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Abstract
Artificial intelligence (AI) is becoming increasingly utilized as a tool for physicians to optimize medical care and 
patient outcomes. The multifaceted approach to managing esophageal cancer provides a perfect opportunity for 
machine learning to support clinicians in all stages of management. Preoperatively, AI may aid gastroenterologists 
and surgeons in diagnosing and prognosticating premalignant or early-stage lesions. Intraoperatively, AI may also 
aid surgeons in identifying anatomic structures or minimize the learning curve for new learners. Postoperatively, 
machine learning algorithms can help predict complications and guide high-risk patients through recovery. While 
still evolving, AI holds promise in enhancing the efficiency and efficacy of multidisciplinary esophageal cancer care.
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INTRODUCTION
The treatment of esophageal malignancy is complex and requires coordination among a multidisciplinary 
team including gastroenterologists, medical and radiation oncologists, and thoracic surgeons. Similar to its 
applications in lung cancer, artificial intelligence (AI) and artificial neural networks (ANNs) are increasingly 
used to guide clinicians in all stages of esophageal cancer management, from diagnosis to non-operative 
management and surgical intervention[1-4]. The algorithms are trained on large amounts of clinical data and 
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customized to solve unique clinical problems in all stages of cancer care. From a screening perspective, AI 
has been employed to supplement thorough endoscopic esophageal exams in order to identify premalignant 
and malignant conditions[4]. The utilization of machine learning (ML) with Barrett’s esophagus is in its 
infancy, but the growth of this application is imperative to avoid missed high-risk lesions and interval 
cancers. As more surgeons adopt the robotic-assisted minimally invasive esophagectomy (RAMIE) 
technique, AI is increasingly integrated into the operating room to reduce the surgical learning curve, 
enhance safety and efficiency, and improve postoperative outcomes.  In this review, we will explore the 
current applications for AI in the realm of robotic esophageal surgery, which, while still in its infancy, has 
shown great potential as a tool for esophageal surgeons.

SCREENING AND PREOPERATIVE DECISION MAKING
Screening and early detection of esophageal premalignant lesions is imperative for early endoscopic and 
surgical treatments. AI has been applied to diagnostic upper endoscopies in aiding endoscopists in early 
detection and screening for premalignant and malignant esophageal diseases. Applications include 
computer-aided detection based on endoscopic images, deep learning algorithms of histologic specimens, 
and real-time video analysis. These AI algorithms demonstrate high sensitivity in identifying high-risk 
esophageal lesions and may enhance the traditional esophageal exam using high-definition white light and 
narrow band imaging[5,6]. Miss rates for esophageal adenocarcinoma and Barrett’s esophagus with existing 
biopsy strategies are estimated to be as high as > 20% and 50%, respectively. Narrow band imaging and more 
advanced imaging techniques such as chromoendoscopy have improved diagnostic accuracy for 
endoscopists.  However, they require greater expertise[6]. Deep learning algorithms have shown promise as a 
novel adjunct to endoscopists in identifying high-risk esophageal lesions.

Computer-aided detection systems trained on large subsets of white light endoscopy images were able to 
identify Barrett’s esophagus with exceptionally high sensitivity and specificity with near-perfect localization 
of the disease[7-9]. A similar approach has been applied using ANN analysis of endoscopic videos and yielded 
similar detection rates of esophageal dysplasia[10]. ML algorithms applied to histologic specimen slides can 
identify and differentiate non-dysplastic Barrett’s esophagus, low-grade dysplasia, and high-grade dysplasia 
with > 90% sensitivity and specificity[11,12]. Similar approaches have been applied to the detection of 
malignancy with some neural network systems shown to detect gastroesophageal junction cancer on 
traditional white light endoscopy images with 66% accuracy, compared to an accuracy of 63% when 
analyzed by board-certified expert endoscopists[13]. AI-based tools have also been employed to ensure 
quality and consistency during screening endoscopy by providing automatic image capture and blind-spot 
recognition during screening routine endoscopy. In a randomized controlled trial, 153 patients were 
randomized to include real-time quality improvement system during routine screening endoscopy 
compared to 150 routine controls. In the experimental group, the quality of screening endoscopy was 
significantly improved including an approximate 15% reduction in blind spot rate [95% confidence interval 
(CI) -19.23 to -11.54][14]. This quality improvement system, called WISENSE, employed deep convolutional 
neural networks (DCNN) and deep reinforcement learning (DRL) trained on over 34,000 EGD images to 
classify gastric images into specific sites. Training this model involved first testing DCNN on still images 
and eventually integrating DCNN and DRL for testing on real EGD videos. After this initial training 
process, the system was formally tested in a randomized control trial.

As medical care has become increasingly individualized, AI has been integrated into the medical decision-
making process for staging, prognosticating and treating premalignant and malignant esophageal lesions. 
Current estimations for progression of Barrett’s esophagus and surveillance intervals have been based on 
previously published large studies. In part due to interobserver variability in endoscopic and histologic 
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evaluation, interval cancers have been seen with what would typically be considered “low risk” lesions. As a 
result of this alarming issue, a tissue systems pathology test (TissueCypher Barrett’s Esophagus Test, TSP-9) 
was developed and incorporates AI with biomarkers in an effort to predict the individual’s true risk of 
Barrett’s progression[15]. As patient response to therapy is variable, AI tools can guide multidisciplinary 
treatment plans and optimize patient outcomes. Rice et al., in their study using ML to analyze optimal 
treatment for esophageal cancer, found that 61% of patients who underwent esophagectomy alone received 
optimal treatment. In contrast, only 36% of patients who received neoadjuvant therapy were deemed to have 
received optimal therapy. These estimates were based on random forest technology in a sequential analysis. 
Optimal therapy was classified as the treatment modality that, after survival analysis using patient and 
cancer characteristics, maximized lifetime as measured by restricted mean survival time[16]. Another large 
study on 418 patients with esophageal adenocarcinoma undergoing surgery with curative intent utilized 65 
variables from individualized patient data and used ANNs to predict one- and five-year survival. These 
variables spanned the full spectrum of care from symptoms at presentation to postoperative data such as 
tumor gene expression. Two ANNs were developed and compared against a linear discriminant analysis 
(LDA) to assess accuracy. Their results showed that the ANNs were more accurate than the LDA models 
and were superior to a model based solely on the tumor-node-metastasis (TNM) staging criteria when 
predicting survival[17].

Other groups have used AI to predict a patient’s responsiveness to chemotherapy. Using ANNs, real time 
polymerase chain reaction assays of pre- and post-treatment esophageal cancer specimens were analyzed for 
17 genes in an attempt to predict histopathologic tumor response to chemoradiation. Not only did the 
analysis identify specific independent risk factors in the study population, it also outperformed univariate 
and multivariate analysis in terms of predicting response to treatment. The analysis of these gene expression 
arrays could predict tumor response to traditional neoadjuvant therapy with 85% accuracy[18]. Alternatively, 
ANNs trained on 18-fluorodeoxyglucose positron emission tomography (PET) scans from 107 patients with 
esophageal cancer were able to predict chemotherapy non-responders with > 80% sensitivity/specificity. 
Ypsilantis et al. used an “radiomics” approach where large amounts of quantitative data were extracted from 
pretreatment PET images to compile a tumor phenotype and employed an ANN to learn from intra-tumor 
slices seen on PET scans.  Their model was able to extract PET image representations that could predict 
non-responders to treatment with 80.7% sensitivity and 81.6% specificity[19]. Oftentimes, non-responders to 
neoadjuvant chemotherapy have a worse prognosis compared with those individuals treated with upfront 
surgery[19]. This study highlights the potential use of AI in non-invasively predicting cancer treatment 
response which would allow for a more personalized approach to esophageal cancer patients.

INTRAOPERATIVE AND POSTOPERATIVE SURGICAL CARE
From a surgeon’s perspective, there are a number of hypothesized uses for AI applications to current 
surgical techniques including intraoperative support, surgical training, and postoperative care[20]. AI systems 
have potential for intraoperative utility by way of anatomic structure identification. As outlined in a meta-
analysis by Anteby et al., ANNs have shown the ability to harness unlabeled laparoscopic footage to achieve 
precise tasks such as anatomy detection, instrument identification, action recognition, and surgical phase 
categorization[21]. Analysis of ANN performance in quantifying data from laparoscopic videos showed 
sensitivity as high as 95%, with a limitation being the heterogeneous nature of their pooled data from 
multiple different procedure types[22].

Similar techniques have been applied to RAMIEs where ANNs were trained to identify key anatomic 
structures including the azygos vein, superior vena cava, aorta, lung parenchyma, or the recurrent laryngeal 
nerve[22,23]. Sato et al. created an AI model to identify the recurrent laryngeal nerve after training on 2,000 
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static images extracted from 20 operative recordings. In each image, the recurrent laryngeal nerve was 
labeled by expert thoracic surgeons. Using the Dice coefficient to assess performance, the AI model 
outperformed general surgeons in identifying the recurrent laryngeal nerve and was only slightly less 
accurate than expert thoracic surgeons (Dice coefficient 0.58 vs. 0.62)[23]. The previous studies highlight real-
time, autonomous intraoperative anatomical segmentation as a promising application for AI systems. While 
further research is undoubtedly necessary, existing literature suggests a strong potential for the expansion of 
AI and deep learning applications in the realm of robotic thoracic surgery.

AI has been utilized to minimize the steep learning curve of robotic surgery and bridge the gap between 
inexperienced and experienced surgeons. One study, which used Temporal Convolutional Networks for the 
Operating room (TeCNO), sought to develop an AI-based phase recognition system for RAMIE[24]. Video 
was incorporated from 31 RAMIE procedures and κ-fold cross-validation to train their model to recognize 
nine pre-determined surgical phases. By analyzing intraoperative recordings, their model was able to 
identify RAMIE phases with 84% accuracy.  For trainees, automatic phase recognition provides objective 
data about surgical timing and efficiency for streamlined review and teaching. Intraoperatively, this 
information can be used to alert support staff to an operation’s current goals or needs. Automatic phase 
recognition is likely the first step in making truly autonomous platforms and sets the foundation for 
innovation and future robotic applications.

Postoperatively, there are multiple ML models that have been developed to predict patients at risk for 
complications following esophagectomy. ML algorithms can predict anastomotic leak rates with high 
sensitivity based on various patient characteristics with an area-under-the-receiver-operator curve (AUC) of 
0.72-0.87[25,26]. Another model based on over 2,000 esophagectomy patients could predict early readmission 
with AUC of 0.72-0.74[27]. In a study of 864 patients with distal esophageal adenocarcinoma undergoing 
Ivor-Lewis Esophagectomy, an ANN was developed to predict clinically significant complications based on 
Clavien-Dindo classification. Based on 96 variables encompassing all phases of care, this model could 
predict Clavien-Dindo IIIa and above complications with an AUC of 0.67. It was also capable of 
discriminating between medical and surgical complications with AUCs of 0.70 and 0.66, respectively[28].

CONCLUSION
AI has emerged as a compelling tool for endoscopists, medical oncologists, and thoracic surgeons in the 
management of premalignant esophageal conditions and esophageal malignancy. While still in its infancy, it 
is clear that it will play an important role in assisting surgeons to complete RAMIEs safely and efficiently. 
Additionally, the multidisciplinary nature of esophageal malignancy offers multiple avenues for AI and 
ANN implementation including computer-aided detection on screening/surveillance endoscopy, predicting 
rates of progression of premalignant esophageal lesions or forecasting responses to medical-oncologic 
interventions. AI will be an important adjunct in optimizing patient outcomes by implementing predictive 
algorithms regarding preoperative and postoperative care. In concert with ongoing developments in robotic 
surgical platforms, current ML systems have set the foundation for future surgical innovation, which will 
continue to shape the field of thoracic surgery.
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