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Abstract
Polarization has a significant impact on chemical reactions, as demonstrated by recent research of photo-
/electrocatalytic water splitting, electrocatalytic CO2 reduction, water treatment, dye degradation and so on. This 
review summarizes the fundamental influence of polarization on the physical/chemical properties of catalysts and 
discusses polarization-dependent catalytic processes. Based on the research progress of polarization-modulated 
chemical reactions, we draw the conclusion that the control of polarization can be used to adjust the reactivity and 
selectivity of various catalytic reactions by tuning the miscellaneous fundamental properties of polarized catalysts. 
At the end of the review, the future research challenges are also discussed, including the ultrafast reversal of 
polarization, the magnetic-field control of chemical reactions through the magnetoelectric effect and in-plane 
polarization.

Keywords: Polarization reversal, electrocatalysis, water splitting, photocatalysis

INTRODUCTION
Chemical catalysis, which can convert reactants into desirable chemical products, has attracted extensive 
research attention in recent years due to its potential for alleviating air pollution and the urgent energy 
crisis. Numerous catalysts have been proposed for CO2 and N2 reduction, water splitting and so on. 
However, the catalytic activities and efficiencies of these catalysts remain far from the required standards for 

https://creativecommons.org/licenses/by/4.0/
https://microstructj.com/
https://dx.doi.org/10.20517/microstructures.2021.14


Page 2 of Ju et al. Microstructures 2022;2:2022008 https://dx.doi.org/10.20517/microstructures.2021.1417

practical applications due to the intrinsic constraints from the Sabatier principle and the adsorption scaling 
relationship, which can be evaluated with scanning probe microscopy by visualizing the surface properties 
and localized electrochemical activity[1].

For non-polarized catalysts, external stimuli, such as strain deformation, surface passivation and electric 
fields, have been proposed to improve catalytic performance but the upper limit of efficiency imposed by 
the linear scaling relation cannot be lifted. In contrast, in polarized materials, such as ferroelectrics, 
pyroelectrics, piezoelectrics and their associated composites materials (see Figure 1A), the adjustment of 
polarization is considered as one of the most promising methods to break the upper limit of efficiency and 
boost catalytic activities. Similar to the influence of external electric fields on the gas adsorption/desorption 
behavior of field-effect transistor sensors, which is realized by adjusting the electron transfer between the 
gas and substrate at the interface[2-4], the electric spontaneous polarization in polarized catalysts can tune the 
adsorption behavior of reactants, intermediates and products in the same manner. It has been predicted that 
the adsorption intensity of ionic species at the catalyst surface can be incremented by polarization of the 
material, where the adsorption behavior of polar species is dependent on the polarization direction[5-7]. In 
addition to changing the interfacial electron transfer, the polarization transformation inevitably results in 
reconstruction, namely, the rearrangement of the electric domain orientation. This provides an opportunity 
to break the adsorption scaling relationship. Thus, the physicochemical reactivity is dependent on the 
structural domain orientation and the surface polarization in the potential of the material[8-10], which can 
adjust the electro- and photocatalytic performance.

In addition to the remarkable impact on the adsorption behavior, the electron-hole separation of catalytic 
materials is also significantly influenced by the electric spontaneous polarization[11,12]. With regards to 
photocatalysis, the polarization allows for good separation of the light-excited charge carriers to optimize 
the efficiency of catalysis[13,14], as demonstrated in organic photovoltaics, where ferroelectric polymers were 
used to promote charge separation and improve the overall efficiency of the cell[15,16]. Similar phenomena 
were observed in the polarization-modulated photocatalytic activation and photovoltaic conversion of 
tetragonal BaTiO3 (BTO)[12,17]. The chemical interaction between the reactants and the catalyst in 
electrocatalysis can be influenced as a result of polarization[18]. For example, poled Bi0.5Na0.5TiO3 (BNT) was 
found to be a superior catalyst for the oxygen evolution reaction (OER) with better performance than that 
of the unpoled material[19]. A positive polarization causes the Tafel slope to decline from 85 to 39 mv/decade, 
with a threefold increase in mass activity. The intensely improved OER activity of the polarized specimen 
can be ascribed to the proper Schottky barrier and flat-band potential between the electrolyte and electrode, 
which govern the OER performance and can be tuned by remnant polarization. In Janus transition metal 
dichalcogenides, an enhancement in catalysis responsiveness and selectivity was found, as their surface 
stoichiometry, reaction activation and adsorption intensity were dramatically regulated by their 
polarization[20].

As well as adsorption behavior and charge separation [Figure 1B], some other physical and chemical 
properties of catalytic materials are also remarkably influenced by electric spontaneous polarization and 
therefore enable tunable chemistry on poled surfaces[21,22]. Inspired by the promising potential of 
polarization-driven catalysis, in the present review, we briefly highlight recent research progress in this 
important field. The strategies to control and characterize polarization are first introduced. We then review 
the research progress for the polarization-driven catalysis of water splitting, CO2 reduction, dye degradation 
and redox reductions. Further challenges and possible research directions are discussed in the final section. 
This review provides an overview of polarization-driven catalysis and is anticipated to inspire experimental 
demonstrations in the near future.
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Figure 1. Schematic illustration of (A) polarized materials and (B) polarization-driven catalysis involving polarization-dependent 
fundamental properties and catalytic reactions.

STRATEGIES TO CONTROL AND CHARACTERIZE POLARIZATION
Ferroelectric, piezoelectric and pyroelectric materials are traditional polarized materials. In ferroelectric 
materials, there is a spontaneous polarization that can be reversed or reoriented with an external electric 
field[23]. Similarly, a voltage will appear between their two ends of the piezoelectric materials, when they are 
subjected to pressure[24]. With regarding to pyroelectric materials, their internal spontaneous polarization 
temporarily changes with a change in temporal temperature[25]. Consequently, polarization (including its 
magnitude and direction) in these materials can be controlled by external electric fields[26-28] or other 
physical stimuli, such as temperature[29], force[30-32], ultrasonic waves[33] and optical pulses[34,35]. According to 
X-ray photoelectron spectroscopic binding energy shifts, charge-sensitive states on materials can be 
derived[36]. Therefore, X-ray photoelectron spectroscopy is capable of characterizing the polarization of 
surfaces of free ferroelectric thin films[37-42].

Recently, surface chemical engineering in specific chemical environments has been utilized to control the 
polarization orientation in experimental works[43-46]. Since surfaces are freely available for structural 
reconstruction, they can be in chemical equilibrium in a managed environment. Polarization in bulk can be 
varied according to the compensation of surface ions, similar to the case with an applied voltage. This can 
be explained by the fact that, as shown in Figure 2A-C, when a positive/negative charge is applied to the top 
of the thin film, the double-well free energy becomes unsymmetrical. The polarization orientation is 
inverted if the surface charge has the same polarity as the bound charge[47]. Hereinafter, some recent 
research works are presented for controlled polarization by surface chemical engineering.

BTO films
The adsorption of water was found to have a significant effect on the out-of-plane polarization of ultrathin 
films according to both theoretical and experimental results[43,48]. For example, Deleuze et al.[48] found that 
water adsorption has the ability to reverse the polarization of ultrathin BTO films. Interestingly, different 
behaviors were observed on opposite surfaces. Water molecules were dissociated spontaneously at the 
surface of the BaO end and the downward polarization domain was stabilized, irrespective of the original 
polarization. In contrast, at the TiO2-terminated surface, the interference of water with the TiO2-terminated 
surface always results in a domain that has an upward polarization. From theoretical studies of BTO (001) 
plates grown epitaxially on a Pt (001) surface, it was found that the stability of the ferroelectric plates could 
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Figure 2. (A) Initial domain structure of 30 nm thick PZT thin film without surface charge and (B) its corresponding double-well total 
free energy. (C) Evolution of domain at different densities of positive and negative surface charges[47]. (D) Polarization of BFO switched 
from upward/downward to downward/upward after adsorption of four H and two OH radicals. (E) Density functional theory 
simulations showing displacement of Fe and O atoms along the Z-axis of the BFO surface with the adsorption of four H and two OH. (F) 
Scanning transmission electron microscopy images of BFO thin film, including the pristine state and the case of contact with Milli-Q 
water and an acidic solution[43]. (G) Variations of electrostatic potential difference as a function of armchair and zigzag strains in WSSe 
monolayer[20]. (H) Variations of electrostatic potential difference as a function of size for WSSe armchair nanotubes[55]. 
PZT: Pb(Zr0.2Ti0.8)O3; BFO: BiFeO3.

be improved compared to paraelectric plates. Because of the Pt-O bond, the local polarization of the 
Pt/BaTiO3 interface was altered and that of the central unit cell increased[49].

BiFeO3 films
In addition to BTO films, similar phenomena have also been found in BiFeO3 (BFO). The downward 
ferroelectric domains are spontaneously inverted to the original upward state when an initially upwardly 
polarized BFO film (5 × 5 μm2) with downward ferroelectric domains is introduced to a drop of aqueous 
solution (Milli-Q water, pH = 7), as verified from in-situ piezoresponse force microscopy images[50]. 
Tian et al.[43] reported that the reconstructed chemical bonding on the surface of ferroelectric BFO in an 
aqueous solution results in reversible polarization switching, due to the adequate formation of chemical 
bonds on its surface that is polarization selective. As shown in Figure 2D, OH- and H+ are preferentially 
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adsorbed by the BFO surface with downward and upward polarization, respectively. First-principles 
simulations showed that when H and OH come into contact with O and Fe in the energetically favorable 
FeO2 plane on the BFO surface[51], ionic reactions occur to build M-O-H bonds, resulting in the atomic 
displacement of the Fe ion relative to its original state, as shown in Figure 2E. Structural analysis using 
annular bright-field high-resolution scanning transmission electron microscopy around the BFO surface in 
Figure 2F further confirms this surface atomic displacement and it could be obviously observed that the Fe 
atoms move upward (downward) as soon as they are exposed to an acidic (water or alkaline) aqueous 
solution. This drastic atomic displacement suggests a directional reversal of the polarization of the surface.

Pb(Zr0.2Ti0.8)O3 thin films
For ferroelectric-based heterojunctions, the orientation of the polarization depends on the doping or charge 
state of the substrate, so the polarization state can be modified via the substrate[52]. For thick layers 
(> 200 nm), a poor compensation of the depolarization field of Pb(Zr0.2Ti0.8)O3 thin films is reported to form 
180° domains where the pyroelectric coefficient decreases strongly[53].

Janus transition metal dichalcogenides
Janus transition metal dichalcogenides, as new polarized materials, have attracted intensive research interest 
due to their promising applications in energy conversion[54]. These materials have intrinsic polarization 
caused by structural asymmetry, which can improve the spatial separation between carriers. Intriguingly, in 
our recent work, we found that both tension and compression strain is able to enlarge the polarity of layered 
Janus transition metal dichalcogenides, according to the variation of the electrostatic potential difference 
between the two respective surfaces with the external force [Figure 2G][20]. When they are rolled into 
nanotubes with a small diameter, the polarization can also be enhanced, as illustrated in Figure 2H[55].

POLARIZATION-DEPENDENT CATALYTIC REACTIONS
As discussed above, catalytic performance is affected by polarization due to the synergistic effects of 
multiple factors, including light adsorption, charge separation, band alignment, adsorption strength and so 
on. The impact of polarization should be universal, as has been demonstrated from photo- and 
electrocatalytic works. In the following sections, we present several typical research works on catalysis and 
emphasize the role of polarization.

Water splitting and wastewater treatment
Hydrogen is expected to make a significant contribution as a near-future source of renewable energy 
because of its high energy density and low greenhouse gas emissions, thereby making it an attractive 
alternative to fossil fuels. At present, water splitting is the main approach for H2 generation. Furthermore, 
wastewater treatment also plays a vital role in the sustainable development of natural resources, including 
the protection of public health and the environment. For both water splitting and wastewater treatment, the 
polarization of catalysts is an important factor in determining their performance. Tunable polarization (in 
both magnitude and direction) enables the switching of surface chemistry[7,11,56,57]. The underlying reason for 
this is that the polar surfaces of catalysts have different electrostatic energies, which facilitate the attraction 
of positively polarized surfaces to negative radicals and negatively polarized surfaces to positive radicals[9].

Water splitting: For electrocatalytic water splitting, theoretical work based on PTO showed that the 
splitting of water into oxygen and hydrogen is possible by thermally cycling a ferroelectric above and below 
its Curie temperature (Tc) when it is exposed to water molecules[57]. This hypothesis has been demonstrated 
by using pyroelectricity as an extrinsic charge source to generate a potential difference for water 
splitting[58,59]. Recently, it was revealed that hydrogen generation is possible merely by placing a pyroelectric 
material in direct contact with water and applying a cycle of heating and cooling[60,61]. Thuy Phuong et al.[62] 
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reported enhanced water splitting via piezocatalysis in BaxSr1-xTiO3 by ultrasonic excitation at its Tc, as 
shown in Figure 3A. This material displays the maximum and most pronounced piezoelectric constraint at 
around Tc (see Figure 3B), which is beneficial for raising the electronic quantity for H2 generation[62]. Due to 
the synergistic effect of polarization-induced advantages (decreased flat-band potential and increased 
Schottky barrier height), the OER performance of poled BNT was found to exceed that of unpoled BNT[19]. 
Furthermore, Kim reported the conceptual proposal of an ON-OFF toggleable HER catalyst with two-
dimensional ferroelectric In2Se3. As displayed in Figure 3C, with vertical stacking of the basal plane of In2Se3 
on top of cobalt, they found that the reversible polarization switching from polarization down to up in the 
In2Se3 monolayer could convert the HER activation of the heterostructure to the “ON” (ΔGH* < 0.2 eV, ΔGH* 

is the free energy of atomic hydrogen adsorptions) and “OFF” (ΔGH* > 0.2 eV) states, respectively. 
Furthermore, convertible HER activity was also found even with the stacking of In2Se3 bilayers on Co 
plates[63].

For photocatalytic water separation, polarization may significantly affect the reaction efficiency because, as 
recently demonstrated, the electronic properties allow for good tuning by ferroelectric polarization[64-68]. The 
two-dimensional M2X3 (M = Al, Ga, In; X = S, Se, Te) family that has emerged recently, together with Janus 
transition metal dichloride, has proven to be suitable for overall water splitting, owing to the presence of 
vacuum level differences and redox potential shifts on the two respective surfaces. The polarization itself 
may result in separation in the space of the photogenerated carriers[69]. Moreover, an intrinsic dipole 
contributed to alleviating the band gap (1.23 eV) limitation on water splitting under the reaction 
mechanism suggested by Li et al.[70]. This implied that there is also an opportunity for polar semiconductors 
in the narrow band gap to be compatible with the redox level of water, which makes it possible to use visible 
or even infrared light for photocatalytic water splitting. The improvement of solar to hydrogen efficiency 
comes mainly from the intrinsic spontaneous polarization, according to the analysis above.

More interestingly, on the basis of the oxidation reduction potential analysis, we found that the 
photocatalytic activities of AgBiP2Se6 monolayers can be well adjusted by the ferroelectric-paraelectric phase 
transition[71]. In particular, the FE phase with a higher oxidizability is considered as a promising 
photocatalyst for water oxidation, while the PE phase with stronger reducibility is more suitable for the 
hydrogen reduction reaction. It was also found that the ferroelectric switch can also regulate the exciton 
binding energy of ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se) monolayers, i.e., the exciton binding energy is 
always smaller in the PE state than in the FE state[71].

In addition, Ortiz et al[72]. reported that the efficiency of hydrogen production using hot electrons produced 
on plasmon particles was increased by nearly an order of magnitude for gold nanorods (AuNRs) deposited 
with ferroelectric PTO particles in comparison with metallic Pt-AuNR catalysts. The underlying reason for 
this was that the remnant electric dipole moment of the PTO particles made the hot charges in the Pt-
AuNR-PTO composite inject into the PTO region to drive the photocatalysis reaction, as presented in 
Figure 3D[72].

Water treatment: Membrane techniques are widely applied in wastewater treatment. However, for most 
commercial membranes, there is a trade-off between selectivity and permeability[73,74]. Pu et al.[75] 
demonstrated that charged membranes, realized by assembling charged BTO nanoparticles with interfacial 
polymerization, could solve this issue. They found that, polarized ferroelectric membranes (TFN-mBTO-E) 
exhibit increased permeability in comparison with common membranes and unpolarized TFN-mBTO 
membranes (2.4 and 1.5 times) and a ~97% favorable rejection rate as a result of both a hydrophilicity 
enhancement and a surface electronegativity increase due to the ferroelectric charge (see Figure 3E). 
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Figure 3. (A) Schematic of cavitation effect of BaxSr1-xTiO3 ferroelectric particles in the presence of ultrasound. (B) Effect of Curie 
temperature Tc on polarization[62]. (C) Hydrogen evolution reaction (HER) free energy diagrams at zero potential over diverse Co-In2Se3 
heterojunctions. (D) By binding AuNRs with ferroelectric PTO pellets, which possess greater remanent electric dipole moments, the hot 
charges produced on the plasma particles are able to pump into the ferroelectric material and actuate the photocatalytic HER[72]. (E) 
Ferroelectric membrane for water purification to reject arsenic[75]. (F) Schematic of the markedly improved piezoelectric photocatalytic 
ability of BTO nanowires to degrade the environmental aspects of an organic dye[82]. Tc: Curie temperature; AuNRs: gold nanorods.

Ferroelectric membranes offer a new route to concurrently boost water flux and arsenic rejection[75].

Organic dye degradation
The built-in electric field in a polarized material caused by the local charge permits the spatial separation of 
free electron-hole pairs that react further with solubilized oxygen molecules and water in the decomposition 
of organic polymers. Various polar materials, such as Pb(Zr0.52Ti0.48)O3, ZnO, NaNbO3, MoS2 and BTO, as 
catalysts for water splitting and organic contaminant decomposition, have been widely explored[76-81]. 
Liu et al.[82] reported that ultrasonic vibrations can enhance the catalytic activity of BTO nanowires for 
degrading organic dyes via integrating photocatalysis with the piezoelectric-like effect. Ultrasonic vibrations 
not only introduce the production of free charge carriers but also generate an internal built-in electric field 
(polarized charge formation on the catalyst surface) to retard the recombination rate between holes and 
electrons. As a result, more carriers migrate to the surface of BTO nanowires to form ·OH and O2

- radicals 
[Figure 3F]. Thus, the piezoelectric-photocatalytic synergy led to excellent and effective dyestuff 
degradation. The degradation rates were 1.28 and 2.24 times higher than those of piezoelectric catalysis and 
photocatalysis alone, respectively[82].

In a polarized system of C/Bi/Bi2MoO6, the non-centrally symmetric arrangement of ionic groups renders 
one edge (C+ area) with a positive charge and the other edge (C- area) with a negative charge, thereby 
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creating a self-polarized field from the C+ to C- areas. Following an electrolysis analysis, a uniform 
distribution of the polarization field was found with e- and h+ on the C+ and C- edges, respectively, which 
facilitated the separation of bulk charge. Profiting from the effect of polarization, a significant improvement 
in the photocatalytic performance of the material was achieved[83]. A study of the impact of polarization on 
the photodegradation of Rhodamine B from KNbO3 (KNO) nanoparticles was conducted by Fu et al.[84]. 
High-quality KNO samples can be polarized under varying electric fields and the measured changes of 
piezoelectric coefficients from XRD clearly indicate the increased strength of ferroelectric polarization. 
Because of the strengthened internal field, the photoluminescence lifetime and photodegradation rate after 
the polarization were significantly enhanced. These are the possible factors to explain the enhanced 
photocatalytic behavior of the polarized KNO samples in terms of the increased internal electric field.

Polarization-controlled CO2 reduction
Escalating worldwide fuel costs and their negative environmental impact are the main human development 
priorities of the 21st century[85-91]. As a result of the overuse of shale fuels, there are serious threats to human 
health from the greenhouse effect. The development of technologies that can turn greenhouse gases (i.e., 
CO2) into renewable and environmentally clean sources of energy is greatly desirable.

As shown in Figure 4A, a sustainable electrochemical approach to reduce CO2 to carbon-based products 
using renewable electricity as an input has drawn significant research interest[86]. Experimentally, various 
materials, such as elemental metals, metal oxides/hydroxides, alloys, carbon-based materials, chalcogenides, 
metal/covalent organic frameworks and molecular catalysts, have been studied for the electrochemical CO2 

reduction reaction (eCO2RR)[92-97]. Although significant progress has been made in recent years, the eCO2RR 
systems currently available are not sufficient for industrial demands due to large overpotentials and poor 
product selectivity[98]. Reliable electrocatalysts and effective control means are essential for accelerating the 
sluggish eCO2RR and improving product selectivity.

Recently, through first-principles simulations, six ferroelectric catalysts consisting of transition metal atoms 
anchored on In2Se3 monolayers were determined. As shown in Figure 4B, their catalytic properties for the 
eCO2RR can be governed by a ferroelectric switch, which can tune the occupation and d-band center of the 
supported metal atoms. The activation related to polarization permits an effectively controllable limiting 
potential, reaction pathway and final product. As displayed in Figure 4C, the most favorable path for the 
eCO2RR on the surface of Nb@In2Se3 with downward polarization is CO2* → OCHO* → OCH2O* → 
HOCH2O* → O* → OH* → H2O*, producing methanol with a limiting potential of 0.64 eV. In sharp 
contrast, on the surface of Nb@In2Se3 with upward polarization, the eCO2RR path is CO2* → OCHO* → 
HOCHO*, producing methanoic acid with a limiting potential of 0.58 eV. Intriguingly, the ferroelectric 
switch could even reactivate the catalysis CO2 reduction stuck on Zr@In2Se3. As shown in Figure 4D, due to 
the extremely strong binding strength of the intermediate HOCHO*, a further hydrogenation step is 
forbidden on Zr@In2Se3 with upward polarization (ΔG = 2.33 eV). When the polarization direction is 
reversed from up to down in this step, the barrier greatly decreases (ΔG = 0.61 eV), reactivating the catalytic 
reduction process. The reasonably low limiting potential and distinctive ferroelectrically manageable CO2 
catalytic properties on the atomically dispersed transition metal on In2Se3 significantly differentiates it from 
conventional single-atom catalysts and creates a pathway to improve the catalytic efficiency and selectivity 
for highly efficient and well-controlled electrochemical eCO2RRs[99].

General redox reactions
Photoreduction of Ag+ and photooxidation of Pb2+: The spontaneous polarization of domains in 
ferroelectric materials has been employed to separate photogenerated holes and electrons in space, thereby 
decreasing recombination and enhancing the photochemical reaction efficiency. Song et al.[100] investigated 
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Figure 4. (A) CO2-neutral energy cycle through electrochemical reduction using renewable electricity sources[86]. (B) Schematic 
diagram of ferroelectric controllable eCO2RRs. The α-In2Se3 monolayer anchored by a single metal atom is positioned across the 
electrodes for the reversal of polarization and controlled catalysis, which is tuned by reversing the bias orientation[99]. Free energy 
curves following the minimum energy route at 0 V (vs. RHE) for the eCO2RRs on (C) Nb@In2Se3 and (D) Zr@In2Se 3. *Stands for the 
active site. The inset illustrates the optimal shape of the intermediate. The shaded area in pink (light purple) denotes the catalytic 
reaction when the polarization is up (down)[99]. eCO2RRs: Electrochemical CO2 reduction reactions.

the influence of polarization on the photochemical reactivity for Ag+ photoreduction and Pb2+ 
photooxidation on a BTO (001) surface. By measuring the photochemical reactivity of domains with 
different polarization directions, they found that the reduction reactivities of domains with the 



Page 10 of Ju et al. Microstructures 2022;2:2022008 https://dx.doi.org/10.20517/microstructures.2021.1417

perpendicular polarizations were about three times greater than the one parallel to the surface, while only 
the oxidation reactivities of domains with perpendicular polarizations were reactive. They concluded that 
for the photoreduction of Ag+, the size of the out-of-plane polarization was not as important as its sign, 
whereas for the photooxidation of Pb2+, not only the sign, but also the size of the polarization was 
important[100].

Direct oxidation of CH4 to CH3OH: Based on density functional theory simulations, Kakekhani et al.[11] 
investigated the polarization associated interaction between stoichiometric Pb-terminated PTO and 
methane. While the reduced surface with the positive polarization does not interact with CH4, the oxidized 
surface with the negative polarization, intensively reacts with CH4 and alters CH4 oxidation to CH3OH. An 
energy barrier of ~1.1 eV is calculated for this reaction. However, the binding energy of CH3OH with the 
residual surface is negligible (< 0.1 eV), indicating that it can easily desorb. Therefore, it is feasible to oxidize 
CH4 to CH3OH via cycled polarization of the PTO surface.

SO2 oxidation to SO3: In addition to CH4, the oxidation of SO2 is also polarization-dependent, as evidenced 
by the interaction between SO2 and stoichiometric Pb-terminated PTO[11]. SO2 interacts with the surface 
with positive polarization vigorously. The binding energy is much smaller for different adsorption 
configurations in the case of paraelectricity. On the surface with negative polarization, SO2 takes one of the 
surface oxygens away to form SO3. Therefore, it would be more appropriate by describing this configuration 
as an SO3 molecule on a surface with an oxygen vacancy. The calculated binding energy as negative and 
small implies that SO3 is easily desorbed. Therefore, the negative polarization of random PTO exposed to 
SO2 molecules may boost the formation of SO3

[11].

NOx direct decomposition on PTO: Kakekhani et al.[11] reported that at reasonably low coverage 
(≤ 0.25 ML), both NO and NO2 favor the dissociation and formation of bound N and O on the surface of the 
positively polarized PTO. Two such N atoms couple to create N2 molecules, which are weakly bonded and 
desorb from the surface, yet the surface is poisoned by the powerfully bonded O atoms. Cleaning the 
poisoned surface with modifying the polarization to paraelectric or negative is recommended. Through this 
approach, the oxygen adsorption becomes weaker to form an O2 molecule, which then leaves the surface. 
Once being cleaned, by bringing the surface back to positive polarization, the surface can be prepared for 
the next cycle. Based on the finding, it is possible to perform the entire decomposition reaction of 2NO2 → 
N2 + 2O2 or 2NO → N2 + O2 by addressing the positive polarization for the reduction part of the reaction 
(NO/NO2 reduction) and the negative/paraelectric for the oxidation part (O + O → O2)[11].

FUTURE CHALLENGES
Even polarization has shown a significant impact on catalytic performance and is regarded as the promising 
approach to boost activity and efficiency. However, there remain many unsolved problems and challenges, 
which require urgent and comprehensive investigations in the near future. Several possible research 
directions are listed and discussed below.

Ultrafast reversal of polarization
According to the conventional transition state theory[101-103], the reaction time τ for one step in a redox 
reaction can be roughly expressed as:
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where T, KB, E* and ω are the reaction temperature, Boltzmann constant, energy barrier and attempt 
frequency, respectively. For an ideal reaction, the reaction temperature is room temperature (300 K) and the 
energy barrier is less than 0.1 eV. The ω is selected to be 1013 s-1[104,105]. Hence, the reaction time is on the 
picosecond time scale. To use polarization reversal to accelerate a reaction, the speed of this reversal process 
needs to be ultrafast, faster than the ideal reaction speed at least. However, the polarization reversal duration 
via the usual static or pulsed electric fields is around hundreds of picoseconds[106]. There have been some 
suggestions to toggle the polarization on the picosecond time scale through direct excitation of the 
ferroelectric mode using ultrashort radiation pulses[107-109] or stimulation of the electronic subsystem by light 
pulses[110]. The frequency adjustable range of high-intensity far-infrared electromagnetic field sources is too 
low. Nevertheless, these effects are by no means so high as to permit switching of the polarization via 
resonant pumping of the ferroelectric pattern. Recently, Abalmasov[111] proposed that the polarization can be 
ultimately reversed by a mid-infrared pulse if the depolarizing field is shielded, as in the case of a crystalline 
top metal wire around the pump laser spot (see Figure 5A). More effective theoretical and experimental 
strategies are still needed to achieve the ultrafast reversal of polarization.

Magnetic field control of chemical reactions through magnetoelectric effect
Recently, the magnetic reinforcement of electrocatalytic OER has been reported[112,113], namely, where an 
external magnetic field can improve the OER catalytic efficiency, because it strengths the adsorption of 
oxygen intermediates and electron transfer by enhancing the spin polarization of the catalysts. Furthermore, 
it has been reported that, as shown in Figure 5B, the magnetic field may also alter the polarization of the 
polarized surface in response to strain, an effect termed strain-mediated magnetoelectricity[114,115]. Revised 
polarization states can be believed to lead to reactive modulation. Therefore, a strain-mediated 
magnetoelectric effect in a magnetoelectric sample enables magnetic field control of chemical reactions at 
the polarized surface[115]. For some multiferroic materials (coexistence of ferromagnetism and 
ferroelectricity), both their spin and electric polarizations can be tuned by an external magnetic field. The 
magnetic reinforcement for electrocatalytic reactions may be more obvious, which needs further theoretical 
and experimental verification at a later stage.

In-plane polarization
Until now, most studies of polarization-driven catalysis have focused on tunable polarization with a 
direction perpendicular to the surface. In this case, the depolarization field usually causes electronic and 
atomic reconstruction simultaneously, which change the surface chemistry in complicated ways. Thus, the 
fundamental nature of the chemical properties associated with polarization is still far from being fully 
understood. In contrast, the depolarization fields will be absent for the system with in-plane polarization. 
The chemical properties of the polarized surface can be reflected more intrinsically by the interaction of in-
plane polarization and surface adsorption[116], which may be an important area of interest in this field in the 
future.

Transport polarization
In an electrocatalytic reaction, the electron exchange between the substrate and the loaded catalyst is a key 
electron-dependent step. In addition to the redistribution of electrons necessitated by balanced chemical 
potential, the electron exchange also involves the flow of electrons across the interface at an overpotential, 
i.e., the injection of non-equilibrium electrons under an applied bias. Recently, by means of pulse 
voltammetry and X-ray absorption spectroscopy experiments, Nong et al.[117] discovered the influence of 
non-equilibrium carriers on electrocatalytic activity. On the basis of the electron transport state of a Ni 
cluster/graphene, Bian et al.[118] revealed that high spin polarization can result in electronic self-excitation 
effects, which induced the increased electronic system energy, enhanced reduction reaction 
thermodynamics and facilitated catalytic activity. Research on the electron state changes in the process of 
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Figure 5. (A) Schematic of the screen surrounding the pump laser spot with the top of the crystal (gold color) and a sketch of the 
charge distribution (the free charge is enclosed within the circle)[111]. (B) The out-of-plane polarization (P3) of BTO (001) films is a 
reflection of the in-plane (H1) and out-of-plane (H3) magnetic field strength for different biaxially isotropic in-plane residual strains ε0 
(= ε11 = ε22) [115]. BTO: BaTiO3.

electronic transport facilitates the comprehension of the high electrocatalytic reduction behavior of an iron 
series of electrodes. However, the absence of systematic comparison of thermodynamic and electronic 
structure factors makes it difficult to accurately assess the impact of transport polarization on 
electrocatalysis at present. In future catalyst design studies, transport polarizability needs to be regarded as 
an important performance descriptive factor.

CONCLUSION
In summary, we have reviewed the recent research achievements of polarization-dependent catalytic 
reactions. It has been found that for polarized catalysts, polarization orientation can adjust the reactivity and 
selectivity of various catalytic reactions by tuning miscellaneous fundamental properties, such as the 
electronic and adsorption performance. The effects of polarization on chemical reactivity have been 
demonstrated for water splitting, wastewater treatments, organic dye degradation, CO2 reduction and redox 
reductions, implying the promising potential to utilize the polarization to boost/optimize catalytic activity 
and surface chemistry. Even so, there remain many challenges to utilizing polarization in practical catalytic 
applications, as summarized/discussed at the end of this review.
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