Rawn et al. J Environ Expo Assess 2024;3:16 DOI: 10.20517/jeea.2024.04

Journal of Environmental Exposure Assessment

Research Article

Open Access
Check for updates

Legacy halogenated flame retardants in Canadian human milk from the maternal-infant research on environmental chemicals study

Dorothea F.K. Rawn¹, Amy R. Sadler¹, Valerie A. Casey¹, François Breton^{1,2}, Wing-Fung Sun¹, Sherry Yu Feng¹, Tye E. Arbuckle³

¹Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Sir Frederick Banting Research Centre, Ottawa K1A 0K9, Ontario, Canada.

²Generic Drugs Division, Bureau of Pharmaceutical Sciences, Health Products and Food Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada.

³Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Ontario, Canada.

Correspondence to: Dr. Dorothea F.K. Rawn, Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, 251 Sir Frederick Banting Driveway, 2203C, Tunney's Pasture, Ottawa K1A 0K9, Ontario, Canada. E-mail: thea.rawn@hc-sc.gc.ca

How to cite this article: Rawn DFK, Sadler AR, Casey VA, Breton F, Sun WF, Feng SY, Arbuckle TE. Legacy halogenated flame retardants in Canadian human milk from the maternal-infant research on environmental chemicals study. *J Environ Expo Assess* 2024;3:16. https://dx.doi.org/10.20517/jeea.2024.04

Received: 25 Jan 2024 First Decision: 17 Apr 2024 Revised: 27 May 2024 Accepted: 31 May 2024 Published: 1 Jul 2024

Academic Editors: Stuart Harrad, Jose L Domingo Copy Editor: Pei-Yun Wang Production Editor: Pei-Yun Wang

Abstract

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) were measured in 298 human milk samples collected from across Canada between 2008 and 2011 as part of the Maternal-Infant Research on Environmental Chemicals study. PBDEs were detected in 100% of the samples analyzed and concentrations ranged from 0.071 to 267 ng·g⁻¹ lipid (median 15.6 ng·g⁻¹ lipid). The dominant contributors to Σ PBDEs (Σ 15, 17, 28, 37, 47, 66, 71, 75, 77, 85, 99, 100, 119, 138, 153, 154, 160, 183, 190, 209) were PBDE 47 > PBDE 153 > PBDE 99 > PBDE 100 > PBDE 28 > PBDE 209. Previously, PBDE 209 was considered to be a minor contributor to Σ PBDE concentrations in Canadian human milk and, therefore, not reported by our lab. This study showed that when present, PBDE 209 can be an important contributor to Σ PBDEs (range: below detection - 85.3 ng·g⁻¹ lipid; median - 0.083 ng·g⁻¹ lipid). Σ PBDE concentrations declined slightly in Canadian human milk between the early and late 2000s. HBCD (Σ of α -, β -, and γ -) was observed in 94.0% of the samples measured and concentrations were dominated by α -HBCD (93.3%), with β - (97.7%) and γ - (28.5%) less frequently detected. The maximum Σ HBCD concentration observed

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

was 7.66 ng·g⁻¹ lipid (median value 0.303 ng·g⁻¹ lipid). These data suggest that HBCD concentrations similarly decreased in Canadian human milk between the early 2000s and sampling for the present study. Maternal age did not impact the concentrations of these flame retardants in milk. Additionally, other maternal characteristics [e.g., the number of children a woman has had, pre-pregnancy body mass index (BMI), and education level] did not impact concentrations of these brominated flame retardant concentrations.

Keywords: Polybrominated diphenyl ethers, hexabromocyclododecane, human milk, pan-Canadian study, human biomonitoring

INTRODUCTION

Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD) are both additive brominated flame retardants (BFRs) that are mixed with polymers present in consumer products (e.g., textiles, electronics, *etc.*) to reduce flammability^[1]. By being added and mixed with the polymers, rather than chemically bonded, they are more readily released to the environment throughout their lifecycle. PBDEs were produced as three mixtures named according to the dominant contributors to the total PBDE concentration: the penta-mix, dominated by the penta- and tetra-brominated congeners; the octa-mix, which encompasses significant levels of the octa-, nona- and decabrominated congeners, and the deca-mix, reported to comprise 92%-97% decabromodiphenyl ether (PBDE 209)^[2]. The penta-mix and octa-mix were used in different applications (e.g., penta-mix - polyvinylchloride, unsaturated polyesters, rubber, paints, lacquers, and textiles; octa-mix - acrylonitrile butadiene styrene, polyamide, poly butylene terephthalate, polystyrene/high impact polystyrene). While the deca-mix was used for most purposes identified for the other mixtures, it was also used in polyethylene cross-linked polyethylene, polyethylene terephthalate, and polypropylene^[3]. The inclusion of PBDEs in these chemicals resulted in their presence in a wide variety of consumer products such as televisions, computers, appliances, smoke detectors, conveyor belts, carpets, textiles, furniture, and the seating upholstery in vehicles^[3]. HBCD was used as a replacement for PBDEs^[4] primarily in building insulation (expanded and extruded polystyrene), although it was also used to a minor extent in textiles^[5].

Although persistence is a desirable quality for flame retardants in consumer products, this characteristic, coupled with their application as additive BFRs, has contributed to their release into the environment during product lifecycles and following disposal^[6-8]. Given that many of the products containing PBDEs and HBCD are present within homes and workplaces, they are detected at elevated concentrations in indoor dust and air relative to outdoor environments in global regions free of outdoor sources^[9,10]. In addition, BFR levels in the air and dust in offices have been related to the number of electronic devices present^[6]. Subsequently, the release of BFRs during recycling of electronic/electrical waste and repair of electronic equipment has been documented as leading to their elevated levels in air and dust where this activity is performed^[11,12].

While both of these classes of BFRs are known to be persistent, they also accumulate in the tissues of living organisms, particularly in the lipid tissues^[13]. As a result of the bioaccumulation potential, PBDEs and HBCD have been monitored in many different organisms globally, and studies have shown that both of these BFRs biomagnify through food webs^[14-22]. In addition, PBDEs and HBCD have been reported in human tissues/fluids throughout the world (e.g., serum, milk) for more than a decade^[23-33]. Human milk collected in Sweden over a period of 25 years (1972 to 1997) was analyzed to measure PBDEs and highlighted a dramatic increase in Σ PBDE (Σ of PBDE 28, 47, 66, 85, 99, 100, 153, 154) concentration, from < 0.1 ng·g⁻¹ lipid in 1972 to ~4 ng·g⁻¹ lipid in 1997^[34,35]. Following this study, the same group analyzed a limited number of human milk samples (n = 15) collected in 2000-2001 and found Σ PBDE concentrations

ranged from 0.56 to 7.72 ng·g⁻¹ lipid, which shows that concentrations continued to increase into the early 2000s, prior to regulatory action being taken on these chemicals^[36]. North American studies measuring PBDEs (consistently including Σ 28, 47, 99, 100, 153) in human milk during the early to mid-2000s found concentrations to be higher than observed in Europe during a similar period (range 0.1-2,010 ng·g⁻¹ lipid)^[37]. Since HBCD has not been as widely studied as PBDEs, temporal trends were not readily established in human milk globally^[38,39]. In addition to differences in temporal patterns, concentrations of these legacy BFRs vary among countries and regions.

The determination of PBDEs and HBCD in human milk is important because these data allow researchers to determine maternal exposure via their milk concentrations. Additionally, human milk is often the sole source of nutrition for infants and very young children, which means it represents an important dietary exposure to BFRs for this demographic. Owing to the fact that infants and very young children are growing and changing rapidly, BFR exposure during this phase of life may impact their development since these compounds are associated with impacts on endocrine function and frequently related to thyroid function disruption^[13,40,41]. Although exposure at critical developmental stages may not result in immediate impacts, PBDE exposure can lead to increased risk of disease at later life stages (e.g., diabetes, cancer, neurobehavioural effects)^[41-43], and HBCD has also been associated with neurobehavioural impacts and changes in sex-related hormones^[40], resulting in effects on behaviour and memory^[13].

Despite the presence of persistent organic contaminants, including BFRs, in human milk, the World Health Organization (WHO) recommends that mothers feed children human milk exclusively for the first six months, because of the presence of important nutritional constituents and positive health effects for the mothers and their babies^[44]. In addition, breastfed infants are reported to have a lower incidence of obesity later in life^[45].

The present study, known as the Maternal-Infant Research on Environmental Chemicals (MIREC) study, was undertaken across Canada between 2008 and 2011 to measure maternal concentrations of environmental chemicals during pregnancy and in the milk following the birth of their babies^[46]. The work described herein is focused on the measurement of PBDEs and HBCD in human milk.

EXPERIMENTAL

Study population and sampling

Participants for the MIREC study were recruited from across Canada to allow for a pan-Canadian perspective on maternal environmental chemical concentrations. In addition to providing biomonitoring data on the participants, this work supported the determination of infant dietary exposure via human milk sampling. Research centres were identified as possible recruitment sites if it was determined that existing frameworks for clinical obstetric research were in place prior to being associated with the MIREC study. In advance of confirming any clinic as a MIREC recruitment site or study centre, each clinic was required to obtain ethics board approval from their own research centre, Health Canada's ethics board, and the ethics board of the MIREC coordination centre in CHU Sainte Justine, Québec. Once a clinic was confirmed to be a MIREC study centre, recruitment was undertaken during prenatal clinics^[46]. Study centres were established in 10 cities (from six provinces) across southern Canada, from west to east: Vancouver (British Columbia); Edmonton (Alberta); Winnipeg (Manitoba); Hamilton, Kingston, Ottawa, Sudbury and Toronto (Ontario); Montréal (Québec) and Halifax (Nova Scotia).

Eligibility requirements were limited to women aged 18 or above, in the first 14 weeks of gestation, and capable of communicating in either English or French^[46]. Among the women approached regarding the

study, 2,001 agreed to participate. As part of the requirement, participants were given lifestyle and demographic questionnaires during each of the first and third trimesters for their completion and approximately 50% (n = 1,017) of the recruited participants provided samples of their milk for analysis of multiple classes of chemicals (e.g., persistent organic pollutants, metals, bisphenol-A).

Health Canada analytical laboratories involved in the human milk analyses did not have the capacity to analyze all of the samples collected as part of the current study. As a result, a plan to distribute the milk samples among analytical laboratories was established for all analytes to ensure that samples from across all sampling sites were analyzed for each class of analyte. Data from the Canadian Community Health Survey (CCHS)^[47] and estimates of the number of women who would continue to breastfeed for a period extending beyond two weeks of the birth of their babies were considered as part of the framework. This information was coupled with the number of participants from each of the research centres to enable the development of an estimate of samples available for distribution between laboratories. Statisticians then prepared a sample distribution framework to randomly select samples from each location to be analyzed by each of the laboratories. Factors considered while developing the sampling plan included the number of samples able to be handled by each lab, to reach a target of 300 total samples for legacy persistent organic pollutants (e.g., PBDEs and HBCD), and a representative distribution of ages and number of previous pregnancies/births by participant [Table 1]. The plan was developed in advance of all samples being received, and given that sample collection took place from 2008 until 2011, the plan had to allow for flexibility and to ensure that the pan-Canadian situation would be captured by each laboratory analyzing a subset of the samples. Among the 1,017 participants providing milk, 298 were identified and analyzed for PBDEs and HBCD in the Health Canada laboratory [Figure 1].

Consistent with previous Canadian studies, milk was collected by the study participants, who were asked to hand express their milk (fore- and hindmilk). If participants experienced difficulty with hand expression, a Medela* (Medela International, Zug, Switzerland) manual breast pump was provided, along with instructions for either manually expressing or using the breast pump to collect the milk. Milk samples were collected between two and 10 weeks following delivery of the babies, recognizing that milk was to be analyzed for a variety of different analytes/classes of compounds, 250 mL were requested of participants (125 mL in glass containers, 125 mL in plastic containers). In general, 250 mL were received from participants, although occasionally, the volumes received were lower. Aliquots of the samples for PBDE/HBCD analysis were collected into 500 mL wide-mouth amber I-CHEM* glass jars with fluoropolymer resin-liner polypropylene closure (Thermo Fisher Scientific, Rockwood, TN, USA). Participant instructions for collection allowed for them to express the milk over a period of time, and keep it in their refrigerator (4 °C) if collected over a few days, but if it took a longer period of time, the milk was to be stored at -20 °C in their freezers. Once collected and frozen, the samples were shipped to the coordination centre in Ste. Justine, Québec and then shipped to the laboratory where aliquots of the samples were prepared and then transferred to the laboratories for chemical analysis.

Extraction and clean-up

Sample preparation followed the protocol for analysis of PBDEs and HBCD described previously for the other persistent organics (e.g., polychlorinated biphenyls)^[48]. Briefly, samples (~25 g) were transferred into Erlenmeyer flasks and surrogate standards were added to the samples (¹³C PBDEs 15, 28, 47, 99, 153, 154, 183 and 209; ¹³C α -, β - and γ -HBCD) (Cambridge Isotope Laboratories, Andover, MA, USA). An aliquot of each sample (5%) was taken for gravimetric determination of lipid content in each sample. Prior to extraction by homogenizing in 2:1 (v/v) acetone: hexane (Residue analysis grade, EMD; Ottawa, ON, Canada), the samples were set aside on the lab bench for approximately 30 min following the addition of surrogate standards. Lipids present were digested by washing extracts with sequential aliquots of

Table 1. Participant summary information corresponding to the PBDE and FBCD analysi	Table 1. Partici	pant summary	/ information	corresponding to	o the PBDE and	HBCD analysis
---	------------------	--------------	---------------	------------------	----------------	---------------

Characteristic	Minimum	Maximum	Mean	Median
n = 298				
Born in Canada - 84.6%				
Age (years)	21	46	33.6	34
Parity	1	5	-	2
Pre-pregnancy body mass index	16.6	48.6	24.6	23.1
Education level				
Some or all high school	18			
Some college	9			
College or trade school completed	53			
Undergraduate university completed	125			
Graduate degree completed	93			

PBDE: Polybrominated diphenyl ether; HBCD: hexabromocyclododecane.

Figure 1. MIREC participant population and samples used for PBDE/HBCD analysis. MIREC: Maternal-Infant Research on Environmental Chemicals; PBDE: polybrominated diphenyl ether; HBCD: hexabromocyclododecane.

concentrated sulphuric acid (ACS grade, EMD; Ottawa, ON, Canada), followed by drying the extracts by passing them through anhydrous sodium sulphate. Column chromatography was performed using activated acidified silica gel, activated Florisil (60-100 mesh) (Fisher Scientific; Ottawa, ON, Canada), and carbon {Carbopack C (60-80 mesh) [Supelco (Bellefonte, PA)]} in series to clean up and fractionate the extracts^[21]. Following clean-up, the extracts were evaporated just to dryness, reconstituted in 10 μ L of the performance standard and placed into v-vials for gas chromatographic-high resolution mass spectrometric analysis of PBDEs.

Once PBDE analyses were completed, sample extracts were concentrated just to dryness using a gentle stream of nitrogen and diluted with the performance standard, deuterated d_{18} HBCD (α -, β - and γ -), in 100 μ L methanol: water (80:20) to allow for LC-MS/MS analysis.

Analysis

PBDE analysis

A Waters Autospec Ultima high resolution mass spectrometer (Waters Corporation, Mississauga, ON) operating at 10,000 resolution, coupled to an Agilent 6890 gas chromatograph (Agilent Technologies, Mississauga, ON), was used for all PBDE analyses (15, 17, 28, 37, 47, 66, 71, 75, 77, 85, 99, 100, 119, 126, 138, 153, 154, 160, 181, 183, 190, 205, 209). Separation of 23 congeners was achieved using a DB-5MS column (15 m × 0.25 mm i.d. × 0.1 μ m film thickness; J&W; Agilent Technologies, Mississauga, ON). One μ L aliquots were injected using a cool on-column injector, set to track the oven temperature. The starting oven temperature was 80 °C and held for 1 min, after which the temperature was increased at a rate of 32 °C·min⁻¹ until it reached 225 °C. Then, the oven was set to increase at 3 °C·min⁻¹ to 230 °C where it was held for 1 min and the final increase was set at 40 °C·min⁻¹ to a maximum temperature of 295 °C where it remained for 8 min. Helium was the carrier gas set at variable pressure (28-173 kPa), and the mass spectrometer was operating in EI positive ion mode at 50 eV with the trap current set to 650 μ A and the source temperature to 250 °C.

HBCD analysis

HBCD analyses were performed using a Waters Acquity ultra-high pressure liquid chromatograph I-Class coupled to a Waters Xevo TQ-XS triple quadrupole mass spectrometer with electrospray ionization operating in the negative ion detection mode. A 2.1 mm × 150 mm Kinetex C18, 2.6 µm column (Phenomenex, USA) was used to separate the three HBCD isomers considered. Mobile phase A (water) and acetonitrile: methanol (2:1) (mobile phase B) were used to separate α -, β - and γ -HBCD using gradient elution, starting with 60% mobile phase B for 1 min, transitioning to 80% mobile phase B by 4 min, holding until 11 min and increasing to 85% mobile phase B by 14 min and remaining there until 16 min, before returning to the starting conditions by 16.1 min, where it was allowed to stabilize until 22 min. The flow rate was 0.175 mL·min⁻¹ and the column temperature was set to 25 $^{\circ}$ C to support complete resolution of the d₁₈, ¹³C- and native HBCD isomers. The capillary and cone voltage were -2.5 kV and 20 V, respectively. The source temperature was set to 150 °C, while the desolvation temperature was 400 °C. The desolvation gas flow was 1,000 L·h⁻¹, with the cone gas flow set to 170 L·h⁻¹. Argon was used as the collision gas at a flow rate of 0.15 mL·min⁻¹. The transitions monitored for native, ¹³C, and d₁₈ HBCD isomers were: $639 \rightarrow 79, 641 \rightarrow$ 79, 641 \rightarrow 81, and 643 \rightarrow 81 (native); 651 \rightarrow 79, 653 \rightarrow 79, 653 \rightarrow 81, and 655 \rightarrow 81 (¹³C surrogates); and $656 \rightarrow 79, 658 \rightarrow 79, 658 \rightarrow 81$, and $660 \rightarrow 81$ (d₁₈- performance standards), respectively. Dwell times were set to 24 msec.

Quality assurance/quality control

Two method blanks prepared using reagents alone, following the same protocol as for the unknown samples, were included with each set of samples to allow for the removal of laboratory background concentrations. Additionally, either one or two standard reference materials of human milk containing known concentrations of PBDEs [standard reference material (SRM) 1953 (unfortified), SRM 1954 (fortified)] were included with each set of samples prepared for analysis. For those sets where a single SRM was included, an internal sample of human milk that has been used in the laboratory as an internal quality control (QC) over time was also included. PBDE concentrations and patterns determined in the SRMs were as anticipated, with concentrations generally within two standard deviations of the expected values. The internal QC sample PBDE concentrations were generally within one standard deviation of the mean values.

Although similar certified reference materials with known HBCD concentrations were not available during the work, the HBCD concentrations in the SRMs were determined. Only α -HBCD was frequently detected in both the unfortified and fortified milk, with β - and γ -HBCD generally present below the limits of detection. Concentrations of α -HBCD in the SRMs were within two standard deviations of the mean concentration, similar to the results from testing the laboratory internal QC sample.

Average surrogate recoveries ranged from 35.0% (¹³C PBDE 15) to 93.3% (¹³C PBDE 100) in the human milk samples analyzed. HBCD average surrogate recoveries ranged from 68.8% to 83.5% (β -HBCD and γ -HBCD, respectively), while the average α -HBCD recovery was 77.1%. All concentrations in the samples were corrected for recovery.

In addition, representative breast pumps, similar to those sent to participants were examined for background PBDE and HBCD levels. Testing was performed by rinsing the pumps with purified water and the rinse water was prepared for analysis as samples alongside samples of purified water. Any detectable concentrations observed in the pump rinses were considered to be a result of the water used for this testing.

Limits of detection

Instrumental limits of detection (LOD) were determined for each PBDE based on a 3:1 signal to background noise ratio for each sample individually and method detection limits (MDLs) were then calculated to account for variation in instrument sensitivity and sample sizes. Average PBDE MDLs ranged from 0.023 pg·g⁻¹ sample; 0.769 pg·g⁻¹ lipid (PBDE 15) to 0.712 pg·g⁻¹ sample; 23.5 pg·g⁻¹ lipid (PBDE 209), respectively. PBDE 183 had the second highest MDL observed in the samples (0.187 pg·g⁻¹ sample, 6.32 pg·g⁻¹ lipid). Limits of detection for the individual HBCD isomers were determined using low-level standards and adjusted for sample weight and instrument sensitivity, resulting in MDLs of 0.617 pg·g⁻¹ sample, 21.6 pg·g⁻¹ lipid (α -HBCD); 0.385 pg·g⁻¹ sample, 13.4 pg·g⁻¹ lipid (β -HBCD); and 0.693 pg·g⁻¹ sample, 24.0 pg·g⁻¹ lipid (γ -HBCD) in the human milk samples.

Statistical analysis

Statistical analyses were performed using SigmaPlot 12.5 (Systat Software Inc.). For those compounds below the MDL in any sample, the analyte concentrations were adjusted to 1/2 MDL (i.e., MDL/2) established for the samples prior to initiating data summary and statistical analysis. In addition to developing descriptive statistics of these data, they were also studied to consider whether concentrations were related to some of the personal characteristics of the participants (e.g., age, number of children the participant had prior to this pregnancy/parity). The concentration data were not normally distributed; therefore, one-way analysis of variance (ANOVA) tests were performed using Kruskal-Wallis ANOVA on ranks. Relationships were considered statistically significant if the *P*-value was less than 0.05.

RESULTS AND DISCUSSION

The lipid content determined in the human milk samples ranged from 0.75% to 7.84%, with mean and median lipid concentrations of 3.26% and 3.22%, respectively. PBDEs and HBCD are lipophilic compounds; therefore, results are reported on a lipid-adjusted basis throughout this manuscript. While PBDEs were detected in all 298 of the milk samples collected from across Canada, HBCD was detected in 94.0% (n = 280) of the samples. PBDE 47 was the dominant contributor to Σ PBDE concentrations, followed by 153 > 99 > 100 > 28 > 209. Consistent with previous HBCD concentrations determined in Canadian serum^[30], α -HBCD was the predominant isomer (93.3%) in human milk samples, with β -HBCD and γ -HBCD detected in 9.7% and 28.5% of the samples, respectively.

Figure 2. Selected PBDE congeners and Σ PBDE (Σ 20 congeners) concentrations (ng·g⁻¹ lipid) in human milk from the MIREC study (*n* = 298). Box indicates 25th, 50th (median), and 75th percentiles. Points indicate data outside of the 10th and 90th percentiles. PBDE: Polybrominated diphenyl ether; MIREC: Maternal-Infant Research on Environmental Chemicals.

Concentrations

Although PBDEs were present at detectable concentrations in all 298 of the Canadian human milk samples analyzed, three congeners were observed in relatively few samples. PBDEs 126 and 205 were observed in only two samples (< 1%), while PBDE 181 was present at detectable concentrations in 22 samples (7.4%). As a result of the very low detection rate of these three congeners, they have been removed from the data analysis and calculation of total PBDE concentrations.

ΣPBDE (Σ of 20 congeners: 15, 17, 28, 37, 47, 66, 71, 75, 77, 85, 99, 100, 119, 138, 153, 154, 160, 183, 190 and 209) concentrations ranged from 0.071 to 267 ng·g⁻¹ lipid in the human milk from the MIREC study [Figure 2, Table 2]. ΣHBCD (Σα-, β-, γ-) concentrations ranged from below detection to 7.66 ng·g⁻¹ lipid in the samples analyzed, with a median concentration of 0.303 ng·g⁻¹ lipid [Figure 3, Table 2]. The dominant PBDE congeners contributing to ΣPBDE concentrations observed in human milk (47, 153, 99, 100, 209) as part of the present study are similar to those identified for Canadian human serum collected in 2007 where 47 > 153 > 99 > 100 > 209 were reported (geometric mean: 22, 9.4, 4.6, 4.1 and 1.1 ng·g⁻¹ lipid, respectively)^[30]. Consistent with the widespread use of the penta-mix in North America, PBDE 47 (geometric mean: 7.97 ng·g⁻¹ lipid) contributed approximately half (47%) of the ΣPBDE (geometric mean 16.8 ng·g⁻¹ lipid) in the pooled serum samples from individuals aged 20 to 39 years as part of Cycle 1 of the Canadian Health Measures Survey (CHMS)^[30].

PBDE 209 was observed in the serum of Canadian women of childbearing age as part of the CHMS work, although it had not been reported by our laboratory in human samples prior to that time. Although PBDE 209 was detected in 70.5% of the samples measured, the maximum PBDE 209 concentration observed in this work (85.3 ng·g⁻¹ lipid) exceeded the maximum concentration of other congeners that generally contributed more to Σ PBDE concentrations (e.g., 99, 100, Table 2). PBDE 209 was not detected in all of the milk samples as part of the present study; when present, it contributed \approx 3.3% to Σ PBDE concentrations.

Congener	Detection frequency (%)	Minimum	Maximum	Median	Geometric mean	Arithmetic mean	Standard deviation
PBDE 28	100	0.0001	7.45	0.550	0.566	0.835	0.901
PBDE 47	100	0.005	145	7.44	7.97	13.6	19.6
PBDE 99	100	0.006	55.6	1.09	1.28	2.83	6.14
PBDE 100	100	0.001	20.3	1.17	1.27	2.29	3.17
PBDE 153	99.3	< MDL (0.004)	57.5	2.01	2.41	5.03	8.22
PBDE 154	99.3	< MDL (0.003)	1.93	0.077	0.084	0.157	0.264
PBDE 183	98.0	< MDL (0.001)	2.78	0.043	0.043	0.082	0.201
PBDE 209	70.5	< MDL (0.001)	85.3	0.083	0.071	0.635	5.08
$\Sigma PBDE^{1}$	100	0.071	267	15.6	16.8	26.5	33.2
α-HBCD	93.3	< MDL (0.004)	7.26	0.271	0.247	0.425	0.655
β-HBCD	9.7	< MDL (0.001)	0.801	0.006	0.008	0.024	0.084
γ-HBCD	28.5	< MDL (0.001)	6.39	0.010	0.012	0.097	0.454
$\Sigma HBCD^2$	94.0	< MDL (0.010)	7.66	0.303	0.316	0.547	0.871

Table 2. Concentrations (ng·g⁻¹ lipid) of selected PBDE congeners, total PBDEs (Σ 20 congeners) and α -, β - and γ -HBCD and Σ (α -, β -, γ -) HBCD in human milk (2008-2011)

¹Sum of 20 congeners: 15, 17, 28, 37, 47, 66, 71, 75, 77, 85, 99, 100, 119, 138, 153, 154, 160, 183, 190, and 209 (PBDE 126, 181, and 205 have been removed due to low detectability). ²Sum of α -HBCD, β -HBCD, and γ -HBCD. PBDE: Polybrominated diphenyl ether; HBCD: hexabromocyclododecane; MDL: method detection limit.

Figure 3. α -, β - γ -HBCD and $\Sigma(\alpha$ -, β -, γ -) HBCD concentrations (ng·g⁻¹ lipid) in human milk samples. Box indicates 25th, 50th (median), and 75th percentiles. Points indicate data outside of the 10th and 90th percentiles. HBCD: Hexabromocyclododecane.

Relationships between compounds

Strong Spearman correlations were found between the concentrations of each of the dominant, lower brominated PBDE congeners (tri- through penta-: 28, 47, 99 and 100) observed in Canadian human milk. While the concentrations of these lower brominated congeners were strongly correlated with each other (P > 0.790), the relationship was much weaker between these congeners and the hexabrominated PBDE 153 [Table 3]. In contrast, PBDE 209 concentrations were not well correlated with any of the other congeners having important contributions to Σ PBDEs (i.e., 28, 47, 99, 100, 153). This difference aligns with the broader usage of the decabromodiphenyl ether in consumer products, which extended beyond the applications of

Congener	47	99	100	153	209
PBDE 28	0.922	0.791	0.832	0.353	0.074; <i>P</i> = 0.200
PBDE 47		0.920	0.907	0.389	0.061; <i>P</i> = 0.292
PBDE 99			0.858	0.401	0.075; <i>P</i> = 0.197
PBDE 100				0.592	0.085; <i>P</i> = 0.142
PBDE 153					0.039; <i>P</i> = 0.503

 Table 3. Spearman correlations between individual predominant contributing PBDE congeners in Canadian human milk (P values < 0.001 unless indicated)</td>

PBDE: Polybrominated diphenyl ether.

the other, lower brominated congeners.

ΣHBCD concentrations in the human milk analyzed were not correlated with ΣPBDE concentrations (r = 0.051, P = 0.377). This observation may be a result of HBCD being used primarily in insulation for buildings (e.g., polystyrene)^[5], rather than in electronics and other consumer products.

Impact of maternal characteristics

Neither Σ PBDE (r = 0.019, *P* = 0.739) nor Σ HBCD (r = 0.084, *P* = 0.148) concentrations were correlated with maternal age in the human milk samples analyzed. This differs from legacy polychlorinated biphenyls (PCBs), where relationships between maternal age and chemical concentration in human milk (r = 0.385, *P* < 0.001) were observed^[48]. It is, however, consistent with observations in human milk from the MIREC study for novel halogenated flame retardants (Σ 9 NHFRs) which were also not correlated with age (r = 0.016, *P* = 0.709)^[49]. The Spearman correlation was determined between maternal age and concentrations of the sum of nine novel halogenated flame retardants { Σ of 2,4,6-tribromophenyl allyl ether (TBP-AE/ATE); 2,3,5,6-tetrabromo-*p*-xylene (TBX); 1,2,3,4,5-pentabromobenzene (PBBZ); benzene, 1,2,3,4,5-pentabromo-6-ethyl/pentabromoethylbenzene (PBEB); benzene, 1,3,5-tribromo-2-(2,3-dibromopropoxy)/2,3-dibromopropyl 2,4,6-tribromophenyl ether (TBP-DBPE/DPTE); benzene, 1,2,3,4,5,6-hexabromo/hexabromobenzene (HBB); benzene, 1,1'-[1,2-ethanediylbis(oxy)] bis[2,4,6-tribromo-/1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and benzene, 1,1'-(1,2-ethanediyl)bis [2,3,4,5,6-pentabromo-/decabromodiphenylethane (DBDPE)]^[49].

An ANOVA was performed to examine the relationship between Σ PBDE and Σ HBCD concentrations with characteristics of the participants who provided milk for these analyses [e.g., parity, pre-pregnancy body mass index (BMI), and education level]. A woman's parity (1, 2, 3, 4+) impacted neither median Σ PBDE concentrations (P = 0.483) nor Σ HBCD concentrations (P = 0.366). This lack of relationship between parity and median concentrations is similarly consistent with the results of the NHFR concentrations in samples from this cohort (P = 0.777)^[49]. Pre-pregnancy BMI (< 20, 20-25, > 25-30, > 30-35, > 35, no information provided) was not a factor that impacted Σ PBDE (P = 0.372) or Σ HBCD (P = 0.073) concentrations. The education level of the participants was broken down into a variety of categories [having some/completing high school, having earned the diploma, having taken some college classes, having earned college or trade school diploma, having earned an undergraduate university degree, and having earned a graduate degree (Master, Ph.D.)]. The Σ PBDE and Σ HBCD concentrations were not significantly impacted by this factor (P = 0.878 and P = 0.745, respectively). This result is again consistent with the lack of relationship between Σ NHFR concentrations and the groups of individuals with different levels of education (P = 0.168)^[49].

Temporal trends

Both of the BFRs examined in the present study have been previously measured in Canadian human milk. The prior work from our laboratory did not include PBDE 209 because it was not consistently present and, at the time, it was thought to be a minor contributor to overall PBDE concentrations^[28]. Total PBDE concentrations previously were reported as a total of seven congeners ($\Sigma 28$, 47, 99, 100, 153, 154, 183) with concentrations ranging from 0.552 to 596 ng·g⁻¹ lipid (median 2.99 ng·g⁻¹ lipid; geometric mean 3.54 ng·g⁻¹ lipid) for samples collected from across southern Canada in 1992 and from 0.841 to 956 ng·g⁻¹ lipid (median 2.1 ng·g⁻¹ lipid; geometric mean $\Sigma PBDE$ concentrations (19.9 and 21.1 ng·g⁻¹ lipid, respectively) in human milk collected from Hamilton, Ontario, in 2005 indicated that PBDE concentrations had stabilized^[28]. The sum of concentrations for these same seven congeners in the present study, 2008-2011 collection, as part of the MIREC study, ranged from 0.473 to 257 ng·g⁻¹ lipid (14.6 and 15.5 ng·g⁻¹ lipid, median and geometric mean, respectively), suggesting that PBDE concentrations in human milk began to decline relative to concentrations observed in 2002.

While Σ PBDE concentrations appear to be declining, not all individual congeners follow this trend. A comparison of the previous data from our laboratory (1992, 2002 and 2005) with the data from the present work does show similar patterns for several of the congeners considered. The lowest median concentrations of PBDE 47, 99, 100, and 154 were observed in 1992, followed by increased concentrations in 2002, and appeared to stabilize by 2005, followed by a decline observed in the present work [Table 4]. Median PBDE 28 concentrations increased between 1992 and 2002, reaching the highest concentration observed in 2005, followed by a decline, while a comparison of the median PBDE 183 concentrations over time did not show a clear trend. In contrast to the other congeners investigated, the median PBDE 153 concentration determined in human milk from the present study was higher than the values reported in 1992, 2002 or 2005, although the results from 2002 and 2005 suggested the beginning of a decline [Table 4]. This variability in temporal trends among PBDE congeners is consistent with what has been reported for human milk collected in Sweden^[50], although the pattern observed is similar to that observed in the serum of Swedish mothers where a decrease in PBDEs 47, 99, and 100 was observed and an increase in PBDE 153 was determined^[51].

An additional study that measured PBDE concentrations (Σ four congeners: 47, 99, 100, and 153) in human milk from two discrete communities in Canada (Kingston, Ontario in 2003/2004 and Sherbrooke, Québec in 2008/2009) has also been reported^[52]. PBDE concentrations ranged from 2.7 to 108 ng·g⁻¹ lipid and 2.9 to 119 ng·g⁻¹ lipid, with median concentrations of 11 and 15 ng·g⁻¹ lipid in Kingston and Sherbrooke, respectively^[52]. The Σ 47, 99, 100, and 153 congeners in the present study had a wider concentration range than those observed in the two cities (0.02-251 ng·g⁻¹ lipid), albeit with only slightly elevated median (13.7 ng·g⁻¹ lipid) and geometric mean (14.7 ng·g⁻¹ lipid) concentrations than those reported for Kingston and Sherbrooke. The Canadian data over time suggest that PBDE concentrations peaked in Canadian human milk during the early 2000s. These observations are consistent with the timing of the reviews of tetra-, penta-, hexa- and heptabrominated diphenyl ethers as part of the Stockholm Convention, which listed them as persistent organic pollutants in 2009^[53].

HBCD was determined previously in human milk from one community in northern Canada (Nunavik) at two time points (1989-1991 and 1996-1999) and one location in southern Canada (Hamilton, Ontario) in $2005^{[28]}$. The early HBCD analysis of milk from Nunavik measured α -HBCD alone [0.1-0.6 ng·g⁻¹ lipid (1989-1991) and 0.1-13.3 ng·g⁻¹ lipid (1996-1999)]^[28]. In contrast, the analysis of samples collected from Hamilton in 2005 involved the determination of α -, β - and γ - isomers. Σ HBCD concentrations in those samples ranged from 0.1-28.2 ng·g⁻¹ lipid, with median and geometric mean concentrations of 0.7 and 0.6 ng·g⁻¹ lipid, respectively. The results of the pan-Canadian samples collected in the present study ranged from below the

Compound		Median conce	bid)		
Compound	1992	2002	2005	Present study	
PBDE 28	0.108	0.948	1.40	0.550	
PBDE 47	1.42	12.9	12.1	7.44	
PBDE 99	0.507	3.30	2.55	1.09	
PBDE 100	0.228	1.91	1.52	1.17	
PBDE 153	0.304	1.32	1.11	2.01	
PBDE 154	0.042	0.174	0.147	0.077	
PBDE 183	0.173	0.121	0.172	0.043	

 Table 4. Median PBDE concentrations of select individual congeners in Canadian human milk over time, previous data taken from

 Ryan and Rawn (2014)^[28]

PBDE: Polybrominated diphenyl ether.

method detection limits to 7.66 ng·g⁻¹ lipid [median 0.303 ng·g⁻¹ lipid (303 pg·g⁻¹ lipid)]. These data suggest that HBCD concentrations declined in Canadian human milk from the early investigations into HBCD concentration to the collection period covered in the present study, similar to the declining temporal trend for PBDEs.

Comparison with international studies

PBDE concentrations remained elevated in Canadian human milk relative to other countries during the sample collection period. This observation is consistent with the conclusions of a systematic review of global data for these compounds in human milk collected between 2000 and $2012^{[54]}$. European countries continue to have lower PBDE concentrations in human milk [Table 5] in comparison to Canadian results. South American PBDE concentrations are similarly low relative to the concentrations reported in North America [Table 5]. The selection of representative congeners used for the determination of Σ PBDE concentrations, however, makes the direct comparison between regions challenging. While some areas of Asia have lower PBDE concentrations in human milk relative to Canada, other regions show elevated levels. HBCD concentrations in Canadian human milk seem to be within the range reported internationally [Table 6]. In contrast to the PBDEs, HBCD concentrations in human milk collected from some European countries are elevated over concentrations reported in the present study, where collection occurred between 2008-2011.

CONCLUSIONS

PBDE concentrations declined in Canadian human milk between the early 2000s and the collection period of the present study (2008-2011). Maximum HBCD concentrations determined in the present study were lower than the previous maximum values measured in Canadian human milk. Concentrations of these BFRs in human milk were not correlated with maternal age. Parity (1, 2, 3, 4+) and pre-pregnancy BMI (< 20, 20-25, > 25-30, > 30-35, > 35) did not significantly impact PBDE levels (P = 0.483, P = 0.372, parity and pre-pregnancy BMI, respectively) or HBCD concentrations (P = 0.366, P = 0.073, parity and pre-pregnancy BMI, respectively). Maternal education level similarly did not affect PBDE (P = 0.878) or HBCD (P = 0.745) concentrations in the human milk from the MIREC study. Ongoing monitoring of these BFRs is required to establish whether a continued decrease in concentration over time is occurring in Canadian human milk, following regulatory action on a global scale.

Table 5. International PBDE concentrations ($ng \cdot g^{-1}$ lipid) reported in human milk

Country	n	Range	Median	Congeners included	Year(s) of collection	Ref.
North Americ	а					
Canada	298	0.473-257	14.6	28, 47, 99, 100, 153, 154, 183	2008-2011	Current study
Canada	298	0.071-267	15.6	$\Sigma 20 \text{ PBDE congeners}$	2008-2011	Current study
USA	31	4.79-18.6		15, 28, 47, 99, 153	2016-2020	Jung et al., 2023 ^[55]
	10		8.78 (non-firefighters)			
	21		9.89 (firefighters)			
USA	50	1.46-1,170	15.0	28, 47, 85, 99, 100, 139, 153, 154, 183	2019	Schreder <i>et al.,</i> 2023 ^[56]
South Americ	а					
Brazil	200	0.14-6.5 (wet weight, ww)	2.33 (geometric mean, ww)	28, 47, 99, 100, 153, 154, 183	2019-2020	Souza et al., 2022 ^[57]
Colombia	60	0.33-16.4	1.28	28, 47, 99, 100, 153, 154, 183	2014-2015	Torres-Moreno et al., 2023 ^[58]
Europe Scand	inavia	1				
Denmark	438	1.22-111	4.90	28, 47, 99, 100, 153, 154, 183	1997-2002	Antignac et al., 2016 ^[31]
Finland	22	1.47-19.0	5.19	28, 47, 99, 100, 153, 154, 183	1997-2002	Antignac <i>et al.,</i> 2016 ^[31]
Sweden	198	0.33-73	1.2; 1.3; 1.4; 1.8 (different locations)	47 99	2000-2004	Glynn et al., 2011 ^[25]
		< 0.1-17	0.3, 0.2, 0.2, 0.5	100		
		< 0.08-18	0.3, 0.2, 0.3, 0.4	100		
		0.2-8.0	0.6, 0.5, 0.6, 0.7			
Other						
Czech Republic	231	0.05-0.99 (PBDE 47) 0.15-1.31 (PBDE 99) 0.15-0.79 (PBDE 153) (5-95 percentile)	0.15, 0.19 (2 locations, PBDE 47) Not calculated (PBDE 99) 0.32 (1 location only calculated, PBDE 153)	47, 99, 153 individually	2019-2021	Parizek et al., 2023 ^[59]
France	96	0.45-15.3	1.47	28, 47, 99, 100, 153, 154, 183	2011-2014	Antignac <i>et al.,</i> 2016 ^[31]
Ireland	16 ¹	1.7-24	2.5	28, 47, 99, 100, 153, 154, 183, 209	2016-2018	Wemken <i>et al.</i> , 2020 ^[32]
Asia						
China (Shanghai)	36	7.9-2,980 (pg·g ⁻¹ ww)	32 pg·g⁻¹ ww	28, 47, 99, 100, 153, 154, 183, 209	2018-2019	Lin et al., 2022 ^[60]
China	105	0.458-157	1.1	28, 47, 99, 100, 153, 154, 183, 209	2018	Zhao and Shi, 2021 ^[33]
Japan	40	< 0.2-69	1.5	28, 47, 99, 100, 153, 154	2005-2006	Fujii <i>et al.</i> , 2012 ^[61]
Philippines	30	0.61-11	2.6	15, 28, 47, 99, 100, 153, 154, 183, 196, 197, 207, 209	2008	Malarvannan et al., 2013b ^[26]
Vietnam	33	0.24-250	0.57, 0.73, 2.3, 3.2, 84 (by site)	15, 28, 47, 99, 100, 153, 154, 183, 196, 197, 206, 207, 209	2007	Tue et al., 2010 ^[23]
Middle East						
Saudi Arabia	75	0.2-3.6	2.8 (quartile 1-3)	47, 99, 153, 209, identified	Not specified	Yakout <i>et al.,</i> 2023 ^[62]

¹Pooled samples. PBDE: Polybrominated diphenyl ether.

Country	n	Range	Median	HBCD isomers included	Year(s) of Collection	Ref.
North America						
Canada	298	0.010-7.66	0.303	Σα-, β-, γ-	2008-2011	Current study
Europe Scandinavia						
Denmark	435	0.02-28.7	0.31	α-	1997-2002	Antignac et al., 2016 ^[31]
Finland	22	0.03-2.19	0.31	α-	1997-2002	Antignac <i>et al.,</i> 2016 ^[31]
Sweden	178	0.09-10	0.3, < 0.4, 0.4, 0.4 (by region)	Not specified (GC-MS analysis)	2000-2004	Glynn et al., 2011 ^[25]
Other						
Czech Republic	231	0.25-17.1 (ng·mL ⁻¹)	Not calculated	α-	2019-2021	Parizek et al., 2023 ^[59]
France	41	0.22-4.21	0.56	α-	2011-2014	Antignac et al., 2016 ^[31]
Ireland	16 ¹	0.83-3.6	1.8	Σα-, β-, γ-	2016-2018	Wemken <i>et al.,</i> 2020 ^[32]
Asia						
China	105	2.84-196	7.64	Σα-, β-, γ-	2018	Zhao and Shi, 2021 ^[33]
Philippines	30	< 0.01-0.91	0.19	Σα-, β-, γ-	2008	Malarvannan et al., 2013b ^[26]
Vietnam, some individuals involved in recycling	33	0.07-7.6	0.33, 0.42, 0.38, 0.36, 2.0 (by site)	Σα-, β-, γ-	2007	Tue et al., 2021 ^[23]

Table 6. International HBCD concentrations (ng·g⁻¹lipid) reported in human milk

¹pooled samples. HBCD: Hexabromocyclododecane; GC-MS: gas chromatography-mass spectrometry.

DECLARATIONS

Acknowledgements

The authors thank the participants in the study and their families. The authors also acknowledge the MIREC Study Group, in particular the site investigators, in addition to their field staff and the coordinating centre. The authors thank Sue Quade for carefully reviewing the manuscript and tracking reference formatting.

Authors' contributions

Made substantial contributions to the conception and design of the study and performed data analysis and interpretation: Rawn DFK, Arbuckle TE

Performed data acquisition, as well as providing administrative, technical, and material support: Sadler AR, Casey VA, Breton F, Sun WF, Feng SY

Availability of data and materials

The data that has been used is confidential.

Financial support and sponsorship

MIREC was funded by Health Canada's Chemicals Management Plan, the Canadian Institute of Health Research (grant MOP-81285), and the Ontario Ministry of the Environment.

Conflicts of interest

All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate

Participants consented to participate in the study and ethics Board approval was obtained from Health Canada's ethics board, the ethics board of the MIREC coordination centre at CHU Sainte Justine, Québec, and the ethics board at each of the research centres (Vancouver, Edmonton, Winnipeg, Hamilton, Kingston, Ottawa, Sudbury, Toronto, Montréal and Halifax) (REB 2006-027H).

Consent for publication

Not applicable.

Copyright

© The Author(s) 2024.

REFERENCES

- 1. Alaee M, Arias P, Sjödin A, Bergman A. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. *Environ Int* 2003;29:683-9. DOI PubMed
- 2. Guardia MJ, Hale RC, Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. *Environ Sci Technol* 2006;40:6247-54. DOI PubMed
- 3. Rahman F, Langford KH, Scrimshaw MD, Lester JN. Polybrominated diphenyl ether (PBDE) flame retardants. *Sci Total Environ* 2001;275:1-17. DOI PubMed
- 4. Kemmlein S, Herzke D, Law RJ. BFR-governmental testing programme. Environ Int 2003;29:781-92. DOI PubMed
- 5. Alshemmari H. Inventories and assessment of POPs in the State of Kuwait as a basis for Stockholm Convention implementation. *Emerg Contam* 2021;7:88-98. DOI
- 6. Li Y, Chen L, Wen ZH, et al. Characterizing distribution, sources, and potential health risk of polybrominated diphenyl ethers (PBDEs) in office environment. *Environ Pollut* 2015;198:25-31. DOI PubMed
- 7. Sun J, Wang Q, Zhuang S, Zhang A. Occurrence of polybrominated diphenyl ethers in indoor air and dust in Hangzhou, China: level, role of electric appliances, and human exposure. *Environ Pollut* 2016;218:942-9. DOI PubMed
- 8. Betts KS. Hand-me-down hazard: flame retardants in discarded foam products. *Environ Health Perspect* 2015;123:A56-63. DOI PubMed PMC
- Cao Z, Xu F, Li W, et al. Seasonal and particle size-dependent variations of hexabromocyclododecanes in settled dust: implications for sampling. *Environ Sci Technol* 2015;49:11151-7. DOI PubMed
- 10. Ding N, Wang T, Chen SJ, et al. Brominated flame retardants (BFRs) in indoor and outdoor air in a community in Guangzhou, a megacity of southern China. *Environ Pollut* 2016;212:457-63. DOI PubMed
- 11. Zheng X, Xu F, Chen K, et al. Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: composition variations and implications for human exposure. *Environ Int* 2015;78:1-7. DOI PubMed
- 12. Iwegbue CM, Eyengho SB, Egobueze FE, et al. Polybrominated diphenyl ethers and polychlorinated biphenyls in indoor dust from electronic repair workshops in southern Nigeria: implications for onsite human exposure. *Sci Total Environ* 2019;671:914-27. DOI
- 13. Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? *Environ Health Perspect* 2004;112:9-17. DOI PubMed PMC
- 14. Jaspers V, Covaci A, Maervoet J, et al. Brominated flame retardants and organochlorine pollutants in eggs of little owls (Athene noctua) from Belgium. *Environ Pollut* 2005;136:81-8. DOI PubMed
- 15. Law K, Halldorson T, Danell R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. *Environ Toxicol Chem* 2006;25:2177-86. DOI PubMed
- 16. Ueno D, Isobe T, Ramu K, et al. Spatial distribution of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs) and organochlorines in bivalves from Japanese coastal waters. *Chemosphere* 2010;78:1213-9. DOI PubMed
- 17. Polder A, Venter B, Skaare JU, Bouwman H. Polybrominated diphenyl ethers and HBCD in bird eggs of South Africa. *Chemosphere* 2008;73:148-54. DOI PubMed
- 18. Shaw SD, Berger ML, Brenner D, Kannan K, Lohmann N, Päpke O. Bioaccumulation of polybrominated diphenyl ethers and hexabromocyclododecane in the northwest Atlantic marine food web. *Sci Total Environ* 2009;407:3323-9. DOI PubMed
- McKinney MA, Letcher RJ, Aars J, et al. Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005-2008. *Environ Int* 2011;37:365-74. DOI PubMed
- 20. Vorkamp K, Rigét FF, Bossi R, Dietz R. Temporal trends of hexabromocyclododecane, polybrominated diphenyl ethers and polychlorinated biphenyls in ringed seals from East Greenland. *Environ Sci Technol* 2011;45:1243-9. DOI PubMed
- 21. Rawn DF, Sadler A, Quade SC, et al. Brominated flame retardants in Canadian chicken egg yolks. *Food Addit Contam Part A Chem Anal Control Expo Risk Assess* 2011;28:807-15. DOI PubMed PMC
- 22. Sørmo EG, Salmer MP, Jenssen BM, et al. Biomagnification of polybrominated diphenyl ether and hexabromocyclododecane flame retardants in the polar bear food chain in Svalbard, Norway. *Environ Toxicol Chem* 2006;25:2502-11. DOI PubMed

- 23. Tue NM, Sudaryanto A, Minh TB, et al. Accumulation of polychlorinated biphenyls and brominated flame retardants in breast milk from women living in Vietnamese e-waste recycling sites. *Sci Total Environ* 2010;408:2155-62. DOI PubMed
- 24. Kalantzi OI, Geens T, Covaci A, Siskos PA. Distribution of polybrominated diphenyl ethers (PBDEs) and other persistent organic pollutants in human serum from Greece. *Environ Int* 2011;37:349-53. DOI PubMed
- 25. Glynn A, Lignell S, Darnerud PO, et al. Regional differences in levels of chlorinated and brominated pollutants in mother's milk from primiparous women in Sweden. *Environ Int* 2011;37:71-9. DOI PubMed
- Malarvannan G, Isobe T, Covaci A, Prudente M, Tanabe S. Accumulation of brominated flame retardants and polychlorinated biphenyls in human breast milk and scalp hair from the Philippines: levels, distribution and profiles. *Sci Total Environ* 2013;442:366-79. DOI PubMed
- 27. Malarvannan G, Dirinck E, Dirtu AC, et al. Distribution of persistent organic pollutants in two different fat compartments from obese individuals. *Environ Int* 2013;55:33-42. DOI PubMed
- 28. Ryan JJ, Rawn DF. The brominated flame retardants, PBDEs and HBCD, in Canadian human milk samples collected from 1992 to 2005; concentrations and trends. *Environ Int* 2014;70:1-8. DOI PubMed
- 29. Rawn DF, Gaertner DW, Weber D, Curran IH, Cooke GM, Goodyer CG. Hexabromocyclododecane concentrations in Canadian human fetal liver and placental tissues. *Sci Total Environ* 2014;468-9:622-9. DOI PubMed
- Rawn DFK, Ryan JJ, Sadler AR, et al. Brominated flame retardant concentrations in sera from the Canadian Health Measures Survey (CHMS) from 2007 to 2009. *Environ Int* 2014;63:26-34. DOI PubMed
- 31. Antignac JP, Main KM, Virtanen HE, et al. Country-specific chemical signatures of persistent organic pollutants (POPs) in breast milk of French, Danish and Finnish women. *Environ Pollut* 2016;218:728-38. DOI PubMed
- 32. Wemken N, Drage DS, Cellarius C, et al. Emerging and legacy brominated flame retardants in the breast milk of first time Irish mothers suggest positive response to restrictions on use of HBCDD and Penta- and Octa-BDE formulations. *Environ Res* 2020;180:108805. DOI PubMed
- Zhao X, Shi Z. Legacy brominated flame retardants in human milk from the general population in Beijing, China: biomonitoring, temporal trends from 2011 to 2018, and nursing infant's exposure assessment. *Chemosphere* 2021;285:131533. DOI PubMed
- Meironyté D, Norén K, Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. a time-related trend study, 1972-1997. J Toxicol Environ Health A 1999;58:329-41. DOI PubMed
- 35. Norén K, Meironyté D. Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. *Chemosphere* 2000;40:1111-23. DOI PubMed
- 36. Meironyté Guvenius D, Aronsson A, Ekman-Ordeberg G, Bergman A, Norén K. Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol. *Environ Health Perspect* 2003;111:1235-41. DOI PubMed PMC
- 37. Daniels JL, Pan IJ, Jones R, et al. Individual characteristics associated with PBDE levels in U.S. human milk samples. *Environ Health Perspect* 2010;118:155-60. DOI PubMed PMC
- 38. Toms LML, Guerra P, Eljarrat E, et al. Brominated flame retardants in the Australian population: 1993-2009. *Chemosphere* 2012;89:398-403. DOI PubMed
- Law RJ, Covaci A, Harrad S, et al. Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environ Int 2014;65:147-58. DOI PubMed
- Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: from environmental to human exposure. *Environ Pollut* 2021;285:117475. DOI PubMed
- 41. Renzelli V, Gallo M, Morviducci L, et al. Polybrominated diphenyl ethers (PBDEs) and human health: effects on metabolism, diabetes and cancer. *Cancers* 2023;15:4237. DOI PubMed PMC
- 42. Darnerud PO, Eriksen GS, Jóhannesson T, Larsen PB, Viluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. *Environ Health Perspect* 2001;109 Suppl 1:49-68. DOI PubMed PMC
- 43. McDonald TA. A perspective on the potential health risks of PBDEs. Chemosphere 2002;46:745-55. DOI PubMed
- World Health Organization. Infant and young child feeding. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/ infant-and-young-child-feeding. [Last accessed on 5 Jun 2024].
- 45. Victora CG, Bahl R, Barros AJD, et al; Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *Lancet* 2016;387:475-90. DOI PubMed
- 46. Arbuckle TE, Fraser WD, Fisher M, et al. Cohort profile: the maternal-infant research on environmental chemicals research platform. *Paediatr Perinat Epidemiol* 2013;27:415-25. DOI PubMed
- Statistics Canada. Canadian Community Health Survey annual component (CCHS). Available from: https://www23.statcan.gc.ca/ imdb/p2SV.pl?Function=getSurvey&Id=144170#a2. [Last accessed on 5 Jun 2024].
- 48. Rawn DFK, Sadler AR, Casey VA, et al. Dioxins/furans and PCBs in Canadian human milk: 2008-2011. *Sci Total Environ* 2017;595:269-78. DOI PubMed
- Rawn DFK, Corrigan C, Ménard C, Sun WF, Breton F, Arbuckle TE. Novel halogenated flame retardants in Canadian human milk from the MIREC study (2008-2011). *Chemosphere* 2024;350:141065. DOI PubMed
- Lignell S, Aune M, Darnerud PO, Cnattingius S, Glynn A. Persistent organochlorine and organobromine compounds in mother's milk from Sweden 1996-2006: compound-specific temporal trends. *Environ Res* 2009;109:760-7. DOI PubMed
- 51. Darnerud PO, Lignell S, Aune M, et al. Time trends of polybrominated diphenylether (PBDE) congeners in serum of Swedish mothers

and comparisons to breast milk data. Environ Res 2015;138:352-60. DOI PubMed

- 52. Siddique S, Xian Q, Abdelouahab N, et al. Levels of dechlorane plus and polybrominated diphenylethers in human milk in two Canadian cities. *Environ Int* 2012;39:50-5. DOI PubMed
- Secretariat of the Stockholm Convention. The 12 initial POPs under the Stockholm Convention. Available from: http://chm.pops.int/ TheConvention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx. [Last accessed on 5 Jun 2024].
- 54. Zhang J, Chen L, Xiao L, Ouyang F, Zhang QY, Luo ZC. Polybrominated diphenyl ether concentrations in human breast milk specimens worldwide. *Epidemiology* 2017;28 Suppl 1:S89-97. DOI PubMed
- 55. Jung AM, Beitel SC, Gutenkunst SL, et al. Excretion of polybrominated diphenyl ethers and AhR activation in breastmilk among firefighters. *Toxicol Sci* 2023;192:223-32. DOI PubMed PMC
- 56. Schreder E, Zheng G, Sathyanarayana S, Gunaje N, Hu M, Salamova A. Brominated flame retardants in breast milk from the United States: first detection of bromophenols in U.S. breast milk. *Environ Pollut* 2023;334:122028. DOI PubMed
- Souza MCO, Devóz PP, Ximenez JPB, Bocato MZ, Rocha BA, Barbosa F. Potential health risk to Brazilian infants by polybrominated diphenyl ethers exposure via breast milk intake. *Int J Environ Res Public Health* 2022;19:11138. DOI PubMed PMC
- Torres-Moreno AC, Mejia-Grau K, Puente-DelaCruz L, et al. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) in human breast milk from Colombia: a probabilistic risk assessment approach. *Chemosphere* 2023;339:139597. DOI PubMed
- Parizek O, Gramblicka T, Parizkova D, et al. Assessment of organohalogenated pollutants in breast milk from the Czech Republic. *Sci Total Environ* 2023;871:161938. DOI PubMed
- 60. Lin Y, Feng C, Le S, et al. Infant exposure to PCBs and PBDEs revealed by hair and human milk analysis: evaluation of hair as an alternative biomatrix. *Environ Sci Technol* 2022;56:15912-9. DOI PubMed
- 61. Fujii Y, Ito Y, Harada KH, Hitomi T, Koizumi A, Haraguchi K. Regional variation and possible sources of brominated contaminants in breast milk from Japan. *Environ Pollut* 2012;162:269-74. DOI PubMed
- Yakout SM, Isa AM, El-Sayed AA, Aziz IM. Levels and profiles of pentabromodiphenyl ether contaminants in human breast milk from Riyadh, Saudi Arabia. Saudi Med J 2023;44:450-5. DOI PubMed PMC