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Abstract
The utilization of uranium (U) fission energy as a high-density, clean power source plays a pivotal role in mitigating 
greenhouse gas emissions. Uranium extraction from seawater exhibits superior environmental friendliness 
compared to terrestrial uranium mining, as it avoids substantial generation of radioactive waste and harmful 
chemicals. However, conventional adsorbents such as fiber, polymer, and biomass materials exhibit slow 
adsorption rates and low ion selectivity. Porous frameworks with large inner surface, full host-guest interaction, 
and site utilization are utilized to improve uranium absorption performance. Consequently, devising and 
synthesizing materials that enable efficient and cost-effective extraction of U(VI) from seawater poses a 
formidable challenge. Recently, there has been a considerable surge in academic interest regarding the synthesis 
and design of porous frameworks. By integrating experimental data, spectroscopic analysis, and theoretical 
calculations, we have conducted an extensive investigation into the actual performance, underlying principles, and 
practicality of conventional materials (such as fibers) and novel porous materials serving as adsorbents, 
photocatalysts, and electrocatalysts for U(VI) extraction from seawater.

Keywords: Uranium, porous aromatic frameworks (PAFs), covalent organic frameworks (COFs), metal-organic 
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INTRODUCTION
Uranium, as an essential component in the nuclear industry, has experienced a surge in demand following
the expansion of the sector[1-3]. Presently, uranium primarily originates from uranium octoxide (U3O8)
within uranium ores[4]. Globally, confirmed accessible uranium-ore reserves exceed six million tons[5], which
is estimated to meet human requirements for approximately a century[6]. However, terrestrial uranium
extraction incurs high costs and substantial environmental pollution[7], highlighting the strategic importance
of identifying and harnessing unconventional uranium resources for the nuclear industry. The vast oceans
harbor abundant chemical resources, with estimated uranium reserves in seawater towering at 4.5 billion
tons[8,9], nearly a thousandfold greater than those on land[10]. Additionally, owing to the high mobility of
seawater, uranium extraction from marine sources poses considerably less ecological impact than terrestrial
mining. Consequently, the advancement of technologies for extracting uranium from seawater is deemed
crucial.

The pH of seawater ranges from 8.0 to 8.3[4], creating an environment conducive to the formation of
uranium complexes with carbonate ions in seawater, mainly uranyl tricarbonate ions ([UO2(CO3)3]4-)[11].
Despite the substantial uranium reserves in seawater, the actual implementation of seawater uranium
extraction remains challenging. The uranium concentration in seawater is extremely low, at only 3.3 ×
10-6 kg·m-3, which is much lower than other coexisting ions[12]. Selective uranium extraction from seawater
depends on materials possessing abundant active sites[13] and a sufficiently large contact area to expose these
surface-active sites. Additionally, these materials must maintain stability and endure prolonged uranium
capture cycles under specific pH, high salinity, competing ions, and microbial corrosion conditions in
seawater[14]. Current technologies for uranium extraction include adsorption[15], photocatalytic reduction[16],
and electrochemical extraction methods[17]. Among them, adsorption technology stands out as the most
viable approach for extracting uranyl ions from seawater and facilitating material recycling through
desorption. The crux of seawater uranium extraction via adsorption lies in the development of uranium
adsorption materials tailored to the seawater environment, boasting high adsorption selectivity,
affordability, stability, and durability. Therefore, experts and scholars are actively pursuing breakthroughs in
the research and development of new adsorption materials. Photocatalytic reduction of uranyl ions[18]

utilizes sunlight as an energy source. Conducted at room temperature, this method considerably cuts down
energy consumption and equipment requirements under high-temperature conditions, thereby reducing
costs. In addition, electrochemical systems can be designed[19] to improve extraction efficiency and purity by
adjusting current and voltage, enabling high-efficiency selective extraction of uranyl ions while reducing
extraction of other elements. The next section of this review will introduce the related research trends and
development prospects from several aspects, such as the characteristics of material types, uranium
adsorption mechanisms, and technological bottlenecks.

[Scheme 1].

Over the last decade, remarkable progress has been made in materials and technologies applicable to
uranium, U(VI), extraction from seawater[20,21]. Herein, the applications of traditional and novel porous
materials in seawater uranium extraction processes such as adsorption[22], photocatalysis[3], and
electrocatalysis[23] are described in detail. This provides an important reference for the future development
of novel functionalized materials and processes. Finally, the challenges and opportunities encountered by
materials and technologies applied in uranium extraction from seawater are comprehensively analyzed

ADSORPTION
Nonporous adsorbents
Fibers
Electrochemically extracted fiber materials exhibit notable characteristics such as water stability, 
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Scheme 1. Technology and material suitable for extracting uranium from seawater.

processability, low cost, and low environmental pollution, rendering fiber-based adsorbents as viable 
technologies widely used for adsorption purposes. In addition, these fiber materials can undergo surface 
modification with functional groups to enhance their specificity and thus improve their adsorption 
properties. For instance, Wang et al. (2018) conducted an amidoximation process on poly(iminodioxime)-
prepared poly(iminodimethylene), yielding poly(imide dioxime) nanofibers (PIDO NFs) boasting abundant 
active sites, high water stability, and favorable mechanical properties[24] [Figure 1A]. These fibers exhibited 
an adsorption capacity of 951 mg·g-1, with excellent performance validated in real seawater tests (8.74 mg·g-1 
in seawater for eight weeks). Similarly, Rostamian [Figure 1B] converted chitin derived from shrimp shell 
wastes into chitosan and spun it to fabricate chitosan nanofibers with a uranyl ion adsorption capacity of 
110 mg·g-1[25]. Additionally, Xu et al. (2020) synthesized poly(amidoxime) (PAO) fiber (AO-OpNpNc) which 
showed a synergistic chelating effect between PAO and uranyl ions as analyzed by extended X-ray 
absorption fine structure (EXAFS) results[26]. In natural seawater, amidoxime (AO)-OpNpNc exhibited an 
adsorption capacity of 17.57 mg·g-1. Wang et al. (2020) [Figure 1C] prepared an amidoximed cellulose 
adsorbent via the post-modification, showing an adsorption capacity of 52.88 mg·g-1[27]. In addition, this 
modified cellulose was transformed into a thin film, achieving uranium adsorption of 1.22 mg·g-1 after 
treating 10 L in dynamic seawater simulations. Ahmad et al. (2020) [Figure 1D] prepared magnetic 
adsorbents incorporating –SO3H and –COOH groups into magnetic tubular nanofibers (FMTnF–SO3H and 
FMTnF–COOH), exhibiting adsorption capacities of 955.7 and 980.4 mg·g-1 for uranyl ions, respectively[28]. 
Seko et al. (2004) employed the amidoximation to prepare AO fiber adsorbents[29]. These adsorbents, when 
drenched with tartaric acid as the desorbent, maintained 80% of their adsorption activity even after five 
adsorption-desorption cycles.

Porous solids can be prepared as fiber materials with large specific surface areas and porous structures, and 
facilitate the modification of functional groups in the skeleton for uranium selective adsorption; meanwhile, 
with high mechanical strength, they occupy an important position in the field of uranium adsorbent 
materials. Although a large number of functionalized polymer fibers have been reported, the performance of 
uranium extraction is still unsatisfactory, and the large-scale application of natural seawater uranium 
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Figure 1. (A) Schematic of the PAN and PIDO NFs[24], Copyright 2018, Wiley-VCH; (B) Schematic diagram of preparing chitosan 
nanofibers from shrimp shell waste[25], Copyright 2019, Elsevier B.V; (C) Preparation for PAO- CFs[27], Copyright 2020, Elsevier Ltd; (D) 
Systematic depiction of the reaction pathway for the preparation of FMTnF–SO3H and FMTnF–COOH[28], Copyright 2020, Elsevier Ltd. 
PAN: Polyacrylonitrile; PIDO NFs: poly(imide dioxime) nanofibers; PAO: poly(amidoxime).

extraction has not been achieved. Future research still needs to carry out the following three aspects: the 
uranium adsorption capacity and selectivity of the materials in the actual seawater system do not meet the 
requirements for large-scale application. Through artificial intelligence technology (such as machine 
learning) to screen the appropriate carrier and modification of functional groups, the synthesis of uranium 
adsorbents with selective complexation capability improves the adsorption selectivity of the adsorbent on 
the uranium; the adsorbents can also be modified through the bifunctional and multifunctional functional 
groups of polymer fibers, or through hybridization with inorganic nano-materials to introduce the surface 
charge, porous structure, or to increase the specific surface, so as to enhance the adsorption capacity of 
uranium. As Long-term immersion in seawater will cause the mechanical properties of fiber materials to 
deteriorate, strong mechanical properties of polymer fiber materials are the key to the scale of application of 
seawater uranium extraction technology. Due to the complicated marine environment, the adsorbent 
materials for uranium extraction from seawater are easily damaged by the microorganisms in the ocean. 
The development of marine antimicrobial fiber materials through the application of functional coatings and 
surface charge assembly can improve the reusability of uranium extraction fiber adsorbent materials, with a 
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view to improving the economy of seawater uranium extraction.

In contrast, membrane technology has become a potential choice for uranium wastewater treatment 
because of its high efficiency, economy, and environmental protection. This technology mainly includes 
microfiltration, ultrafiltration, nanofiltration, and reverse osmosis methods. Among them, ultrafiltration 
and nanofiltration membranes are most commonly used. Ultrafiltration membranes can effectively remove 
uranium ions and radionuclides, and nanofiltration membranes can remove radionuclides, heavy metals, 
and organic matter. At present, membrane technology has made a series of research progress in uranium 
wastewater treatment in the nuclear industry. Firstly, researchers have achieved efficient removal of 
uranium ions and radionuclides by optimizing the selection of membrane materials and regulation of 
membrane separation process parameters. Secondly, the removal of heavy metals and organics by the 
membrane has been improved through the development of new membrane materials. In addition, the use of 
double-layer structure and ceramic materials and other technical means not only improves the stability and 
anti-pollution ability of the membrane but also extends its life. At the same time, membrane technology in 
the nuclear industry uranium wastewater treatment also faces some challenges. The high concentration of 
radionuclides in wastewater can easily cause membrane contamination and reduce the flux and service life 
of the membrane. Moreover, membrane technology has high economic costs and energy consumption in 
large-scale industrial applications, which need to be progressively improved. In the future, researchers can 
advance the application of membrane technology in uranium wastewater treatment in the nuclear industry 
through the following aspects. First, continue to optimize the performance of membrane materials, and 
improve the removal effect of membrane on radionuclides and other harmful substances in wastewater; 
second, carry out basic research on the membrane separation process, in-depth investigation of membrane 
deposition and membrane contamination mechanism, and enhance the stability of the membrane and anti-
pollution ability. In addition, further improve the design of wastewater treatment systems, and improve the 
economy and sustainability of membrane technology.

Polymer
The first amidoximation method was produced by Lossen and Schifferdecker in 1873 by reacting hydrogen 
cyanide with hydroxylamine, effectively interconverting the functional groups of nitrile and hydroxylamine. 
While initially acclaimed for their excellent chelating properties toward metal ions, their widespread use 
remained limited to heavy metal ion recovery, overlooking potential uses in energy and environmental 
applications.

Among various AO-based materials, polymeric adsorbents have been studied and are important adsorbents 
for seawater uranium extraction owing to their resistance to mechanical abrasion, lightweight nature, and 
high plasticity in terms of shape and length. These adsorbents are prepared through suspension 
polymerization by dissolving acrylic wax and vinyl concentrate in a medium-concentration solution, 
followed by dispersion in water. Subsequently, copolymerization of polypropylene eye and polyvinyl 
benzene (AN-CO-DVB) is performed after thermal initiation. Hydroxylamine is then employed to 
functionalize the cyano groups into AO groups. This amidoximation method holds an important position 
in seawater uranium extraction research and continues to be used to this day.

Biomass
Biomass exhibits superior biocompatibility compared to polymers[30]. Some biomass adsorbents are 
inexpensive, chitosan for instance, a biomass with abundant –OH and –NH2 group. However, deficiencies in 
porosity[31] and mechanical properties[32] limit its performance under certain conditions. Therefore, it is 
often modified to enhance capacity and selectivity in specific operating scenarios. Uranium adsorption by 
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the biomass-based material is considerably improved by introducing AO groups to it[33], elevating the 
theoretical maximum adsorption from 117 to 372 mg·g-1.

In the future, biomass adsorbents are expected to exhibit enhanced adsorption capacity and selectivity, 
accelerated adsorption kinetics, increased reusability, and improved antimicrobial and acid-resistant 
properties. Such advancements will enable these materials to thrive in complex marine environments and 
harsh wastewater treatment conditions.

Conventional porous adsorbents
Mesoporous carbon
The hydrophobic surface of the pristine mesoporous carbon material renders it unsuitable for uranyl ion 
adsorption from aqueous systems. Subsequent chemical modification improves the hydrophilicity of the 
mesoporous carbon while imparting uranium adsorption properties to the material. In a successful 
demonstration, 4-aminoacetophenone oxime was grafted onto CMK-5 in a mixed solution of 
o-dichlorobenzene and amyl nitrite to achieve the amidoximation of CMK-5[34]. The presence of the oxime 
groups effectively enhanced the selectivity of the mesoporous carbon to uranium.

Nanotube
Besides mesoporous carbon, halloysite nanotubes (HNTs) can be used for seawater uranium extraction 
studies. HNTs are rich in hydroxyl groups, and their large internal pore size allows for effective 
functionalization. Zhao et al. (2019) [Figure 2] modified HNTs using silane coupling agents, specifically 
vinyltriethoxysilane (VET) and acetylene (AN)[35]. Subsequently, the cyano groups were amidoximized to 
complete the preparation of uranium extraction material, resulting in a two-sided AO structure. In 
simulated seawater containing 8 ppm of uranium, this material exhibited a saturated adsorption capacity of 
295.66 mg·g-1. Furthermore, the adsorption capacities of the material in real seawater after five and 30 days 
of adsorption in filtered seawater were measured to be 5.70 and 9.01 mg·g-1, respectively.

Novel porous frameworks
Metal-organic frameworks
Metal-organic frameworks (MOFs) are long-range ordered crystalline porous materials formed by 
connecting inorganic metal nodes (e.g., metal ions or clusters) to organic connectors via ligand bonds[36,37]. 
Traditional MOF preparation methods include solvothermal, electrochemical, and microwave techniques. 
Notably, MOFs can be precisely tuned and tailored for specific applications, allowing for bespoke structure 
design. For different applications, MOFs are post-modified to obtain specific functionalities by changing 
organic connectors, incorporating specific functional groups[38], or introducing structural defects[39]. In 
addition, leveraging MOFs in conjunction with other materials yields MOF-based nanomaterials with 
enhanced properties. Given these outstanding properties, MOFs hold great potential in seawater uranium 
extraction endeavors.

Su et al. (2018) [Figure 3A] utilized a large amount of Co–OH in zeolitic imidazolate framework (ZIF)-
67(Co) to obtain a high U(VI) removal rate (> 99%) and an ultrahigh adsorption (1,683.8 mg·g-1)[40]. Material 
of Institute Lavoisier (MIL)-101(Cr)[41] exhibits promise in adsorption owing to its high stability to air, 
temperature, and chemicals. Zhang et al. (2016) utilized the open metal sites in MOF-74(Zn) for efficient 
uranyl ion capture (360 mg·g-1), whereas MIL-101(Cr) demonstrated highly selective uranyl ion recovery 
(28 mg·g-1, pH = 3)[42] [Figure 3B]. Modification of MIL-101[43] with amines, ethylenediamine (ED), and 
diethylenetriamine (DETA) yielded MIL-101-NH2 (90 mg·g-1), MIL-101-ED (200 mg·g-1), and MIL-101-
DETA (350 mg·g-1), respectively. Carboxyl-functionalized MIL-101 also showed excellent uranium removal 
(314 mg·g-1). Carboni et al. (2013) synthesized three MOFs (MOF-1, MOF-2, and MOF-3) and explored 



Page 7 of Cao et al. Chem Synth 2024;4:77 https://dx.doi.org/10.20517/cs.2024.47 26

Figure 2. Schematic of the fabrication process of AO- HNTs[35]. Copyright 2019, Wiley-VCH. AO: Amidoxime; HNTs: halloysite 
nanotubes.

their adsorption of U(VI) using amine-TPDC or TPDC-bridged ligands[44]. Among these, MOF-2 
demonstrated optimal uranyl ion removal (217 mg·g-1). UiO-66[45], post-modified with an AO moiety, 
rapidly removed uranyl ions with an adsorption capacity of 2.68 mg·g-1 in 500 ppm simulated seawater 
within 10 min. Meanwhile, MOF-76[46] (298 mg·g-1) and MOF-5 (237 mg·g-1) exhibited potential for uranium 
ion removal. Wu et al. (2019) synthesized iron oxide-ZIF-8 composites, achieving uranium adsorption 
equilibrium in 30 min with an adsorption capacity of 539 mg·g-1[47].

These examples demonstrate the potential and versatility of MOFs for uranium extraction from seawater. 
While MOFs have been extensively studied for U(VI) capture from seawater, attention should be directed 
toward addressing the following aspects to meet practical application challenges: (1) ensuring sufficient 
aqueous and chemical stability; (2) facilitating easy recycling; and (3) lowering synthesis costs.

Covalent organic frameworks
In the past decades, porous frameworks have received great attention for their diverse applications in 
catalysis, gas storage, separation technology, energy conversion, and biomedicine. First reported in 2005, 
covalent organic frameworks (COFs) represent a class of porous organic materials characterized by regular 
network structures. Their unique ability to construct two or three-dimensional network structures from 
predesigned organic monomers via strong reversible/irreversible covalent bonds has propelled them to the 
forefront of materials science research. These unique structural properties endow COFs with high specific 
surface areas, tunable pore sizes, porosity, and specific chemical functionalities. COFs exhibit better thermal 
and chemical stability compared to conventional inorganic pore materials such as zeolites or MOFs. They 
are rich in donor atom groups (S, N, O, and P) such as hydroxyl, carboxyl, AO, amine/imine, amide, and 
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Figure 3. (A) Synthesis of rhombic dodecahedral ZIF-67 microcrystals[40], Copyright 2018, Elsevier B.V; (B) Materials used for 
adsorption and photoswitching storage-release of U(VI) ions[42], Copyright 2017, Elsevier B.V. ZIF: Zeolitic imidazolate framework.

oxime imidazole that can interact with uranyl ions[48].

While COFs can be synthesized directly by selecting structural units containing specific functional 
groups[49], the limited variety of structural unit types often results in few active sites in synthetic COFs, 
which greatly restricts their application in uranium extraction from seawater. Therefore, active sites are 
often introduced into the COF backbone through post-synthesis modification[50] to obtain excellent seawater 
uranium extraction properties. However, the slow rate of functionalized modification and reduced pore size 
pose challenges. Phosphorus heterocycle-based COF (MPCOF), a two-dimensional ultramicroporous 
structure synthesized by Zhang et al. (2016) (MPCOF), exhibits narrow pore size distribution and high 
crystallinity, demonstrating reasonable selectivity for uranium even under strongly acidic conditions[49]. The 
adsorption mechanism mainly involves intraparticle diffusion and size screening effects. Zhang et al. (2018) 
also developed covalent phosphazene-based framework-T (CPF-T), which exhibited notable uranium 
adsorption performance under strongly acid conditions[51] [Figure 4A]. The mechanism is believed to 
involve uranyl ion coordination with five water molecules to form a hydrate, with the pore size of CPF-T 
effectively matching U(VI) uptake. Dp-COF[52], characterized by a unique bicyclic pore structure bolstering 
uniformly distributed carboxyl groups, demonstrates a distinctive affinity and selectivity for U(VI) due to its 
pore size closely matching that of the uranyl ion hydrate. These COFs[48], developed by Bai., use urea, 
thiourea, and thiourea groups, exhibiting a strong affinity for U(VI). The effectiveness of different donor 
atoms (O and S) in these COFs has also been emphasized.
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Figure 4. (A) Schematic of the synthesis of CPF-D and CPF- T[51], Copyright 2018, American Chemical Society; (B) Schematic of the 
synthesis of TpBpy and TpPy[53], Copyright 2021, Elsevier Inc. CPF: Covalent phosphazene-based framework.

Guo et al. (2021) synthesized TpBpy and TpPy [Figure 4B] using 2,2’-dipyridyl-5,5’-diamine (Bpy) and 
pyridyl-2,5’-diamine (Py) as the core skeleton[53]. Both TpBpy and TpPy showed commendable adsorption 
performance for U(VI), with 115.45 and 291.79 mg·g-1. COF-IHEP-1 and COF-IHEP-2, synthesized by Yu 
et al. (2019), efficiently and selectively extracted U(VI), with COF-IHEP-1 demonstrating notable 
adsorption capacity (112 mg·g-1) even in 1 M nitric acid solutions containing numerous competing metal 
cations[54]. Li et al. (2015) synthesized COF-HBI by grafting 2-(2,4-dihydroxyphenyl)benzimidazole (HBI) 
onto COFCOOH via esterification[55]. COF-HBI exhibited an adsorption capacity of 211 mg·g-1 for U(VI) at 
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pH = 4.5. Xiong et al. (2019) prepared [NH4]+[COF-SO3]- enriched in both [NH4]+ and −SO3
- through 

amination of COF-SO3H, achieving an increase in adsorption capacity (851 mg·g-1, 2.4-fold)[50].

These examples highlight the versatility and effectiveness of COF materials for the adsorption of uranyl ions 
across different environments, demonstrating their potential for nuclear wastewater treatment and uranium 
recovery from seawater.

Porous aromatic frameworks
Porous aromatic framework (PAF) materials are novel porous nanomaterials composed of light atoms (C, 
H, O, and N) through irreversible cross-coupling reactions. These materials feature rigid building blocks, 
topologically oriented structures, short-range order, excellent stability, enhanced electrochemical activity, 
and inherent porosity. Therefore, they find extensive applications in adsorption, separation, and catalysis. In 
recent years, several scholars have already applied modified PAFs for uranium extraction from seawater. 
The enhanced uranium adsorption capacity, rapid uranium adsorption kinetics, excellent uranium 
selectivity, and excellent reusability of these modified PAFs underscore their great research potential and 
application value in seawater uranium extraction.

Li et al. (2017) grafted AO ligands onto PAF-1 [Figure 5A] with a stable structure and large surface area, 
resulting in the synthesis of PAF-1-CH2-AO adsorbent capable of capturing uranium up to 304 mg·g-1[56]. 
The maximal uranium capture was confirmed via EXAFS fitting, revealing neighboring AO groups that 
synergistically chelate uranyl ions. Additionally, experimental analysis of PAF-1-CH2-AO in simulated 
seawater (uranium concentration of 7.05 μg·L-1) demonstrated an enhanced uranium capture capacity of 
40 mg·g-1. Aguila et al. (2019) prepared two different adsorbents, PAF-1-NH(CH2)2AO and PAF-1-CH2

NHAO, using identical ligands and substrates but varying chain lengths and grafting degrees[57]. During 
uranium adsorption experiments, both adsorbents exhibited Langmuir model-consistent adsorption data, 
indicating a monolayer adsorption process, with PAF-1-NH(CH2)2AO demonstrating higher kinetic 
efficiency compared to PAF-1-CH2NHAO. The high degree of grafting in PAF-1-NH(CH2)2AO enhances 
the interaction between neighboring AO groups, resulting in strong uranium adsorption and rapid kinetic 
efficiency. While most porous adsorbents functionalized with AO groups are cumbersome and costly to 
synthesize[58], Li et al. (2020) introduced a low-cost approach by catalyzing the synthesis of cyanobenzene 
crosslinked porous structures using an AlCl3-catalyzed Scholl reaction[59]. Subsequent modification with 
NH2OH-HCl in an alkaline environment converted cyanide into AO units within the porous skeleton, 
yielding the low-cost and practically applicable adsorbents PAF-170/171/172-AO. The chelation of uranyl 
ions with the AO groups was demonstrated via X-ray photoelectron spectroscopy (XPS). The open structure 
of the porous material provides numerous uranium adsorption sites, with the PAF-170-AO adsorbent 
exhibiting an ultrahigh uranium adsorption capacity of 702 mg·g-1. Moreover, the homogeneous coverage of 
PAF-170-AO onto a porous ceramic sheet enables effective uranium extraction from actual seawater, 
meeting the commercial standard of uranium extraction from seawater of 6 mg·g-1 within 21 days and 
boasting a ten-fold adsorption-desorption cycle capability.

Shen et al. (2019)[60] synthesized a porous aromatic skeleton material P-C4 [Figure 5B] by grafting PPN-6, 
which was capable of adsorbing uranium from alkaline solutions. An adsorption kinetic study revealed that 
the adsorption kinetics of P-C4 were consistent with a quasi-secondary kinetic model, indicating a 
chemisorption process. It was demonstrated that uranium enters the material pores by exchanging chlorides 
in the form of uranyl tricarbonate in the reaction. Uranium adsorption experiments on P-C4 revealed that 
the uranium exchange capacity could reach up to 670 mg·g-1, and the partition coefficient Kd for uranium 
still exceeded 105 mL·g-1 in a high concentration of interfering ions environment.
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Figure 5. (A) Schematic of the preparation procedure of PAF-1-CH2 AO[56], Copyright 2017, American Chemical Society. (a) AcOH, 
H3PO4, HCl; (b) NaCN; (c) NH2OH; (B) The preparation process of P-C4

[60], Copyright 2019 American Chemical Society. (a) AcOH, H3

PO 4, HCl, and paraformaldehyde; (b) tributyl phosphine and tetrahydrofuran. PAF: Porous aromatic framework.

Yuan et al. (2018) synthesized a series of molecularly imprinted PAFs (MIPAFs) containing salicylaldoxime 
ligands via Heck coupling reaction and molecular imprinting technique, which still possessed a uranium 
adsorption capacity of 35.44 mg·g-1 when tested in simulated seawater[61]. Yuan et al. (2019) used a molecular 
coordination template to assemble the salicylaldoxime ligand onto PAF-1 to synthesize MISS-PAF-1 with a 
maximum uranium adsorption of 253 mg·g-1[62]. The adsorption of uranyl ions on MISS-PAF-1 was shown 
to be monolayer chemisorption through Langmuir model fitting, and the adsorption mechanism was 
analyzed via Fourier transform infrared spectroscopy and XPS, revealing that the adsorption mechanism 
was through –OH and –C=N groups coordinated with uranium to form U–O and U–N coordination bonds 
for chemisorption. In addition, the uranium adsorption amount of MISS-PAF-1 in Bohai Sea seawater (with 
a uranium concentration of 4.4 μg·L-1) reached a sizable amount of 5.79 mg·g-1, suggesting its promising 
practical application.

The current research on uranium extraction from seawater using PAFs is still in its primary stages and faces 
challenges such as low uranium adsorption concentration of 3.3 μg·L-1 in seawater, interference from high 
concentrations of competing ions, and contamination by microorganisms. Additionally, PAF adsorbents 
cannot be readily scaled up for industrialized production. Future research efforts should focus on the 
following aspects: (1) enhancing uranium selectivity; (2) improving the efficiency of uranium adsorption; 
(3) advancing the understanding of the adsorption mechanism; and (4) reducing the synthesis cost of PAFs.

Polymers and porous materials are two of the most important types of materials currently used to extract 
uranium from seawater. They reflect different unique features in synthesis, characterization, and 
application, and their respective advantages and disadvantages in practical production.

For porous materials, thanks to their regular structure and better crystallinity, they have unique advantages 
in molecular imprinting, host-guest interactions, and other adsorption types. Different organic porous 
materials have distinct pore structures and can accommodate varying types of ions. The rational design of 
the pore structure of adsorbents is conducive to the improvement of adsorption selectivity. The adsorption 
sites of porous materials are more clearly defined, and the adsorption mechanism of porous materials on 
uranyl ions can be more clearly understood through pore modification or surface modification, assisted by 
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theoretical calculations. However, the reversible formation-breakage equilibrium of covalent or ligand 
bonds and the instability of metal hydroxide precipitation equilibrium also lead to the poor stability of 
materials such as MOF, COF, etc., and the stability and recycling of MOF, COF, etc. decrease faster in 
certain solutions with strong polarity, strong acids, strong bases, high ionic strengths, and high bio-
pollution, and they can not form a good and stable recycling. This creates a considerable obstacle to the 
commercialization of porous materials as uranium extractants.

For polymers, the same as polymer materials, the chemical bonds connecting the monomers are more stable 
compared to those in inorganic-organic hybrid materials, and the absence of metal components contributes 
to higher chemical stability and mechanical strength of polymers. Additionally, polymers exhibit better 
recycling performance and higher potential for extended service life. At the same time, because the C–C 
bond can rotate around the bond axis, chain polymers generally have a high degree of flexibility, which 
makes its compatibility with the adsorbed target ions greatly improved, the design of the imprinting site will 
be more convenient, the site and the target ions better compatibility. In addition, polymers can form 
different structures by crosslinking, etc., such as hypercrosslinked polymers (HCPs), which have been 
widely used in uranium extraction from seawater. However, for polymers, structural uncertainty is still an 
important factor limiting their commercialization. Variations in the conditions under which the 
polymerization reaction occurs, such as temperature, concentration, time, etc., can result in large differences 
in polymerization degree, bonding modes, morphology, etc. This can lead to considerable uncertainties in 
the properties of polymers, thus affecting the investigation of the adsorption process and its mechanism.

OUTFIELD-ASSISTED URANIUM EXTRACTION
Photocatalyst reduction
Photocatalysis involves the conversion of light energy into chemical energy using ultraviolet or visible light 
irradiation to promote the synthesis and decomposition of organic matter. In the absence of suitable 
electron- or hole-trapping agents, absorbed light energy dissipates as heat owing to carrier recombination. 
Valence band (VB) holes act as strong oxidizing agents, while conduction band (CB) electrons act as strong 
reducing agents. Most organic photodegradation utilizes the strong oxidizing ability of holes either directly 
or indirectly.

To reduce U(VI) to U(IV), a semiconductor with a CB bottom potential of < 0.411 V (vs. normalized 
hydrogen electrode) is required [Figure 6A and B]. Only a few photocatalysts, such as TiO2 and g-C3N4

[1,3,63], 
have been shown to realize the photoreductive extraction of U(VI). Zhong et al. (2021) and Xu et al. (2018) 
also developed MOFs and COFs suitable for the photocatalytic extraction of uranium[64,65]. Practical 
applications have revealed that pure intrinsic semiconductor photocatalysts have the disadvantages of high 
photogenerated charge recombination rates and poor catalytic efficiency. Consequently, researchers have 
begun employing various technical methods to modify these semiconductors. For example, Li et al. (2017) 
enhanced the photocatalytic activity under UV irradiation by 19.3 times compared to TiO2 by compounding 
Fe3O4 and graphene with TiO2 to construct a TiO2-graphene-Fe3O4 complex, achieving enhanced 
photostability[66]. Similarly, Wu et al. (2021) showed that compositing ZnS with the g-C3N4 phase resulted in 
ZnS@g-C3N4 photocatalysts with a wider light absorption range compared to pure g-C3N4

[67]. The newly 
obtained ZnS@g-C3N4 photocatalyst has a wider light absorption range and exhibited 4.34 times higher 
photocatalytic activity for UO2

2+ than the previous version.

Besides the effect of the intrinsic properties of the semiconductor on photocatalysis, researchers have found 
that the reaction can be promoted by adding additional substances into the catalytic system or by 
modulating the reaction conditions. For example, Salomone et al. (2013) found that the reduction efficiency 
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Figure 6. (A) The simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) using the g-C3N4/TiO2 catalyst[1], 
Copyright 2018, Elsevier B.V; (B) Schematic representation of the possible mechanism for photoreduction of U(VI) via CNCD[63], 
Copyright 2019, American Chemical Society. CNCD: Porous graphitic carbon nitride.

of uranyl ions in acetic acid solution was four times higher than that in nitric acid solution[68]. Wang et al. 
(2015) demonstrated that sodium formate could promote the adsorption of U(VI) on the TiO2 surface[69]. 
Liu et al. (2023) selected ZnS and WO3 to construct a Z-type heterojunction, where ZnS and WO3 retained 
the strongly reducing photogenerated electrons in the CB of ZnS (with the reduction potential reaching 
-0.7 V), thereby increasing the photoreduction of U(VI)[70].

However, current photocatalytic uranium extraction technology has certain limitations. For example, the 
current efficiency of photocatalytic uranium extraction is low and requires prolonged exposure to a high-
intensity light source to complete the reaction. In addition, it is only feasible for low-concentration uranium 
solutions and cannot treat high-concentration wastewater. Moreover, this method is not universally 
applicable; photocatalytic uranium extraction is only applicable to a specific water environment and for 
certain chemical forms of uranium. The presence of other organic substances or metal ions in the water may 
lead to competition with the catalyst, thereby diminishing the efficiency of uranium extraction.

Electrochemical extraction
Physical/chemical adsorption is currently a commonly used method for uranium extraction from seawater; 
however, it still has limitations. The low uranium concentration in seawater, coupled with the limited 
specific surface area and active sites of adsorbent materials, restricts their capacity for uranium capture, 
hindering its effective extraction. Moreover, the competitive adsorption of other ions in seawater can affect 
the performance of the adsorbent. Electrochemical uranium extraction has received much attention owing 
to its substantial adsorption capacity and fast adsorption rate. Importantly, during the electrochemical 
reduction reaction, hexavalent uranium ions are reduced to tetravalent uranium dioxide and deposited on 
the electrode surface, thereby circumventing mutual repulsion between ions with the same charge. 
Compared with traditional adsorption techniques, electrocatalytic techniques offer several advantages: (1) 
they enable rapid removal at low U(VI) concentrations; (2) continuous reduction of U(VI) to a solid 
minimizes material deactivation; (3) high selective reduction of U(VI) can be achieved using different 
potential differences of various elements.

Liu et al. (2017) proposed [Figure 7A] the half-wave rectified alternating current electrochemistry (HW-
ACE) method for uranium extraction[71]. This method uses an electric field to direct the migration of uranyl 
ions, which greatly improves the diffusion rate. Electrodeposition is utilized to neutralize charged uranyl 
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Figure 7. (A) Schematic of physicochemical and HW-ACE extraction[71], Copyright 2017, Springer Nature Limited; (B) Schematic of the 
synthesis of Fe-Nx-C- R[72]; Copyright 2021, Wiley-VCH. HW-ACE: Half-wave rectified alternating current electrochemistry.

ions, thereby mitigating Coulombic repulsion, while alternating current avoids unnecessary adsorption of 
species and electrolysis of water. Kinetic experiments revealed a 2.5-fold higher uranium extraction rate for 
HW-ACE compared to the adsorption method. Ion selectivity experiments in real seawater also confirmed 
the superior uranium ion selectivity of the HW-ACE method over the adsorption method. Moreover, the 
electrochemical method exhibited a much higher desorption efficiency of uranyl ions (96.2%) compared to 
the adsorption method (46.9%).

Yang et al. (2021) synthesized [Figure 7B] ZIF-8 and subsequently coated its surface with a potassium-
tannic acid (TA) coordination polymer[72]. K+ ions in the TA polymer were then exchanged for Fe3+ ions 
through ion exchange to obtain ZIF-8@Fe-TA material. This material demonstrated efficient uranium 
extraction performance (128 mg·g-1) in natural seawater and maintained its structure and performance after 
ten cycles.

Liu et al. (2022) obtained In-Nx-C-R by introducing flexible amidoxime oxime[73]. This was achieved by 
exchanging K+ for In3+ in TA polymers encapsulated in ZIF-8, followed by pyrolysis and treatment with a 
nitric acid/sulfuric acid mixture and hydroxylammonium chloride. In 10 ppm simulated seawater, 
In-Nx-C-R removed ~94% of the uranium in 240 min, nearly 3.1 times higher than the conventional 
adsorption method. In addition, In-Nx-C-R maintained a uranium removal rate higher than 94% over ten 
cycles, demonstrating excellent durability. Experimental results in natural seawater show that the daily 
uranium extraction capacity of In-Nx-C-R is as high as 6.35 mg·g-1. Electrochemical seawater uranium 
extraction technology enables the continuous production of solid uranium dioxide. The rational design of 
the active site position is the key to the efficient conversion of U(VI). However, electrocatalytic U(VI) 
removal still requires consideration regarding economic costs and the occurrence of side reactions. Among 
potential solutions, designing electrocatalysts with variable valence states to induce U(VI) reduction may 
offer effective ways to reduce its energy consumption. In real seawater, the corrosion of Cl- also increases 
the expenses associated with electrochemical U(VI) removal.
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In seawater uranium extraction technology, in addition to the traditional chemical adsorption, the use of 
applied fields (e.g., photocatalytic, electrocatalytic) to improve the performance of uranium extraction for 
certain specific materials is a direction worthy of in-depth study [Table 1]. Traditional adsorption methods 
(physical and chemical adsorption) are constrained by the limited specific surface area of the adsorbent, 
adsorption sites, kinetic rates, and competitive adsorption generated by the widespread presence of other 
ions. By introducing external energy (light energy, electrical energy), the kinetic process of adsorption is 
somewhat altered, thus enhancing the uranium adsorption performance[108]. In electrocatalytic uranium 
extraction, uranyl ions are enriched on the electrode surface after reduction, and their interactions with 
other cations are weakened by the electric field, which significantly enhances the uranium adsorption 
capacity, adsorption rate, and minimum adsorption concentration of the material. In order to maximize this 
enhancement, it is necessary to design adsorbents with appropriate structures, provide a sufficiently strong 
and continuous electric field or light source, and create suitable environments with various operating 
conditions for multiple application scenarios (uranium elemental form, aqueous solution composition, etc.), 
so as to achieve higher adsorption effects and economic benefits while controlling production costs[9,109-111].

CONCLUSION AND OUTLOOK
Porous frameworks have demonstrated their unique advantages across several areas. Their porous structure 
imparts excellent adsorption capacity for a wide range of substances, especially heavy metal ions and 
organic pollutants. Moreover, these materials usually maintain a stable crystal structure, ensuring consistent 
performance across diverse environmental conditions. In addition, precise tuning of pore size, shape, and 
surface properties of these materials is achievable through tailored synthesis conditions to meet varied 
application requirements. However, porous framework materials encounter several challenges in the 
process of uranium extraction from seawater. First, the complexity of synthesis hampers industrial-scale 
production, contributing to elevated costs and restricting widespread application. Second, material 
morphology limitation is also a problem that needs to be solved. The porous framework material usually 
exists in the form of powder, which brings many inconveniences in the practical application of large-scale 
seawater extraction of uranium. To solve these problems, researchers have tried to process the powder into 
the morphology of membranes and fibers for practical applications. Porous framework materials also face 
the challenge of biodeposition in seawater uranium extraction. Therefore, the adsorbent material must 
exhibit an ultrafast ion capture rate, especially during the initial stages of uranium extraction. Besides 
adsorption methods, researchers have proposed external field-assisted methods, including electric and light 
fields, which offer distinct advantages in seawater uranium extraction. Electric fields can accelerate the ion 
trapping process and improve ion adsorption efficiency through the directional movement of charged 
particles. In addition, electric fields can regulate the charge distribution on the surface of the material to 
further optimize its adsorption performance. Conversely, light fields can enhance the activity of the 
adsorbent and improve its adsorption capacity for uranium ions by stimulating photosensitive groups in the 
material or generating photothermal effects. Additionally, the light field has the advantages of 
environmental protection and energy saving, aligning with the requirements of sustainable development.

Despite the high application value, electric and light fields in uranium extraction from seawater encounter 
challenges in practical implications and engineering applications. For example, achieving stable, efficient, 
and cost-effective application of electric and optical fields in seawater uranium extraction remains a critical 
area for research. In addition, the mechanisms through which electric and optical fields influence adsorbent 
material performance require further investigation. Therefore, overcoming the challenges along the path of 
seawater uranium extraction necessitates comprehensive studies and explorations in material synthesis, 
morphology regulation, and external field-assisted technologies. The performance evaluation and price cost 
of different functional materials used in uranium recovery from seawater were summarized in Tables 1 and 
2, respectively.
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Table 1. Performance evaluation of functional materials for uranium recovery from seawater

Materials Capture capacity 
(mg·g-1) Time             Condition Methods Ref.

HW-ACE on AO-functionalized 
electrode

0.002 / / Electrocatalysis [71]

Zn(HBTC)(L)(H2O)2 0.53 1 min 6 ppb simulation seawater Adsorption [74]

Co-SLUG-35 1.03 / 5.35 ppb natural seawater Adsorption [75]

POP-AO 1.32 56 days Seawater Adsorption [58]

UiO-66-AO 2.68 3 days Bohai seawater sample Adsorption [45]

POP3-AO 3.1 56 days Seawater Adsorption [76]

PVDF electrosorption 3.4 5 h Batch electrosorption Electrocatalysis [77]

POP1-PO3H2 3.82 56 days Seawater Adsorption [78]

CPP 4.15 10 days / Photocatalysis [79]

POP-oNH2-AO 4.36 56 days Seawater Adsorption [58]

GZA 4.974 / 3.3994 ± 0.143 ppb natural 
seawater

Adsorption [80]

COF-HHTF-AO 5.12 25 days 1 ppm uranium Adsorption [81]

KTG 5.19 10 days / Adsorption and 
photocatalysis

[82]

UiO-66-NH-(AO) 5.2 8 days Natural seawater Adsorption [83]

PT-BN-AO 5.78 27 days / Adsorption and 
photocatalysis

[84]

MISS-PAF-1 5.79 56 days Seawater Adsorption [62]

MS@PIDO/Alg 5.84 56 days Seawater Adsorption [85]

BD-TN-AO 5.9 5 days 10 ppm uranium Adsorption and 
photocatalysis

[86]

DNA-UEH 6.06 6 days Seawater Adsorption [87]

NDA-TN-AO 6.07 27 days 50 L Adsorption and 
photocatalysis

[88]

AF Anti-COF 6.64 28 days 15 L Adsorption [89]

PPH-OP 7.12 21 days Seawater Adsorption [90]

MUUim 7.35 16 days Natural seawater Adsorption [91]

PAO/Alg NFs 8.42 56 days Seawater Adsorption [92]

PIDO NFs 8.7 56 days Seawater Adsorption [24]

PAF-CS 8.92 60 days 3.3 ppb, 5 L·min-1 Adsorption [59]

AO-PIM-1 9.03 28 days Seawater Adsorption [93]

Zn2+-PAO 9.23 28 days Seawater Adsorption [94]

PAO PNMs 9.35 35 days Seawater Adsorption [95]

SMON-PAO 9.59 56 days Seawater Adsorption [96]

ZIF-67 10 / 500 ppb simulation seawater Adsorption [97]

Tp-DBD 10.31 8 days / Photocatalysis [98]

BP-PAO fiber 11.76 56 days Sunlight, seawater Adsorption [99]

SSUP 12.33 3.5 days Seawater Adsorption [100]

PPA@MISS-PAF-1 13 90 days Seawater Electrocatalysis [101]

MIGPAF-13 16 56 days Seawater Electrocatalysis [102]

AO-OpNpNc fiber 17.57 30 days Seawater Adsorption [26]

[NH4]+[COF-SO3]- 17.8 7 days 10 ppb uranium Adsorption [50]

MOF 3 32 1 h 100 ppm simulation seawater Adsorption [44]

COF-TpDb-AO 127 90 min 20 ppm uranium Adsorption [103]

MOF 2 188 1 h 100 ppm simulation seawater Adsorption [44]

MPN-based membrane 27.81 / Seawater Adsorption [104]

Anti-UiO-66 4.62 ± 0.09 30 days Natural seawater Adsorption [105]

BHMS 5.14 ± 0.1 12 days 500 mL·min-1 Photocatalysis [106]
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ZIF-67/SAP 0.45 6.99 ± 0.26 35 days Natural seawater Adsorption [107]

HW-ACE: Half-wave rectified alternating current electrochemistry; AO: amidoxime; COF: covalent organic frameworks; PAF: porous aromatic 
framework; PIDO NFs: poly(imide dioxime) nanofibers; PAO: poly(amidoxime); ZIF: zeolitic imidazolate framework; MOF: metal-organic 
framework.

The development of seawater uranium extraction technology faces several challenges, primarily owing to 
the low uranium content in seawater, on the order of 3-4 μg·L-1. Efficient uranium extraction from seawater 
requires extremely efficient and cost-effective methods. Several key technical and economic hurdles must be 
overcome to achieve this goal: Capacity enlargement. Uranium extraction materials must exhibit high 
selectivity and capacity to effectively capture uranium ions amidst the complex seawater environment. This 
requires the use or development of new materials, such as functionalized nanomaterials and organic 
framework materials with specific structures. Effective preparation. Uranium extraction devices need to be 
meticulously designed to minimize energy and operational costs. This may involve improving 
hydrodynamic design, optimizing adsorption/desorption processes, implementing automation, and 
enabling continuous operation of the system. Price considerations. Despite technical feasibility, economic 
viability remains a major challenge. The cost of uranium extraction must be competitive with conventional 
uranium-ore mining methods for it to be viable. Cost reduction strategies should focus on minimizing 
material costs, lowering operational and energy expenses, and achieving large-scale production capabilities. 
Environmental impacts. Beyond economic considerations, the environmental ramifications of any emerging 
technology must be assessed for potential impacts on the environment and to safeguard marine ecosystems.

Due to the abundance of uranium stored in seawater, seawater uranium extraction, as an emerging 
unconventional uranium acquisition method, has received extensive attention from academia and industry 
in recent years. The development of seawater uranium extraction materials with high application value has 
been approached from several perspectives. On the one hand, the adsorption capacity and application value 
of the adsorbent are improved by improving the properties of the material itself, increasing the specific 
surface area, and designing a suitable coordination environment to enhance the saturated uranium 
adsorption capacity, adsorption selectivity, cycling stability and other properties of the adsorbent; on the 
other hand, the adsorption mechanism is studied in depth, and the structural changes of the adsorbent in 
the process of adsorption are understood at multiple levels of the micro-, meso-, and macroscopic levels to 
make the interaction site, location, and structure of the uranyl ions with the adsorbent clear. In addition, 
photochemical adsorption and electrochemical adsorption have also made progress in uranium extraction 
from seawater in recent years, and the adsorption performance has been significantly improved compared 
with traditional physical and chemical adsorption.

Despite the long and effective development of seawater uranium extraction, there are still many noteworthy 
problems that hinder the development of seawater uranium extraction technology to a certain extent, 
especially its progress in industrialization. First, the stability of the uranium adsorbent in practical 
application limits its efficient and effective application. The factors destroying the cyclic stability of 
adsorbents are mainly the structural changes in the elution process and the destruction of adsorbent 
structure by the complex environment in seawater. When general porous adsorbents, especially COF and 
MOF, are used as uranium adsorbents, the pore structure and ligand sites tend to lose part of their activity 
after repeated strong acid and alkali treatments, resulting in a decrease in the adsorption capacity and an 
impact on the performance of the adsorbents. In addition, the high concentration of metal ions in seawater 
and the widespread presence of various microorganisms may also reduce the adsorption capacity by 
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Table 2. Price cost of different materials used in uranium extraction from seawater

Absorbent Methods Total cost (USD/kgU) Ref.

ZP-PAN fiber Adsorption 156.74 [112]

MIGPAF-13 Adsorption 330 [102]

AO-HNT Adsorption 154 [35]

H-ABP fiber Adsorption 170-206 [113]

AF1FR2 Adsorption 430-580 [114]

AF1-NaOH Adsorption 468-545 [115]

AF1-KOH Adsorption 694 [115]

PAN: Polyacrylonitrile; AO: amidoxime; HNT: halloysite nanotube.

hindering the contact of uranyl ions with the adsorption sites. To address these issues, adsorption sites with 
stronger binding affinity and stable structures should be rendered, and the materials should be loaded onto 
highly stable substrates to minimize the effects on the structure and stability of the adsorbents during 
uranium extraction and material treatment. In addition, in order to cope with the interference of 
microorganisms in the ocean on uranium extraction, adsorbents with adsorbent sites doped or hybridized 
with antimicrobial components can be tailored, and biologically active sites can be introduced into the 
adsorbent to realize the antimicrobial function and adsorbent function at the same time. Second, the 
complex and variable marine environment and its large gap with the laboratory environment limit the 
commercialization of seawater uranium extraction. Since large-scale marine experiments require large doses 
of the adsorbent, the latter may itself become a marine pollution factor if not handled properly. Therefore, 
when considering the enhancement of adsorbent stability, not only should a single environment be taken 
into account, but the adsorbent should be stabilized within a specific range of environmental conditions. At 
the same time, the large number of other metal ions in seawater and the low concentration of uranium itself 
greatly reduce the selectivity and rate of adsorption. In order to increase the rate of uranium adsorption, 
methods by applying additional light or electric fields are becoming well known. For example, the use of 
marine photovoltaic power generation and offshore wind power generation at sea as part of a seawater 
uranium extraction project may be effective in improving both the efficiency of seawater uranium 
extraction and the efficiency of electricity utilization, and in reducing the energy loss due to long-distance 
transmission.
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