad rank for most instances. Hence, the SPSO_SD outperforms its peers in solving the 
concerned problems.
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Table 16. The results of Friedman test

N 10

Chi-Square 17.760

Df 3

Asymp.Sig. .000

Asymp.Sig: Asymptotic significance.

Figure 15. Parameter level trend of VNS. VNS: Variable neighborhood search.

Figure 16. The number proportion of the optimal values of six probabilities.

Convergence analysis
In this section, we present curves depicting the convergence of four classical meta-heuristics. The results of 
cases with 47 tasks and 79 tasks are used, as shown in Figures 19 and 20. It is evident that the algorithms 
converge rapidly at the beginning and flatten out with the increasing computational time. SGA_GD 
algorithm gives the worst results. SVNS_SD has medium performance and more stability. SABC_SD 
fluctuates a lot during the convergence process. Compared with these algorithms, SPSO_SD has faster 
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Figure 17. The rank of Nemenyi post-hoc test.

Figure 18. Friedman’s binary rank variance analysis.

convergence and higher quality solutions. It can be observed that SPSO_SD has better efficiency and 
effectiveness than its peers.

Case study: aircraft engine disassembly
In the experimental part, the arithmetic instances include self-generated cases and some actual cases such as 
discarded cell phones for the case with 27 tasks, LCD TVs for the case with 36 tasks, laptop computers for 
the case with 47 tasks, and aircraft engines for the case with 51 tasks[59]. The case with 51 tasks is a specific 
case provided by a domestic airport. Figure 21 is the disassembly priority diagram of the aircraft engine 
disassembly case in our project.

CONCLUSIONS AND FUTURE WORK
A mathematical model for DLSP is established, considering time interference and priority relationships. The 
main objective is to minimize both CT and hazard coefficients. According to the problem’s characteristics, a 
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Figure 19. Convergence curves of all compared algorithms for task 47.

Figure 20. Convergence curves of all compared algorithms for task 79.

Sarsa algorithm with a reward feedback mechanism is employed in two stages for task allocation and 
guiding local search operators’ selection. The experiments solve ten instances of varying scales. Through 
analysis and discussion of the results, it is proven that the PSO algorithm combined with two Sarsa 
strategies exhibits strong competitiveness for solving DLSP problems.

In the future, the following directions will be addressed: (1) building upon existing challenges, consider 
more practical constraints, such as incomplete disassembly, multilateral disassembly, and other related 
disassembly issues; (2) try to combine more reinforcement learning algorithms to meta-heuristics for solve 
disassembly problems; (3) attempt to apply the combination of reinforcement learning and meta-heuristics 
to other scheduling problems[60-62].
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Figure 21. Precedence graph of the aircraft engine disassembly case.
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