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Abstract
Receptor tyrosine kinases (RTKs) bearing oncogenic mutations in EGFR, ALK and ROS1 occur in a significant subset 

of lung adenocarcinomas. Tyrosine kinase inhibitors (TKIs) targeting tumor cells dependent on these oncogenic RTKs 

yield tumor shrinkage, but also a variety of adverse events. Skin toxicities, hematological deficiencies, nausea, vomiting, 

diarrhea, and headache are among the most common, with more acute and often fatal side effects such as liver failure 

and interstitial lung disease occurring less frequently. In normal epithelia, RTKs regulate tissue homeostasis. For 

example, EGFR maintains keratinocyte homeostasis while MET regulates processes associated with tissue remodeling. 

Previous studies suggest that the acneiform rash occurring in response to EGFR inhibition is a part of an inflammatory 

response driven by pronounced cytokine and chemokine release and recruitment of distinct immune cell populations. 

Mechanistically, blockade of EGFR causes a Type I interferon response within keratinocytes and in carcinoma cells 

driven by this RTK. This innate immune response within the tumor microenvironment (TME) involves increased antigen 

presentation and effector T cell recruitment that may participate in therapy response. This TKI-mediated release 

of inflammatory suppression represents a novel tumor cell vulnerability that may be exploited by combining TKIs 

with immune-oncology agents that rely on T-cell inflammation for efficacy. However, early clinical data indicate that 

combination therapies enhance the frequency and magnitude of the more acute adverse events, especially pneumonitis, 

hepatitis, and pulmonary fibrosis. Further preclinical studies to understand TKI mediated inflammation and crosstalk 

between normal epithelial cells, cancer cells, and the TME are necessary to improve treatment regimens for patients with 

RTK-driven carcinomas. 
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ONCOGENIC RECEPTOR TYROSINE KINASES AS TARGETS FOR PRECISION MEDICINE
Malignancies of epithelial tissues account for 80 to 90 percent of all cancer cases, making carcinomas the 
most common histological type of cancer[1]. Activating mutations in receptor tyrosine kinases (RTKs) and 
their associated downstream signal pathways function as oncogene drivers in many solid tumor types. Lung 
adenocarcinomas (LUADs) serve as an example of a carcinoma arising from distinct pulmonary epithelial 
cells that harbor many diverse oncogenic RTKs including EGFR, ALK, MET, and ROS1[2]. Moreover, specific 
tyrosine kinase inhibitors (TKIs) are now routinely deployed as first-line therapies in patients with lung 
tumors presenting with these oncogenic RTKs. Examples of these TKIs include gefitinib or osimertinib for 
EGFR, and crizotinib or ceritinib for ALK, ROS1 and MET. Cetuximab, a monoclonal antibody against EGFR 
is also used to treat patients with head and neck squamous carcinoma (HNSCC), which often overexpress 
EGFR[3]. Thus, these oncogene targeted agents have proven efficacious for inducing tumor regression as first-
line therapies, although complete responses are rare and emergence of acquired resistance is universal[4]. 

Although TKIs are less toxic than traditional cytotoxic drugs, their use is still associated with various adverse 
effects including skin toxicity, hematological deficiencies, nausea, vomiting, diarrhea, and headaches being the 
most common side effects. Skin toxicities are very frequent, occurring in 49%-95% of patients treated with 
EGFR inhibitors, and 16% of patients treated with ALK/c-MET inhibitors[5-7]. More acute and often fatal side 
effects such as liver toxicity and forms of interstitial lung disease (ILD) occur at a lower frequency in cancer 
patients treated with the TKIs gefitinib, erlotinib, and crizotinib[8,9]. ILDs such as pneumonitis and pulmonary 
fibrosis occur at frequencies of < 1% and 1.6% respectively with EGFR inhibitors and ALK inhibitors[5,10]. 

The role of EGFR in regulating cellular proliferation, survival, and differentiation during development, tissue 
homeostasis, and carcinogenesis is well established. EGFR is expressed in a variety of normal epithelial 
tissues including skin[11]. Within the epidermis, EGFR is most prominently expressed in proliferating basal 
and suprabasal keratinocytes. In keratinocytes, EGFR signaling sustains proliferation and migration and 
delays apoptosis in suprabasal keratinocytes that are no longer attached to matrix[12-14]. In addition to normal 
keratinocyte dependent skin homeostasis, EGFR signaling functions in the protective response triggered by 
epithelial cells during wound healing or during defense against microorganisms that cause skin infections. 
EGFR is also highly expressed in alveolar type II epithelial cells in the lung[15,16]. The MET tyrosine kinase 
receptor and its ligand HGF have well characterized functions in tissue remodeling via regulating cellular 
processes such as proliferation, apoptosis, morphogenic differentiation, motility, invasion and angiogenesis. 
MET is expressed on the surface of epithelial cells in the liver, pancreas, prostate, kidney, and lung[17] and is 
essential for both embryonic liver development and liver regeneration after injury[18-20]. 

RECEPTOR TKIS DE-REPRESS INNATE IMMUNE RESPONSES IN TUMOR CELLS AND NORMAL 

EPITHELIAL CELLS
As previously mentioned, acneiform rash is an established side effect of both small molecule and antibody-based 
inhibitors of EGFR[21], typically presents within the first two weeks of administration of EGFR inhibitor and is 
a positive predictor of response to therapy. Not only is there a positive correlation between rash and therapeutic 
response of the tumor, but progression free survival and overall survival are also positively correlated with 
presence of these skin toxicities[22-25]. There are three main contributors to EGFR inhibitor induced skin toxicity; 
damage to the epithelial barrier, loss of antimicrobial mechanisms, and extensive release of inflammatory 
chemokines and cytokines. For the purpose of this article, we will focus on TKI mediated chemokine and cytokine 
release. The mechanisms contributing to damage to the integrity of the epithelial barrier and antimicrobial 
defense loss has been previously reviewed[26]. The EGFR inhibitor-induced inflammation is characterized by 
robust release of chemokines and cytokines that recruit and activate distinct immune cell populations including 
dendritic cells, macrophages, granulocytes, mast cells and T cells[12,13,27]. Mechanistically, Pastore and colleagues 
have demonstrated that this inflammatory phenotype is largely driven by a type I interferon (IFN) response 
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that occurs in keratinocytes following inhibition of EGFR signaling. A type I IFN response has classically 
been viewed as an inducer of cell- intrinsic antimicrobial signals that repress the spread of infectious agents, 
particularly viral pathogens, to neighboring cells[28]. Type I IFNs also function to modulate innate immune 
responses that occur upon infection to engage the adaptive immune system through increased expression of the 
chemokines, CXCL10, CXCL9, CCL2, and CCL5. Studies performed by Mascia et al.[13] using primary human 
keratinocytes treated in vitro with erlotinib demonstrate an increase in secretion of CCL27, CXCL14, CCL2 
and CCL5. Furthermore, immunohistochemistry (IHC) staining performed on cutaneous lesions from patients 
treated with erlotinib show an increase in markers for macrophages, natural killer (NK) cells, dendritic cells, 
and both CD4 and CD8 positive T cells. Similar inflammatory responses are seen in response to the EGFR TKI, 
gefitinib and the monoclonal antibody cetuximab. Furthermore, in vivo studies where EGFR has been genetically 
ablated in murine epidermal cells demonstrates an increase in transcripts for CCL2, CCL5 and CCL22 in the 
skin and circulation within their first week of life, prior to presence of immune cell populations[12,13].

The precise cellular and molecular mechanisms underlying the TKI mediated induction of an inflammatory 
phenotype and patient response to therapy remains ill-defined, but we propose that this response originates 
within oncogenic tumor cells and alters the immune landscape of the tumor microenvironment (TME). 
Our recent studies indicate that the TKI mediated inflammatory phenotype is not restricted to normal 
epithelial cells, but also occurs in lung carcinoma cells in response to TKI treatment[34]. We observe that 
oncogenic EGFR and ALK cause a suppression of an IFN like inflammatory response, as evidenced by 
marked induction of both pro-tumorigenic (IL6, TGFB2) and anti-tumorigenic (CXCL10) chemokines and 
cytokines following treatment of lung cancer cell lines with oncogene specific TKIs [Figure 1]. We also 
detect induction of these genes in on-treatment patient lung tumor samples. This IFN-like inflammatory 
response is not unique to EGFR inhibitors as it also occurs in response to crizotinib in EML4-ALK positive 
lung cancer cell line models. Thus, the literature and our preliminary data support a hypothesis that RTKs 
actively suppress inflammatory pathways, both in settings of normal tissue homeostasis and in cancer 
cells. Moreover, oncogene targeted agents may lead to recruitment of innate and adaptive immune cells for 
participation in the tumor response.
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Figure 1. Induction of an inflammatory phenotype in response to RTK inhibition in normal epithelia and carcinomas. RTK: receptor 
tyrosine kinase; NK: natural killer 



Treatment with oncogene specific TKIs induces tumor/epithelial cell-autonomous expression of MHC class 
I and II involved in antigen presentation, CXCL10 involved in effector immune cell recruitment and IL6, 
TGFB2 and CCL28 which recruit and activate immune suppressive cell types. This inflammatory phenotype 
represents a normal physiological response in normal epithelial cells and is retained in carcinoma cells 
providing a link between normal epithelial cell homeostasis and tumor therapeutic response. These proteins 
and factors are postulated to instruct both pro- and/or anti- tumorigenic immune cells and contribute to the 
degree of therapeutic response observed in patients with lung cancer driven by oncogenic RTKs.

In addition to engaging in paracrine communication with the TME through activation of an IFN like response, 
EGFR inhibitors also have the potential to influence immune responses by modulating MHC expression and 
antigen presentation. In the context of cancer immunology, MHC molecules govern interactions between 
tumor cells and CD4 and CD8 positive T cells by functioning as antigen presenting machinery for tumor 
specific antigens. Pollack et al.[29], Kersh et al.[30] and Pollack[31] demonstrated that treatment with multiple 
EGFR TKIs and cetuximab enhanced the induction of MHCI and MHCII seen when primary keratinocytes 
and malignant keratinocyte A431 cells were treated with IFNγ. Skin biopsies from patients treated with 
and EGFR inhibitor also demonstrated an increase in epidermal MHCI expression. This response was also 
observed with erlotinib, cetuximab, and the pan-ErbB inhibitor, dacomitinib, in head and neck cancer cell 
lines[32,33]. Interestingly, this EGFR inhibitor-mediated induction of MHCI was observed in the absence of 
IFNγ. These findings support a role for EGFR not only in immune surveillance via immune cell recruitment, 
but also in immunoediting through increased antigen presentation. 

ROLE OF THE TUMOR IMMUNE MICROENVIRONMENT IN DICTATING IMMUNOTHERAPY 

RESPONSE
Inflammation characterized by expression of genes that drive immune cell infiltration has recently come to 
light as being important in response to immune-oncology (IO) drugs that inhibit the PD1-PDL1 immune 
checkpoint. Clinical benefit has been observed in carcinomas of the lung, head and neck, and skin, however 
patients who are never smokers (i.e., ALK, ROS, and RET positive lung tumors) or whose tumors express 
mutant EGFR, whether PD-L1 positive or negative, have not experienced benefit[35]. In ALK and EGFR 
mutant lung cancer patients whose tumors tested high for PD-L1, overall response rate following durvalumab 
treatment was only 0%-14%. These data suggest that some patients within these cancer subgroups may exhibit 
innate resistance to immunotherapy agents, despite the presence of PD-L1 positivity. To this end, Gajewski 
and colleagues have proposed that T cell inflammation within the TME serves as a superior predictive marker 
of sensitivity to immunotherapy, and that tumors with scant T cell inflammation exhibit poor responses 
consistent with innate resistance[36-38]. In this context, T cell inflammation is associated with activation of 
IFN response pathways. As support of this, Ayers et al.[39] and colleagues report an IFNγ signature that 
predicts response to anti-PD1 better than PD-L1 positivity, alone, across multiple cancers. 

Despite some evidence for modestly increased response rates in early trials with combinations of TKIs 
and IO agents in lung cancer patients, there are tolerability and safety challenges arising as a result of 
severe toxicities[40]. Based on the results of recent trials, combining these two treatment modalities is 
predicted to yield enhanced frequency and grade of on-target side effects. In support of this, the TATTON 
trial [Table 1], a multi-arm phase Ib trial investigating osimertinib in combination with durvalumab in 
patients with EGFR mutant NSCLC, reported an increase in ILD with the combination compared to either 
drug alone[41]. Likewise, the phase I CheckMate012 trial with erlotinib in combination with nivolumab in 
EGFR mutant patients reports incidences of discontinued treatment due to pneumonitis as well as hepatic 
toxicities[42,43]. Furthermore, the CheckMate370 trial, a single arm study to evaluate the safety of nivolumab 
in combination with crizotinib in patients with ALK positive NSCLC, also reported incidence of severe and 
fatal hepatic toxicities[44]. Collectively, the early results from these trials indicate that combining TKIs with 
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immunotherapy exacerbates the frequency and severity of some of the adverse events seen in the clinic, 
especially the inflammation-driven toxicities, pneumonitis, hepatitis, and pulmonary fibrosis. 

The cellular mechanism responsible for less frequent, but more severe TKI-induced adverse events like liver 
failure and ILD is not defined in the literature. We speculate that it may arise from disruption of normal 
epithelial tissue homeostasis and an induction of an innate inflammatory response similar to that observed 
with EGFR inhibitors in epidermal tissues. In support, studies demonstrate that genetic disruption of MET 
in hepatocytes causes an induction of IL6[18]. Livers from hepatocyte-specific MET knockout mice show 
an increase in immune cell populations including infiltrating neutrophils, macrophages, and cytotoxic T 
cells[19]. Inflammatory cytokines also have an established role in hepatocytes, as CXCL10 is found to be 
expressed by hepatocytes isolated from patients with chronic hepatitis C infection and are correlated with 
an increase in lobular inflammation and histological severity[45]. Furthermore, the alveolar epithelium is able 
to contribute to the immune landscape of the lung by generating pro-inflammatory cytokines like CXCL10 
and CCL2 when stimulated with IFNλ[46]. Studies to investigate the effects of gefitinib on airway repair after 
injury demonstrated that mice treated with gefitinib after naphthalene induced airway injury developed 
severe pneumonitis driven primarily by infiltrating neutrophils[47,48]. Bronchial epithelial cells harvested 
from these mice demonstrated an increase in proinflammatory genes. Taken together, these studies suggest 
that TKIs induce an innate inflammatory immune response in epithelial tissues where their RTK targets 
function as dominant signal pathways controlling epithelial homeostasis. Thus, EGFR or MET blockade may 
contribute to adverse events like liver toxicities and ILD especially when combined with presently deployed 
anti-PD1/PD-L1 agents. 

CONCLUSIONS AND PERSPECTIVES
Although induction of clinically graded skin toxicities related to an inflammatory phenotype has been 
classified as an adverse event in cancer patients, we propose that this response represents on-target inhibition 
of a normal tissue homeostasis program in epithelial cells that is retained in their transformed derivatives. 
Importantly, this TKI-induced innate immune response may actually represent a therapeutic vulnerability 
for the tumor. The ability of EGFR and ALK inhibitors to stimulate this response in lung cancers driven 
by mutant EGFR and ALK is clinically relevant considering their poor responses to immunotherapies 
deployed as monotherapies. We propose that oncogenic RTKs such as EGFR, ALK, ROS1, and MET act 
to suppress inflammation mediated by this innate immune response and thereby, actively contribute to 
immune evasion, a hallmark of cancer. Treatment with TKIs counteract this suppression, thereby “releasing 
the brake” on inflammatory signaling pathways and allowing for recruitment of effector immune cells and 
increased antigen presentation [Figure 1]. This provides a mechanism to explain the connection between 
an inflammatory phenotype and response to TKI. Although this TKI mediated release on inflammatory 
suppression represents a novel vulnerability that may be capitalized on by treatment with IO, early 
clinical data indicate that combining TKIs with existing IO exacerbates the frequency and degree of some 
adverse events, especially pneumonitis, hepatitis, and pulmonary fibrosis. This calls for further preclinical 
mechanistic studies to fully understand the impact of TKIs on the crosstalk between the TME and cancer 
cells, as well as the effect on normal epithelial tissue function. 
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Table 1. Combination therapy trials of TKIs and immunotherapy in lung cancer

Study Identifier Type Oncogene Therapy Status
TATTON NCT02143466 Multi-arm phase 

Ib
EGFR Osimertinib + durvalumab, 

savolitinib, selumetinib
Recruiting

CheckMate012 NCT01454102 Phase I EGFR Nivolumab+ erlotinib, chemotherapy, 
ipilimuab

Active, not recruiting

CheckMate370 NCT02574078 Single arm Advanced 
NSCLC (ALK)

Nivolumab+ chemo, first line, or SOC 
(crizotinib) 

Active, not recruiting
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