
Li et al. Green Manuf Open 2024;2:2
DOI: 10.20517/gmo.2023.091901

Green Manufacturing Open

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing,
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

www.oaepublish.com/gmo

Open AccessResearch Article

Integrating meta-heuristics and a Sarsa algorithm for
disassembly scheduling problems with cycle time
and hazard coefficients
Dachao Li1, Kaizhou Gao1,2, Yaxian Ren1, Ruixue Zhang1, Yaping Fu3

1School of Computer, Liao Cheng University, Liaocheng 252000, Shandong, China.
2Macau Institute of Systems Engineering, Macau University of Science and Technology, Taipa 999078, Macao, China.
3School of Business, Qingdao University, Qingdao 266071, Shandong, China.

Correspondence to: Dr. Kaizhou Gao, School of Computer, Liao Cheng University, Huxi Street, Dongchangfu District, Liaocheng
252000, Shandong, China. E-mail: gaokaizh@aliyun.com

How to cite this article: Li D, Gao K, Ren Y, Zhang R, Fu Y. Integrating meta-heuristics and a Sarsa algorithm for disassembly
scheduling problems with cycle time and hazard coefficients. Green Manuf Open 2024;2:2. https://dx.doi.org/10.20517/gmo.
2023.091901

Received: 19 Sep 2023 First Decision: 4 Jan 2024 Revised: 9 Jan 2024 Accepted: 19 Jan 2024 Published: 29 Jan 2024

Academic Editor: Hongchao Zhang Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

Abstract
End-of-life products recycling can reduce the waste of resources, and disassembly line scheduling planning can
effectively improve the recycling efficiency and reduce the pollution of the environment. This work addresses a
bi-objective disassembly line scheduling problem with considering time interference between tasks. The weighted
sum of the cycle time and hazard coefficients is optimized. First, a mathematical model of the disassembly line
scheduling problem is established under the constraints of priority and time interference relationships. Second, four
meta-heuristics are improved to solve the concerned problems, including particle swarm optimization, artificial bee
colony, genetic algorithm and variable neighborhood search. Ten objective-oriented local search operations are
designed for improving meta-heuristics’ performance. A reinforcement learning algorithm, Sarsa, is employed to
guide task assignment among workstations and local search selection during iterations, respectively. Finally,
experiments are carried out for 10 instances with different scales. The effectiveness of the improving strategies is
verified; the meta-heuristics combined with Sarsa based task assignment and local search strategies has better
robustness and stability than the classical ones. Comparisons and discussions show that the particle swarm
optimization with improved strategies outperforms other algorithms.

Keywords: Disassembly line scheduling, meta-heuristics, Sarsa algorithm, bi-objective

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/gmo
https://dx.doi.org/10.20517/gmo.2023.091901
https://dx.doi.org/10.20517/gmo.2023.091901
http://crossmark.crossref.org/dialog/?doi=10.20517/gmo.2023.091901&domain=pdf

Page 2 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

INTRODUCTION
As economic and societal development progresses, governments are introducing regulations aimed at
safeguarding the environment, while people’s consciousness regarding environmental protection is steadily
increasing. The emergence of recycling economy is playing a pivotal role in propelling the growth of the
remanufacturing industry[1]. The rapid pace of product obsolescence, coupled with technological
advancements, is considerably shortening the lifespan of products[2]. In contrast to methods such as
incineration and landfill, the processes of disassembly and recycling offer notable economic and
environmental benefits. Consequently, there is a growing demand for the proper treatment of a substantial
volume of discarded products. In this context, the recycling of End-of-Life (EOL) products holds immense
significance, yielding advantages for both environmental preservation and the principles underpinning the
circular economy. Since the recycling trend is unavoidable, the disassembly of EOL products emerges as a
pivotal undertaking, bearing considerable research importance[3,4].

To address the challenges posed by large-scale disassembly, Güngör and Gupta introduce the concept of
disassembly lines, underscoring their vital role in product disassembly and recycling[5]. Disassembly
sequence planning focuses on optimizing the disassembly sequence of EOL products’ components, aiming
to minimize disassembly costs, enhance recycling efficiency, and maintain a reasonable level of stability
throughout the disassembly process[6]. Planning and scheduling EOL products’ disassembly order is a
challenge to enhance the efficiency and stability of disassembly lines. The disassembly line scheduling
problem (DLSP) has been proven to be NP-hard[7]. Literature[8] introduces the concept of sequentially-
dependent disassembly line balance problems (DLBPs) and formulates the corresponding mathematical
models. Emrah[9] applies constraint programming for the first time to the disassembly line balancing
problem, improving the optimal solution for several medium-sized benchmark instances. ÇİL presents a
mixed-integer linear programming (MILP) model for multiplayer disassembly line balancing and develops
constraint programming methods to solve large-scale instances[10]. Meng et al. present a mixed-integer
linear model for solving disassembly planning and scheduling problems[11]. Some publications tackle DLSP
using diverse traditional mathematical methods[12-14]. However, they are not suitable for the challenges from
large-scale instances in real-life situations[15]. Compared to the traditional mathematical optimization
methods, the meta-heuristics are suitable for a wider range of problem structures and can obtain high-
quality solutions for large-scale problems quickly. However, meta-heuristics are usually only able to find
near-optimal solutions. In recent years, many kinds of advanced meta-heuristics have been proposed for the
exploration of decision-making problems in various domains. Chen et al. propose a self-adaptive fast
fireworks algorithm (SF-FWA) that enables linear computational complexity in terms of problem
dimensionality and makes the overall able to automatically adapt to a rich set of function landscapes[16].
Singh et al. solve the proposed multi-objective mathematical model for resource allocation through exact
approaches and meta-heuristics[17]. Pasha et al. design a customized multi-objective hybrid meta-heuristic
that directly considers problem-specific attributes to solve a multi-objective optimization model of the
vehicle path problem in a box factory[18]. Singh et al. extend the research by proposing a novel ant-based
generative structural hyper-heuristic to investigate how different pheromone graphs affect their
performance[19]. Experiments demonstrate key differences in performance between two different pheromone
spaces. Furthermore, researchers in various fields solve decision-making problems through meta-
heuristics[20-27].

ZMeta-heuristics are gradually applied for solving disassembly scheduling problems due to their excellent
performance in balancing the computation cost and solution quality[28-30], including particle swarm
optimization (PSO)[31-36], artificial bee colony (ABC)[37-40], genetic algorithm (GA)[41-46], and variable
neighborhood search (VNS)[40,47-50]. Kalayci et al. propose a PSO based on variable neighborhood mutation

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 3 of 26

operators to solve DLBPs[31]. A problem-specific swarm optimization method is designed to modify the
adaptive parameters in disassembly sorting, thereby controlling the update mechanism of the disassembly
process[34]. Wang et al. establish a DLBP model that balances the economy and environment, considering
the precedence constraints, and develop a discrete multi-objective ABC algorithm to solve the problem[37].
For solving the DLSP, Zhang et al. use a hybrid graph to represent constraints and precedence relationships
and propose a hybrid ABC algorithm[39]. Slama et al. propose a block-based GA to solve the DLSP[41]. The
DLSP is efficiently addressed by Wu et al. through the proposal of a hybrid local search GA, along with the
implementation of a four-layer encoding and decoding strategy[42]. A new genetic simulated annealing
algorithm is proposed by Wang et al. to optimize the model[46]. According to the advantages of GA, two-
point mapping crossover and single-point insertion mutation operations are constructed to guarantee the
sequence’s priority and disassembly constraints. To balance the disassembly line, Ren et al. combine
variable local search algorithms with multi-criteria decision making to propose an improved general VNS
(GVNS)[48]. Liu et al. formulate a disassembly planning model that revolves around the achievement rate of
disassembly[50]. They introduce a comprehensive variable local search algorithm and integrate four distinct
local search operators into their approach to mitigate the impact of unforeseeable variables.

In many publications, traditional mathematical methods and meta-heuristics are used to solve various
scheduling and optimization problems, aiming to obtain optimal or approximate optimal solutions. In
recent years, reinforcement learning algorithms have been employed separately or combined with meta-
heuristics for addressing various scheduling problems, including disassembly scheduling problems. Tuncel
et al. utilize a reinforcement learning algorithm based on Monte Carlo to address the disassembly line
problem[51]. It can solve large-scale problems within a reasonable time frame. Zhao et al. employ ensemble
reinforcement learning to tackle the challenge of structural uncertainty in EOL products, effectively
adapting to the optimal disassembly sequence[52]. The literature[53] combines a brainstorming optimization
algorithm with reinforcement learning and uses a reward feedback mechanism to guide the selection of four
mutation strategies. By integrating metaheuristics and machine learning techniques, Karimi-Mamaghan
et al. solve combinatorial optimization problems[54]. Furthermore, some researchers employ metaheuristics
in conjunction with -learning strategies within the framework of reinforcement learning to effectively
address scheduling problems[55-57].

In summary, most research has predominantly centered on optimizing the disassembly sequence or
maximizing factors such as disassembly time, energy consumption, or profit across multiple objectives. Yet,
comparatively less attention is directed toward assessing the impact of environmental protection pressures
on disassembly time and costs, especially for potential harm from hazardous products. To address this gap,
this study focuses on two objectives: cycle time (CT) and the hazard coefficients. The hazard coefficients are
related to the position of the hazard tasks in a solution and the average disassembly time of all tasks. The
contributions of this paper are given as follows:
(1) A mathematical model is developed for DLSP with optimizing the weighted sum of CT and hazard
coefficients.
(2) For task assignment, two workstation allocation strategies are first designed, and Sarsa algorithm is used
to select a premium one during iterations.
(3) Sarsa algorithm is employed to guide the selection of ten local search operators, which are designed for
improving convergence of meta-heuristics.

The remaining sections of this study are structured as follows: Section “INTRODUCTION” presents a
mathematical model for optimizing DLSP with CT and hazard coefficients. In Section “METHODS”, the
proposed algorithms are described. Experimental results and comparisons are provided in Section

Q

Page 4 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Figure 1. Task disassembly sequence diagram.

“RESULTS”. Finally, Section “CONCLUSIONS AND FUTURE WORK” offers a summary of this work with
several future directions.

METHODS
Problem description
Disassembly is a comprehensive manufacturing process that detaches a variety of components at multiple
workstations. During a disassembly process, n tasks need to be allocated among m workstations. To
streamline the complexity of the problem, we assume that all workstations can disassemble any task and are
functionally identical[40]. A disassembly task involves a series of operations. Once a task is completed, the
resulting components or sub-components can be further disassembled into their constituent parts until the
core is entirely disassembled. In essence, the disassembly process is a progressive dismantling of the core
into its individual components and subassemblies through a sequence of tasks. Upon satisfying the
constraints, we allocate the disassembly tasks to specific workstations on the disassembly line, adhering to
the disassembly order that meets the requirements. Once a task is assigned to a workstation, it becomes
fixed and cannot be transferred to another workstation. It must be completed at the workstation. The
number of available workstations remains constant, while different disassembly sequences can result in
variations in disassembly time and hazard coefficients. The DLSP includes three sub-problems: (1) assigning
tasks to workstations; (2) task sequencing; and (3) adjusting the task sequence to minimize the CT and
hazard coefficients.

In DLSP, there are priority and time interference relationships between disassembly tasks. An example is
shown in Figure 1, and the detail data is reported in Table 1. The numbers inside the circle represent
disassembly tasks, and the solid arrow represents the priority order between tasks. Task 1 is the predecessor
of Tasks 2, 3, and 4, indicating that Task 1 must be disassembled before proceeding with Tasks 2, 3, and 4.
Tasks with the same background lines have a time interference relationship between them. Table 1 provides
a detailed description of the example. For example, if Task 4 is disassembled first, it will increase the
disassembly time of Task 5 by two units, and the actual disassembly time of Task 5 is 3 + 2 = 5 units.
Conversely, if Task 5 is disassembled first, it will also increase the actual disassembly time of Task 4.
Figure 2 shows the Gantt chart of a solution for the example.

Mathematical models
In this section, a mathematical model of DLSP is developed with minimizing CT and hazard coefficients.
The following notations s are used to express the concerned problems, and the detail data is reported in
Table 2.

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 5 of 26

Table 1. The process of task disassembly

Disassembly sequence
Workstation

1 3 4 6 2 5 7
Run time Idle time CT Hazard coefficients

1 5 3 5 13 8

2 5 + 1 3 + 2 11 5

3 4 2 6 6

21 23.14

Actual disassembly time

CT: Cycle time.

Pl

Table 2. Notations description

Notation Description
Parameters

i Task index, i ∈ {1, 2, …, N}.

j Task index, j ∈ {1, 2, …, N}.

k Index of workstation, k ∈ {1, 2, …, M}.

M Workstation number.

N Task number.

ti Disassembly time for task i.

ta The average processing time of all tasks.

sdij The increasing disassembly time of task i, if task j interferes with task i, and j is disassembled before task i.

uij If task i and task j have an interference relationship, uij = 1; otherwise, uij = 0.

ti
’ The actual disassembly time of task i is the sum of the standard time and the interference time.

Bi The start time for disassembly task i.

Fi The completion time of task i.

Tk The completion of workstation k.

G An infinite positive number.

Pl lth element in a disassembly sequence, e.g., for sequence {1, 4, 2, 3, 6, 8, 7, 5}, P2 = 4.

CT Indicates the maximum completion time of all opening workstations.

Dij If task i can be disassembled before task j, Dij = 1; otherwise, Dij = 0.

Decision
variables

xik If task i is assigned to workstation k, xik = 1, else xik = 0.

h if the lth element in a disassembly sequence is hazardous, = 1; otherwise, = 0.

wij If task i is disassembled before task j, wij = 1, else wij = 0.

yikj The disassembly sequential relationship between tasks i, j. If part i is a precursor part of j and i is assigned to workstation k,
yikj = 1, else yikj = 0.

CT: Cycle time.

With defined notations, the mathematical representation of the DLSP can be formulated, as shown in
Table 3.

Objective function (1) is calculated by assigning different weights to objective functions (2) and (3), where
λ + ω = 1. Objective function (2) is to maximize the actual completion time among the running
workstations. Objective function (3) is the total hazard coefficients of all hazard tasks. Constraint (4)
indicates that there is a precedence relationship between task i and task j in the disassembly process.
Constraint (5) states that the actual disassembly time for a task is the sum of its standard time and the
interference time. Constraint (6) means that the processing order of tasks needs to satisfy the disassembly
priority relationship. Constraint (7) ensures that the task is executed only once. Constraint (8) calculates the

hPl Pl
h

Page 6 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Table 3. The mathematical model of the DLSP

min f1 = λf2 + ωf3 (1)

min f2 = CT = max{Tk | 1 ≤ k ≤ M}, k ∈ {1, 2, …, M} (2)

min f3 = ∑l=1
N (l × hPl

 × ta) (3)

wij + wji = 1, i ≠ j, i, j ∈ {1, 2, …, N} (4)

ti’ ≥ ti + sdji × wij × uij, i, j ∈ {0, 1, …, N}, i ≠ j (5)

wij ≤ Dij, i, j ∈ {0, 1, …, N} (6)

wii = 0, i ∈ {0, 1, …, N} (7)

ta = ∑i=1
N ti/N, i ∈ {1, 2, …, N} (8)

Bj ≥ Fi - G × (1 - wij), i, j ∈ {0, 1, …, N} (9)

Fi = Bi + ti’, i ∈ {0, 1, …, N} (10)

∑k=1
M xik = 1, i ∈ {1, 2, …, N} (11)

Tk = max{Fi × xik}, i ∈ {1, 2, …, N}, k ∈ {1, 2, …, M} (12)

xik ∈ {0, 1}, i ∈ {0, 1, …, N}, k ∈ {1, 2, …, M} (13)

wij ∈ {0, 1}, i, j ∈ {0, 1, …, N} (14)

yikj ∈ {0, 1}, i, j ∈ {0, 1, …, N}, k ∈ {1, 2, …, M} (15)

t’ ≥ 0, Bi ≥ 0, B0 = 0, Fi ≥ 0, Tk ≥ 0, i, j ∈ {0, 1, …, N}, k ∈ {1, 2, …, M} (16)

DLSP: Disassembly line scheduling problem.

average processing time of all tasks. Constraint (9) enforces that the start time of a subsequent task should
be greater than or equal to the completion time of the previous one. Constraint (10) states that the
completion time of a task is equal to the sum of its start and the actual disassembly time. Constraint (11)
defines that each task can be assigned to only one workstation. Constraint (12) represents the actual
completion time of workstations. Constraints (13) to (16) give the sign constraints on the decision variables.

Solution representation
In DLSP, the order of disassembly tasks is optimized to minimize the CT and hazard coefficients, while
ensuring the priority constraint of tasks. For example, there is an initial disassembly order, s = (7, 3, 4, 6, 2,
5, 1), representing the disassembly tasks in Figure 1. As depicted in Figure 1, s does not meet the priority of
tasks. Consequently, by considering prioritization of tasks appropriately, s can be adjusted to s’ as follows:
s’ = (1, 3, 4, 6, 2, 5, 7).

According to the characteristics of fixed workstations for this problem, two workstation assignment
schemes are designed.

(1) The first step is to allocate the tasks among workstations randomly. Subsequently, based on task order
and priority relationships, the tasks are sequentially disassembled on each workstation. According to the
sequence s’, seven tasks were assigned to three workstations with 2, 2, and 3 tasks, respectively. The
workstation 1 is for tasks 1 and 3, while workstation 2 processes tasks 4 and 6. The remaining three tasks are
disassembled on workstation 3, as depicted in Figure 3. The detailed data is reported in Table 4.

(2) The tasks in a feasible sequence are assigned to the workstation list one by one. In one round, each
workstation has only one task. A new round starts if there are remaining tasks in the sequence. Finally, all
tasks can be assigned to all workstations. For example, according to the sequence s’ = (1, 3, 4, 6, 2, 5, 7), the
total number of tasks is 7, and workstation number is 3. In the first round, task 1 is assigned to workstation
1, task 3 is assigned to workstation 2, and task 4 is assigned to workstation 3. In the next round, task 6 is
assigned to workstation 1; the remaining tasks are assigned in the same way until all tasks are assigned. The

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 7 of 26

Table 4. Task disassembly process for random workstation allocation scheme

Disassembly sequence
Workstation

1 3 4 6 2 5 7
Run time Idle time CT Hazard coefficients

1 5 5 + 1 11 6

2 3 4 7 10

3 2 3 + 2 5 12 5

17 23.14

Actual disassembly time

CT: Cycle time.

Figure 2. The Gantt chart for task 7.

Figure 3. The Gantt chart for the random workstation assignment scheme. CT: Cycle time.

final Gantt chart is depicted in Figure 4. The detailed data reported is in Table 5.

To clearly demonstrate the performance improvement of meta-heuristics combined with Sarsa, an example
of 8 tasks is solved. Sarsa’s reward feedback can be utilized to select the appropriate task assignment for the
problem size and through better choosing local search to obtain higher quality solutions. From Figure 5 to
Figure 7, it can be clearly seen that the results by the meta-heuristics with Sarsa strategies are better than the
algorithm without Sarsa strategies.

Meta-heuristics
This section describes four meta-heuristics: PSO, ABC, GA, and VNS. They start from parameter and
population initialization. Then, the initial solutions are evaluated. After that, new solutions are generated by

Page 8 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Table 5. Task disassembly process for the second workstation allocation scheme

Disassembly sequence
Workstation

1 3 4 6 2 5 7
Run time Idle time CT Hazard coefficients

1 5 4 5 14 3

2 5 2 + 1 8 9

3 3 3 + 2 8 9

17 23.14

Actual disassembly time

CT: Cycle time.

Figure 4. The Gantt chart for the second workstation assignment scheme. CT: Cycle time.

Figure 5. The Gantt chart for task 8. CT: Cycle time.

Figure 6. The Gantt chart for task 8 applying only meta-heuristics. CT: Cycle time.

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 9 of 26

Figure 7. The Gantt chart for task 8 applying the combination of metaheuristics with Sarsa. CT: Cycle time.

algorithm-specific strategies to update population. These steps are repeated until the termination condition
is satisfied. The unified framework of the four algorithms is presented in Figure 8.

Sarsa
As a reinforcement learning algorithm, Sarsa is introduced to improve the adaptability and performance of
Q-learning[58]. The main difference between Sarsa and Q-learning is the strategy to update Q-value. The
schematic representation of the Sarsa framework is depicted in Figure 9.

The updating formula of Q-value in Sarsa is expressed as Equation (17).

where Q (St, At) is the Q-value of taking an action At at state St, α represents the learning rate, and R is the
reward after executing action At. According to the problem of DLSP, the reward value formula is designed
as Equation (18). γ is the discount factor, which takes values in the range [0,1].

Different from Q-learning, Sarsa can select an action under state St+1 according to different distributions of
possible future returns for the current state, rather than directly selecting the largest expected Q-value to
execute actions under the next state St+1. When updating the Q-table, Sarsa is still selecting the next action
on the Q-table, which has not been updated yet. However, Q-learning chooses the next action on the
updated Q-table.

For DLSP problems, we design a strategy π based on a probability distribution and set four values P = (0.7,
0.8, 0.9, 1), respectively. The action with the highest expected value is selected in the probability of P, and
random selection is executed under the probability of (1 - P), as depicted in Equation (19).

Sarsa based task assignment
Two workstation assignment schemes are presented in Section “Solution representation”. The Sarsa algorithm
is used to select an appropriate workstation assignment scheme (action) during meta-heuristics’ iterations. The
initial Q-table is shown in Table 6. Each solution corresponds to a state S, while each action A represents a

Page 10 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Table 6. Initial Q-table

a1 a2 a3 … an

s1 0 0 0 … 0

s2 0 0 0 … 0

s3 0 0 0 … 0

Q (st, at) =

sn 0 0 0 … 0

Figure 8. The unified framework of the four algorithms.

Figure 9. The framework of Sarsa.

workstation assignment scheme. If a solution is improved by executing a workstation allocation strategy,
a reward is obtained and the corresponding Q-value is updated. The ratio of the workstation allocation

… … … … …

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 11 of 26

scheme being selected for the next iteration is increased. Conversely, if a solution is not improved, there is
no reward and its selection probability in the next iteration decreases. The π strategy is employed for
action selection. Through continuous exploration and feedback in the learning process, the algorithm can
discern better task allocation methods tailored to different requirements. Algorithm 1 describes the
steps of this task assignment strategy.

Sarsa based local search
This article introduces ten local search operators for enhancing the performance of the meta-heuristics,
which includes the adjustments for CT time and hazard coefficients. The detailed procedures of ten local
searches are delineated below:
(1) Swap: Swap the positions of two random tasks in the sequence [Figure 10A].
(2) Double swap: Repeat the swap operation twice [Figure 10B].
(3) Insertion: Randomly take out a task from a sequence and insert it into a new position in the sequence
[Figure 10C].
(4) Bind insertion: Randomly select two consecutive tasks from a task sequence and insert them at the
position with the lowest desired target value [Figure 10D].
(5) Block insertion: Randomly select multiple consecutive tasks from a task sequence and insert them at the
position with the lowest desired target value [Figure 10E].
(6) Insert sequentially: Randomly select multiple tasks in a task sequence and insert them into the sequence
one by one with the lowest desired target value [Figure 10F].
(7) Inverse: Randomly select several consecutive tasks from a task sequence in their reverse order
[Figure 10G].
(8) Sort: Adjust the hazard task to the next position that satisfies the priority relationship [Figure 10H].
(9) Random sort: Randomly adjust the hazardous task to the sequence position with satisfying the priority
relationship [Figure 10I].
(10) Sort sequentially: Adjust the hazardous tasks in sequence to a new position with satisfying the priority
relationship and the lowest target value [Figure 10J].

Sarsa is employed to select premium local search operators during iterations. The solutions are as states
while ten local search operators are taken as actions. In the learning process, the π strategy is used to select
actions for the next state. If the current action gets a better solution, there is a position reward, increasing its

Page 12 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Figure 10. The framework of Sarsa.

iteration is decreased.

If the sequence obtained by local search does not satisfy the priority relationship, we need to update it to a
feasible solution. The steps of Sarsa based local search are described in Algorithm 2.

probability of being selected in the next iteration. In contrast, the probability of being selected in the next

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 13 of 26

Framework of the proposed algorithms
The improved strategies are embedded in four meta-heuristics. The unified framework of them is shown in
Figure 11. All algorithms start from an initial population and iteratively update population with their
respective strategies. During iterations, two Sarsa based strategies are employed to improve the exploration
and exploitation of meta-heuristics. Finally, the best result is output if the termination condition is met.

RESULTS
Experimental setup
To verify the effectiveness of the proposed strategies, ten instances with different scales are solved[59]. All the
algorithms are compiled in C++; the running platform is a desktop computer with an Intel Core i7-10,700
CPU @ 2.90 GHz and 16 GB of RAM under Microsoft Windows 11.

To ensure a fair comparison, all algorithms are executed for the same termination time, four seconds, while
their parameters are experimentally determined to achieve the optimal combination. The algorithm’s
performance is assessed by comparing its average value, minimum value, and the coefficient of variation
(CV) in 20 runs. The smaller the CV value, the better the stability and robustness of the algorithm is.

The formula for calculating CV is as follows:

where AVE is the average of the target values obtained in 20 runs, and SD is the corresponding standard
deviation.

Parameter setting
The orthogonal experiment design method is used to test the influence of parameters on the performance of
the four combined algorithms. Taking the SPSO_SD as an example, there are four parameters, which are
limited iterations (L), population size (Ps), learning rate (α), and discount rate (γ). Each parameter is set to
four values, L ∈ {10, 20, 30, 40}, Ps ∈ {10, 20, 30, 40}, α ∈ {0.2, 0.4, 0.6, 0.8}, and γ ∈ {0.05, 0.1, 0.15, 0.2}.

Page 14 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Figure 11. The framework of the proposed algorithms.

The orthogonal matrix L16 (44) is shown in Table 7. By solving each group of parameters in the SPSO_SD
and analyzing the target values obtained from experimental results, a corresponding main effect diagram is
constructed, as depicted in Figure 12. It is evident that the SPSO_SD has the best results under the
parameter combination, L = 20, Ps = 20, α = 0.8, and γ = 0.1, which is adopted for further test and
comparisons.

In ABC, there are three parameters, employed bees (Ep), onlooker bees (Op), and scout bees (Sp), Op = 1 -
Ep - Sp. By the trend of the parameter hierarchy of Figure 13, we choose the combination Ep = 0.5, Op = 0.2,
and Sp = 0.3. In GA, there are two important parameters: crossover probability and mutation probability.
After parameter tuning experiments, we choose Pc = 0.7 and Pm = 0.3, as depicted in Figure 14. In VNS, the
maximum number of iterations and the number of domain operations have an important impact on the
performance, and experimentally, the algorithm performs best when L = 20 and M = 30, as depicted in
Figure 15.

We design a strategy π based on probability distribution. To choose a better probability setting, the largest
instance is solved under six probabilities (P = 0.5, 0.6, 0.7, 0.8, 0.9, 1) with 20 runs independently. The first
20 optimal values under six probabilities are selected to judge the number of distributions in each

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 15 of 26

Table 7. Orthogonal experiments for parameter setting

No. L Ps α γ Target
1 10 10 0.2 0.05 6,564

2 20 10 0.4 0.10 7,525

3 30 10 0.6 0.15 6,455

4 40 10 0.8 0.20 5,433

5 10 20 0.4 0.15 4,386

6 20 20 0.2 0.20 2,765

7 30 20 0.8 0.05 7,188

8 40 20 0.6 0.10 8,576

9 10 30 0.6 0.20 8,421

10 20 30 0.8 0.15 6,144

11 30 30 0.2 0.10 5,053

12 40 30 0.4 0.05 7,799

13 10 40 0.8 0.10 3,402

14 20 40 0.6 0.05 4,316

15 30 40 0.4 0.20 8,608

16 40 40 0.2 0.15 8,584

Figure 12. The main effects plot for SPSO_SD.

probability, as shown in Figure 16. The best four probability values are selected, (P = 0.7, 0.8, 0.9, 1).

Verifying the effectiveness of improved strategies
To verify the effectiveness of the proposed strategies, four meta-heuristics are compared to their respective
variants. For all cases, the average (Ave) and minimum (Min) values of results are reported in Tables 8-11.
From Table 8, SPSO_SD has the best results, with the best results for all cases and the smallest mean values.
As shown in Table 9, SABC_SD has the smallest mean values for all cases and gets the best results in seven
examples. The SABC_RD gets the best results for one case, while ABC_SD gets the best results in four cases.
As reported in Table 10, SGA_SD obtains the smallest mean values for all cases and achieves the best results
for five cases. The SGA_RD achieves the best results for only 1 case, while the GA_SD gets the best results
for five cases. In Table 11, SVNS_SD has the smallest mean values for all cases and achieves the best result
for seven cases. The SVNS_RD achieves the best result for one case. The VNS_SD achieves the best result

Page 16 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Table 8. Internal comparison of PSO algorithm

PSO SPSO_RD PSO_SD SPSO_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 96.70 69.00 48.60 35.00 66.60 52.00 47.65 32.00

27 68.95 36.00 58.35 35.00 67.50 47.00 48.90 27.00

36 130.75 55.00 96.50 65.00 82.05 47.00 79.90 32.00

47 406.95 357.00 368.30 343.00 235.20 427.00 358.85 241.00

51 19,936.95 16,538.00 15,067.15 12,411.00 15,790.50 8,716.00 13,557.10 8,082.00

55 12,709.25 4,439.00 8,992.80 6,892.00 10,276.60 4,095.00 7,074.25 3,431.00

66 185.70 70.00 79.15 54.00 73.35 47.00 59.00 41.00

70 1,417.25 619.00 514.15 443.00 1,104.15 778.00 406.65 338.00

79 8,933.20 4,452.00 3,669.45 2,995.00 6,384.45 4,003.00 2,765.60 2,173.00

83 42,163.30 37,139.00 25,487.15 23,013.00 38,521.55 30,081.00 23,561.05 17,316.00

PSO: Particle swarm optimization; Ave: the average; Min: minimum.

Table 9. Internal comparison of ABC algorithm

ABC SABC_RD ABC_SD SABC_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 78.95 44.00 77.05 49.00 67.40 44.00 50.30 32.00

27 65.35 45.00 61.20 36.00 64.55 41.00 46.30 28.00

36 114.55 64.00 106.15 66.00 88.85 34.00 78.05 32.00

47 325.65 160.00 400.85 244.00 314.40 145.00 252.85 142.00

51 20,681.80 13,558.00 19,207.40 13,500.00 19,485.65 10,062.00 15,820.65 12,411.00

55 13,492.05 4,383.00 8,385.50 3,431.00 9,209.25 5,088.00 8,056.40 3,431.00

66 150.55 82.00 124.85 50.00 102.95 43.00 79.45 43.00

70 1,456.90 784.00 780.95 331.00 824.40 323.00 502.40 331.00

79 7,894.50 3,759.00 5,679.85 2,489.00 5,489.55 2,157.00 4,316.85 2,022.00

83 39,651.25 33,843.00 33,654.65 27,724.00 36,514.05 32,823.00 30,152.20 18,980.00

ABC: Artificial bee colony; Ave: the average; Min: minimum.

for two cases while the VNS does not obtain the best mean value and minimum value for any case. It can be
concluded that the meta-heuristics combined with Sarsa based task assignment and local search strategies
have better robustness and stability than the compared ones.

The CV is employed as a metric to assess the influence of enhancement strategies on algorithms’ stability
and robustness. Tables 12-15 show the comparisons of CV among the four classical meta-heuristics and
their variants, respectively. In Table 12, SPSO_SD receives the best Min values for eight out of ten cases. As
shown in Table 13, the SABC_SD obtains the minimum values for eight cases, while the ABC_SD obtains
the minimum values for two cases. As reported in Table 14, the SGA_SD obtains the minimum values for
seven out of ten cases, while GA_SD gets the minimum values for two cases. In Table 15, SVNS_SD obtains
the minimum values for eight cases, while the VNS_SD and SVNS_RD obtain the minimum value for one
case. In each group, the algorithm with two Sarsa based strategies has smaller CV values for most instances.
This means that the Sarsa based strategies can improve the stability and robustness of four meta-heuristics.

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 17 of 26

Table 10. Internal comparison of GA algorithm

GA SGA_RD GA_SD SGA_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 99.25 46.00 97.75 70.00 78.20 44.00 76.45 41.00

27 79.55 38.00 81.85 47.00 56.20 26.00 56.50 27.00

36 126.15 54.00 125.45 86.00 115.05 38.00 109.60 42.00

47 430.50 250.00 512.45 323.00 408.10 100.00 355.45 145.00

51 21,068.85 8,514.00 20,795.40 14,013.00 23,868.20 6,804.00 18,098.50 8,158.00

55 13,754.80 6,701.00 11,878.70 8,340.00 12,657.45 6,587.00 10,375.50 3,770.00

66 171.30 75.00 151.25 45.00 164.35 52.00 99.35 45.00

70 1,542.10 830.00 1,175.40 345.00 1,056.60 298.00 869.10 345.00

79 10,334.10 5,658.00 7,799.50 2,922.00 7,925.75 4,057.00 5,816.80 2,658.00

83 48,563.35 42,158.00 34,561.05 32,401.00 38,771.85 36,486.00 32,511.60 26,868.00

GA: Genetic algorithm; Ave: the average; Min: minimum.

Table 11. Internal comparison of VNS algorithm

VNS SVNS_RD VNS_SD SVNS_SD
Tasks

Ave Min Ave Min Ave Min Ave Min
25 110.35 78.00 72.25 44.00 79.75 54.00 50.20 32.00

27 64.75 38.00 64.20 39.00 52.85 26.00 55.35 29.00

36 136.05 91.00 89.85 64.00 104.35 63.00 74.10 32.00

47 539.95 361.00 344.90 234.00 338.80 206.00 325.30 159.00

51 27,138.80 19,890.00 19,278.10 8,496.00 17,015.30 15,880.00 14,763.85 8,082.00

55 15,715.95 10,327.00 7,821.25 7,182.00 10,730.45 3,888.00 7,046.95 3,534.00

66 167.95 103.00 125.25 49.00 130.80 43.00 63.10 47.00

70 1,490.85 867.00 961.95 333.00 999.55 418.00 438.20 311.00

79 11,858.90 7,249.00 6,547.10 2,030.00 9,293.40 3,123.00 3,402.20 2,444.00

83 34,658.30 29,843.00 29,021.35 25,637.00 36,524.55 31,450.00 27,563.35 19,765.00

VNS: Variable neighborhood search; Ave: the average; Min: minimum.

Table 12. Comparison of CV values for the PSO variant algorithm

No. Tasks PSO PSO_SD SPSO_RD SPSO_SD
1 25 19.69% 3.67% 6.64% 7.50%

2 27 10.87% 7.32% 4.45% 3.89%

3 36 18.14% 9.90% 10.86% 3.96%

4 47 10.90% 6.31% 5.09% 4.96%

5 51 17.89% 8.99% 6.76% 5.42%

6 55 19.36% 4.44% 5.42% 6.96%

7 66 12.75% 8.59% 9.38% 2.61%

8 71 14.54% 9.20% 7.68% 2.42%

9 79 15.19% 2.39% 8.01% 1.04%

10 83 19.08% 8.83% 11.41% 7.32%

CV: Coefficient of variation; PSO: particle swarm optimization.

Page 18 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Table 13. Comparison of CV values for the ABC variant algorithm

No. Tasks ABC ABC_SD SABC_RD SABC_SD
1 25 12.47% 9.87% 9.00% 3.48%

2 27 15.86% 5.24% 8.77% 2.65%

3 36 15.25% 4.51% 3.82% 2.73%

4 47 18.74% 5.39% 9.59% 6.76%

5 51 17.69% 5.47% 7.33% 6.84%

6 55 18.41% 8.99% 8.79% 8.79%

7 66 16.51% 8.28% 7.33% 6.96%

8 71 18.64% 6.12% 6.52% 8.08%

9 79 11.42% 7.70% 8.84% 6.67%

10 83 18.76% 12.47% 16.29% 7.76%

CV: Coefficient of variation; ABC: artificial bee colony.

Table 14. Comparison of CV values for the GA variant algorithm

No. Tasks GA GA_SD SGA_RD SGA_SD
1 25 11.13% 8.11% 9.03% 5.05%

2 27 16.44% 7.49% 9.42% 5.48%

3 36 17.59% 8.34% 7.75% 8.37%

4 47 14.05% 9.63% 6.53% 4.11%

5 51 19.88% 7.39% 8.29% 7.40%

6 55 14.67% 9.74% 12.77% 6.51%

7 66 16.34% 5.19% 10.62% 6.73%

8 71 15.00% 8.44% 13.17% 6.60%

9 79 17.12% 7.22% 18.05% 7.17%

10 83 14.56% 10.28% 12.77% 9.03%

CV: Coefficient of variation; GA: genetic algorithm.

Table 15. Comparison of CV values for the VNS variant algorithm

No. Tasks VNS VNS_SD SVNS_RD SVNS_SD
1 25 12.82% 9.26% 8.99% 4.67%

2 27 14.76% 8.25% 8.28% 4.36%

3 36 12.14% 6.76% 6.12% 4.49%

4 47 17.31% 6.76% 7.70% 3.72%

5 51 12.48% 9.95% 6.61% 5.01%

6 55 19.13% 7.34% 7.33% 7.64%

7 66 12.61% 9.03% 7.18% 6.35%

8 71 10.60% 3.96% 9.00% 3.59%

9 79 18.63% 3.48% 8.84% 4.32%

10 83 19.13% 10.49% 9.95% 6.32%

CV: Coefficient of variation; VNS: variable neighborhood search.

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 19 of 26

Figure 13. Parameter level trend of ABC. ABC: Artificial bee colony.

Figure 14. Parameter level trend of GA. GA: Genetic algorithm.

Further comparisons and discussions
To further verify the performance difference among four algorithms with Sarsa based strategies, the
Friedman test and Nemenyi post-test are executed. The results are represented in Table 16, Figures 17 and
18. In Table 16, the obtained asymptotic significance (Asymp.Sig) is far less than 0.05, indicating
noteworthy disparities among the four algorithms. It implies that there exist significant variations in their
performance. Figure 17 shows the mean rank of algorithms by Nemenyi post-test. It is obvious that the
SPSO_SD has the smallest rank value (1.70). Figure 18 visually presents the algorithm ranking distribution
for all cases. It can be seen from Figure 18 that the SPSO_SD ranks first for six out of ten instances and
second for two cases. The SABC_SD and SVNS_SD have ranked first for 2 out of 10 instances, respectively.
The SGA_SD has a bad rank for most instances. Hence, the SPSO_SD outperforms its peers in solving the
concerned problems.

Page 20 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Table 16. The results of Friedman test

N 10

Chi-Square 17.760

Df 3

Asymp.Sig. .000

Asymp.Sig: Asymptotic significance.

Figure 15. Parameter level trend of VNS. VNS: Variable neighborhood search.

Figure 16. The number proportion of the optimal values of six probabilities.

Convergence analysis
In this section, we present curves depicting the convergence of four classical meta-heuristics. The results of
cases with 47 tasks and 79 tasks are used, as shown in Figures 19 and 20. It is evident that the algorithms
converge rapidly at the beginning and flatten out with the increasing computational time. SGA_GD
algorithm gives the worst results. SVNS_SD has medium performance and more stability. SABC_SD
fluctuates a lot during the convergence process. Compared with these algorithms, SPSO_SD has faster

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 21 of 26

Figure 17. The rank of Nemenyi post-hoc test.

Figure 18. Friedman’s binary rank variance analysis.

convergence and higher quality solutions. It can be observed that SPSO_SD has better efficiency and
effectiveness than its peers.

Case study: aircraft engine disassembly
In the experimental part, the arithmetic instances include self-generated cases and some actual cases such as
discarded cell phones for the case with 27 tasks, LCD TVs for the case with 36 tasks, laptop computers for
the case with 47 tasks, and aircraft engines for the case with 51 tasks[59]. The case with 51 tasks is a specific
case provided by a domestic airport. Figure 21 is the disassembly priority diagram of the aircraft engine
disassembly case in our project.

CONCLUSIONS AND FUTURE WORK
A mathematical model for DLSP is established, considering time interference and priority relationships. The
main objective is to minimize both CT and hazard coefficients. According to the problem’s characteristics, a

Page 22 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Figure 19. Convergence curves of all compared algorithms for task 47.

Figure 20. Convergence curves of all compared algorithms for task 79.

Sarsa algorithm with a reward feedback mechanism is employed in two stages for task allocation and
guiding local search operators’ selection. The experiments solve ten instances of varying scales. Through
analysis and discussion of the results, it is proven that the PSO algorithm combined with two Sarsa
strategies exhibits strong competitiveness for solving DLSP problems.

In the future, the following directions will be addressed: (1) building upon existing challenges, consider
more practical constraints, such as incomplete disassembly, multilateral disassembly, and other related
disassembly issues; (2) try to combine more reinforcement learning algorithms to meta-heuristics for solve
disassembly problems; (3) attempt to apply the combination of reinforcement learning and meta-heuristics
to other scheduling problems[60-62].

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 23 of 26

Figure 21. Precedence graph of the aircraft engine disassembly case.

DECLARATIONS
Authors’ contributions
Software, validation, conceptualization, methodology, writing- original draft preparation: Li D
Supervision, writing - review and editing, validation, formal analysis: Gao K
Methodology, investigation, instance collection: Ren Y, Fu Y
Data curation, investigation, methodology: Zhang R

Availability of data and materials
Not applicable.

Financial support and sponsorship
This study is partially supported by the National Natural Science Foundation of China under Grant
62173356, the Science and Technology Development Fund (FDCT), Macau SAR, under Grant 0019/2021/A,
Zhuhai Industry-University-Research Project with Hongkong and Macao under Grant
ZH22017002210014PWC, the Guangdong Basic and Applied Basic Research Foundation
(2023A1515011531), Research on the Key Technologies for Scheduling and Optimization of Complex
Distributed Manufacturing Systems (22JR10KA007).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Page 24 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2024.

REFERENCES
Liu J, Wang S. Balancing disassembly line in product recovery to promote the coordinated development of economy and environment.
Sustainability 2017;9:309. DOI

1.

Gungor A, Gupta SM. Issues in environmentally conscious manufacturing and product recovery: a survey. Comput Ind Eng
1999;36:811-53. DOI

2.

Özceylan E, Kalayci CB, Güngör A, Gupta SM. Disassembly line balancing problem: a review of the state of the art and future
directions. Int J Prod Res 2019;57:4805-27. DOI

3.

Paterson DAP, Ijomah WL, Windmill JFC. End-of-life decision tool with emphasis on remanufacturing. J Clean Prod 2017;148:653-
64. DOI

4.

Güngör A, Gupta SM. Disassembly line in product recovery. Int J Prod Res 2002;40:2569-89. DOI5.
Fu Y, Zhou M, Guo X, Qi L, Sedraoui K. Multiverse optimization algorithm for stochastic biobjective disassembly sequence planning
subject to operation failures. IEEE Trans Syst Man Cybern Syst 2022;52:1041-51. DOI

6.

Lambert AJD. Disassembly sequencing: a survey. Int J Prod Res 2003;41:3721-59. DOI7.
Kalayci CB, Gupta SM. Artificial bee colony algorithm for solving sequence-dependent disassembly line balancing problem. Expert
Syst Appl 2013;40:7231-41. DOI

8.

Edis EB. Constraint programming approaches to disassembly line balancing problem with sequencing decisions. Comput Oper Res
2021;126:105111. DOI

9.

ÇİL ZA. An exact solution method for multi-manned disassembly line design with AND/OR precedence relations. Appl Math Model
2021;99:785-803. DOI

10.

Meng L, Zhang B, Ren Y, Sang H, Gao K, Zhang C. Mathematical formulations for asynchronous parallel disassembly planning of
end-of-life products. Mathematics 2022;10:3854. DOI

11.

Bentaha ML, Battaïa O, Dolgui A. An exact solution approach for disassembly line balancing problem under uncertainty of the task
processing times. Int J Prod Res 2015;53:1807-18. DOI

12.

Altekin FT, Akkan C. Task-failure-driven rebalancing of disassembly lines. Int J Prod Res 2012;50:4955-76. DOI13.
He J, Chu F, Dolgui A, Zheng F, Liu M. Integrated stochastic disassembly line balancing and planning problem with machine
specificity. Int J Prod Res 2022;60:1688-708. DOI

14.

McGovern SM, Gupta SM. Uninformed and probabilistic distributed agent combinatorial searches for the unary NP-complete
disassembly line balancing problem. In: Proceedings Volume Environmentally Conscious Manufacturing V. 2005. DOI

15.

Chen M, Tan Y. SF-FWA: a self-adaptive fast fireworks algorithm for effective large-scale optimization. Swarm Evol Comput
2023;80:101314. DOI

16.

Singh P, Pasha J, Moses R, Sobanjo J, Ozguven EE, Dulebenets MA. Development of exact and heuristic optimization methods for
safety improvement projects at level crossings under conflicting objectives. Reliab Eng Syst Saf 2022;220:108296. DOI

17.

Pasha J, Nwodu AL, Fathollahi-fard AM, et al. Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-
box in multi-objective settings. Adv Eng Inform 2022;52:101623. DOI

18.

Singh E, Pillay N. A study of ant-based pheromone spaces for generation constructive hyper-heuristics. Swarm Evol Comput
2022;72:101095. DOI

19.

Fu Y, Ma X, Gao K, Li Z, Dong H. Multi-objective home health care routing and scheduling with sharing service via a problem-
specific knowledge-based artificial bee colony algorithm. IEEE Trans Intell Transport Syst 2023:1-14. DOI

20.

Fu Y, Tian G, Li Z, Wang Z. Parallel machine scheduling with dynamic resource allocation via a master-slave genetic algorithm. IEEJ
Trans Electr Electron Eng 2018;13:748-56. DOI

21.

Fu Y, Wang H, Huang M, Wang J. A decomposition based multiobjective genetic algorithm with adaptive multipopulation strategy for
flowshop scheduling problem. Nat Comput 2019;18:757-68. DOI

22.

Ma X, Fu Y, Gao K, Zhu L, Sadollah A. A multi-objective scheduling and routing problem for home health care services via brain
storm optimization. Complex Syst Model Simul 2023;3:32-46. DOI

23.

Liang P, Fu Y, Ni S, Zheng B. Modeling and optimization for noise-aversion and energy-awareness disassembly sequence planning
problems in reverse supply chain. Environ Sci Pollut Res Int 2021. DOI

24.

Wang Y, Han Y, Wang Y, Li J, Gao K, Liu Y. An effective two-stage iterated greedy algorithm for distributed flowshop group
scheduling problem with setup time. Expert Syst Appl 2023;233:120909. DOI

25.

https://dx.doi.org/10.3390/su9020309
https://dx.doi.org/10.1016/s0360-8352(99)00167-9
https://dx.doi.org/10.1080/00207543.2018.1428775
https://dx.doi.org/10.1016/j.jclepro.2017.02.011
https://dx.doi.org/10.1080/00207540210135622
https://dx.doi.org/10.1109/tsmc.2021.3049323
https://dx.doi.org/10.1080/0020754031000120078
https://dx.doi.org/10.1016/j.eswa.2013.06.067
https://dx.doi.org/10.1016/j.cor.2020.105111
https://dx.doi.org/10.1016/j.apm.2021.07.013
https://dx.doi.org/10.3390/math10203854
https://dx.doi.org/10.1080/00207543.2014.961212
https://dx.doi.org/10.1080/00207543.2011.616915
https://dx.doi.org/10.1080/00207543.2020.1868600
https://dx.doi.org/10.1117/12.629121
https://dx.doi.org/10.1016/j.swevo.2023.101314
https://dx.doi.org/10.1016/j.ress.2021.108296
https://dx.doi.org/10.1016/j.aei.2022.101623
https://dx.doi.org/10.1016/j.swevo.2022.101095
https://dx.doi.org/10.1109/tits.2023.3315785
https://dx.doi.org/10.1002/tee.22625
https://dx.doi.org/10.1007/s11047-016-9602-1
https://dx.doi.org/10.23919/csms.2022.0025
https://dx.doi.org/10.1007/s11356-021-14124-w
https://dx.doi.org/10.1016/j.eswa.2023.120909

Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901 Page 25 of 26

Wang Y, Han Y, Wang Y, Tasgetiren MF, Li J, Gao K. Intelligent optimization under the makespan constraint: rapid evaluation
mechanisms based on the critical machine for the distributed flowshop group scheduling problem. Eur J Oper Res 2023;311:816-32.
DOI

26.

Wang Y, Han Y, Wang Y, Pan Q, Wang L. Sustainable scheduling of distributed flow shop group: a collaborative multi-objective
evolutionary algorithm driven by indicators. IEEE Trans Evol Comput 2023. DOI

27.

Chen S, Pan QK, Gao L, Sang H. A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking
flowshop scheduling problem. Eng Appl Artif Intell 2021;104:104375. DOI

28.

Huang YY, Pan QK, Gao L, Miao ZH, Peng C. A two-phase evolutionary algorithm for multi-objective distributed assembly
permutation flowshop scheduling problem. Swarm Evol Comput 2022;74:101128. DOI

29.

Wang ZY, Pan QK, Gao L, Wang YL. An effective two-stage iterated greedy algorithm to minimize total tardiness for the distributed
flowshop group scheduling problem. Swarm Evol Comput 2022;74:101143. DOI

30.

Kalayci CB, Gupta SM. A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent
disassembly line balancing problem. Int J Adv Manuf Technol 2013;69:197-209. DOI

31.

Tseng YJ, Yu FY, Huang FY. A green assembly sequence planning model with a closed-loop assembly and disassembly sequence
planning using a particle swarm optimization method. Int J Adv Manuf Technol 2011;57:1183-97. DOI

32.

Bouazza S, Hassine H, Barkallah M, Amari S, Haddar M. Disassembly sequence optimization for profit and energy consumption using
petri nets and particle swarm optimization. In: Ben Amar M, Bouguecha A, Ghorbel E, El Mahi A, Chaari F, Haddar M, editors.
Advances in materials, mechanics and manufacturing II. Cham: Springer International Publishing; 2022. pp. 267-76. DOI

33.

Yeh WC. Optimization of the disassembly sequencing problem on the basis of self-adaptive simplified swarm optimization. IEEE
Trans Syst Man Cybern A 2012;42:250-61. DOI

34.

Yeh WC. Simplified swarm optimization in disassembly sequencing problems with learning effects. Comput Oper Res 2012;39:2168-
77. DOI

35.

Li WD, Xia K, Gao L, Chao KM. Selective disassembly planning for waste electrical and electronic equipment with case studies on
liquid crystaldisplays. Robot Comput Integr Manuf 2013;29:248-60. DOI

36.

Wang K, Li X, Gao L, Li P, Sutherland JW. A discrete artificial bee colony algorithm for multiobjective disassembly line balancing of
end-of-life products. IEEE Trans Cybern 2022;52:7415-26. DOI

37.

Guo H, Zhang L, Ren Y, Li Y, Zhou Z, Wu J. Optimizing a stochastic disassembly line balancing problem with task failure via a
hybrid variable neighborhood descent-artificial bee colony algorithm. Int J Prod Res 2023;61:2307-21. DOI

38.

Zhang L, Wu Y, Zhao X, et al. A multi-objective two-sided disassembly line balancing optimization based on artificial bee colony
algorithm: a case study of an automotive engine. Int J Pr Eng Man GT 2022;9:1329-47. DOI

39.

Ren Y, Gao K, Fu Y, Sang H, Li D, Luo Z. A novel Q-learning based variable neighborhood iterative search algorithm for solving
disassembly line scheduling problems. Swarm Evol Comput 2023;80:101338. DOI

40.

Slama I, Ben-Ammar O, Dolgui A, Masmoudi F. Genetic algorithm and Monte Carlo simulation for a stochastic capacitated
disassembly lot-sizing problem under random lead times. Comput Ind Eng 2021;159:107468. DOI

41.

Wu T, Zhang Z, Zeng Y, Zhang Y. Mixed-integer programming model and hybrid local search genetic algorithm for human-robot
collaborative disassembly line balancing problem. Int J Prod Res 2023;62:1758-82. DOI

42.

Tseng HE, Chang CC, Lee SC, Huang YM. A block-based genetic algorithm for disassembly sequence planning. Expert Syst Appl
2018;96:492-505. DOI

43.

Go TF, Wahab DA, Rahman MNA, Ramli R, Hussain A. Genetically optimised disassembly sequence for automotive component
reuse. Expert Syst Appl 2012;39:5409-17. DOI

44.

Alshibli M, El Sayed A, Kongar E, Sobh TM, Gupta SM. Disassembly sequencing using tabu search. J Intell Robot Syst 2016;82:69-
79. DOI

45.

Wang K, Li X, Gao L, Li P, Gupta SM. A genetic simulated annealing algorithm for parallel partial disassembly line balancing
problem. Appl Soft Comput 2021;107:107404. DOI

46.

Kalayci CB, Polat O, Gupta SM. A variable neighbourhood search algorithm for disassembly lines. J Manuf Technol Manag
2015;26:182-94. DOI

47.

Ren Y, Zhang C, Zhao F, Triebe MJ, Meng L. An MCDM-based multiobjective general variable neighborhood search approach for
disassembly line balancing problem. IEEE Trans Syst Man Cybern Syst 2020;50:3770-83. DOI

48.

Akbay MA, Kalayci CB, Polat O. A parallel variable neighborhood search algorithm with quadratic programming for cardinality
constrained portfolio optimization. Knowl Based Syst 2020;198:105944. DOI

49.

Liu H, Zhang L. Optimizing a disassembly sequence planning with success rates of disassembly operations via a variable
neighborhood search algorithm. IEEE Access 2021;9:157540-9. DOI

50.

Tuncel E, Zeid A, Kamarthi S. Solving large scale disassembly line balancing problem with uncertainty using reinforcement learning.
J Intell Manuf 2014;25:647-59. DOI

51.

Zhao X, Li C, Tang Y, Cui J. Reinforcement learning-based selective disassembly sequence planning for the end-of-life products with
structure uncertainty. IEEE Robot Autom Lett 2021;6:7807-14. DOI

52.

Zhao F, Hu X, Wang L, Zhao J, Tang J, Jonrinaldi. A reinforcement learning brain storm optimization algorithm (BSO) with learning
mechanism. Knowl Based Syst 2022;235:107645. DOI

53.

Karimi-Mamaghan M, Mohammadi M, Pasdeloup B, Meyer P. Learning to select operators in meta-heuristics: an integration of Q-54.

https://dx.doi.org/10.1016/j.ejor.2023.05.010
https://dx.doi.org/10.1109/tevc.2023.3339558
https://dx.doi.org/10.1016/j.engappai.2021.104375
https://dx.doi.org/10.1016/j.swevo.2022.101128
https://dx.doi.org/10.1016/j.swevo.2022.101143
https://dx.doi.org/10.1007/s00170-013-4990-1
https://dx.doi.org/10.1007/s00170-011-3339-x
https://dx.doi.org/10.1007/978-3-030-84958-0_29
https://dx.doi.org/10.1109/tsmca.2011.2157135
https://dx.doi.org/10.1016/j.cor.2011.10.027
https://dx.doi.org/10.1016/j.rcim.2013.01.006
https://dx.doi.org/10.1109/tcyb.2020.3042896
https://dx.doi.org/10.1080/00207543.2022.2069524
https://dx.doi.org/10.1007/s40684-021-00394-9
https://dx.doi.org/10.1016/j.swevo.2023.101338
https://dx.doi.org/10.1016/j.cie.2021.107468
https://dx.doi.org/10.1080/00207543.2023.2201352
https://dx.doi.org/10.1016/j.eswa.2017.11.004
https://dx.doi.org/10.1016/j.eswa.2011.11.044
https://dx.doi.org/10.1007/s10846-015-0289-9
https://dx.doi.org/10.1016/j.asoc.2021.107404
https://dx.doi.org/10.1108/jmtm-11-2013-0168
https://dx.doi.org/10.1109/tsmc.2018.2862827
https://dx.doi.org/10.1016/j.knosys.2020.105944
https://dx.doi.org/10.1109/access.2021.3101221
https://dx.doi.org/10.1007/s10845-012-0711-0
https://dx.doi.org/10.1109/lra.2021.3098248
https://dx.doi.org/10.1016/j.knosys.2021.107645

Page 26 of 26 Li et al. Green Manuf Open 2024;2:2 https://dx.doi.org/10.20517/gmo.2023.091901

learning into the iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 2023;304:1296-330.
DOI
Wang L, Gao K, Lin Z, Huang W, Suganthan PN. Problem feature based meta-heuristics with Q-learning for solving urban traffic light
scheduling problems. Appl Soft Comput 2023;147:110714. DOI

55.

Lin Z, Gao K, Wu N, Suganthan PN. Scheduling eight-phase urban traffic light problems via ensemble meta-heuristics and Q-learning
based local search. IEEE Trans Intell Transport Syst 2023;24:14415-26. DOI

56.

Yu H, Gao KZ, Ma ZF, Pan YX. Improved meta-heuristics with Q-learning for solving distributed assembly permutation flowshop
scheduling problems. Swarm Evol Comput 2023;80:101335. DOI

57.

Rummery GA, Niranjan M. On-line Q-learning using connectionist systems. Available from: https://www.researchgate.net/publication/
2500611_On-Line_Q-Learning_Using_Connectionist_Systems. [Last accessed on 24 Jan 2024].

58.

Li D, Gao K, Ren Y, Zhang R, Fu Y. The supplementary file of the paper “Integrating meta-heuristics and a Sarsa algorithm for
disassembly scheduling problems with cycle time and hazard coefficients”. Available from: https://www.researchgate.net/publication/
377446410_The_supplementary_file_of_the_paper_Integrating_Metaheuristics_and_a_Sarsa_Algorithm_for_Disassembly_
Scheduling_Problems_with_Cycle_Time_and_Hazard_Coefficients. [Last accessed on 24 Jan 2024].

59.

Li H, Gao K, Duan PY, Li JQ, Zhang L. An improved artificial bee colony algorithm with Q-learning for solving permutation flow-
shop scheduling problems. IEEE Trans Syst Man Cybern Syst 2023;53:2684-93. DOI

60.

Zhang Z, Liu H, Zhou M, Wang J. Solving dynamic traveling salesman problems with deep reinforcement learning. IEEE Trans
Neural Netw Learn Syst 2023;34:2119-32. DOI

61.

Zhao F, Di S, Wang L. A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop
scheduling problem. IEEE Trans Cybern 2023;53:3337-50. DOI PubMed

62.

https://dx.doi.org/10.1016/j.ejor.2022.03.054
https://dx.doi.org/10.1016/j.asoc.2023.110714
https://dx.doi.org/10.1109/tits.2023.3296387
https://dx.doi.org/10.1016/j.swevo.2023.101335
https://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
https://www.researchgate.net/publication/2500611_On-Line_Q-Learning_Using_Connectionist_Systems
https://www.researchgate.net/publication/377446410_The_supplementary_file_of_the_paper_Integrating_Metaheuristics_and_a_Sarsa_Algorithm_for_Disassembly_Scheduling_Problems_with_Cycle_Time_and_Hazard_Coefficients
https://www.researchgate.net/publication/377446410_The_supplementary_file_of_the_paper_Integrating_Metaheuristics_and_a_Sarsa_Algorithm_for_Disassembly_Scheduling_Problems_with_Cycle_Time_and_Hazard_Coefficients
https://www.researchgate.net/publication/377446410_The_supplementary_file_of_the_paper_Integrating_Metaheuristics_and_a_Sarsa_Algorithm_for_Disassembly_Scheduling_Problems_with_Cycle_Time_and_Hazard_Coefficients
https://dx.doi.org/10.1109/tsmc.2022.3219380
https://dx.doi.org/10.1109/tnnls.2021.3105905
https://dx.doi.org/10.1109/tcyb.2022.3192112
http://www.ncbi.nlm.nih.gov/pubmed/35994539

