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Abstract
Immune-inflammatory rheumatological diseases are a large group of pathological conditions that lead to chronic 
inflammation and organ damage. Many autoimmune diseases are associated with a high risk of cardiovascular 
complications, including atherosclerosis. Inflammation plays a significant role in the development and accelerated 
course of atherosclerotic lesions. Disorders of lipid metabolism are closely associated with the functions of cells of 
the immune system and can contribute to the development of these diseases. Cholesterol and lipids are involved in 
various cellular processes, including intercellular recognition, signal transmission and energy supply. The effect of 
cholesterol metabolism on the immune response is of great importance and is being actively investigated. Further 
study of the mechanism of cholesterol efflux from cells may be the key to understanding the relationship between 
immune-inflammatory and cardiovascular diseases. In this review, we have summarized data on cholesterol 
metabolism and its effect on the development of pathological conditions.
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INTRODUCTION
Rheumatological diseases are a group of autoimmune disorders that occur chronically and affect many 
organs or organ systems, leading to a high risk of mortality and disability. The estimated prevalence in 
developed countries ranges from 3%-5%, according to the various evaluations in different populations. In 
general, if we evaluate the entire population of the globe, then rheumatological diseases are detected in 1% 
of people[1]. The most common diseases of this group are systemic lupus erythematosus (SLE), rheumatoid 
arthritis (RA), systemic scleroderma, idiopathic inflammatory myopathy and Sjogren’s syndrome[2].

Recently, the connection of the immune system with metabolic processes in autoimmune and 
rheumatological diseases has been widely studied. The research focuses on key metabolic pathways, which 
comprise the pentose phosphate pathway, glycolysis, the tricarboxylic acid cycle, amino acid metabolism, 
oxidation and synthesis of fatty acids (FAs). Studies of lipid metabolism have been conducted for many 
years[3]. An altered lipid profile is often found in rheumatological diseases. Dyslipidemia is a generally 
accepted risk factor for the development of atherosclerosis and rheumatic diseases[2,4]. Its feature is a low 
level of high-density lipoproteins (HDL), high levels of low-density lipoproteins (LDL), triglycerides (TG) 
and total cholesterol (TC). The increased risk of atherosclerosis and damage to target organs, such as the 
central nervous system and kidneys, depend on high levels of LDL and/or abnormal levels of HDL in blood 
plasma[5,6].

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, the prevalence of which is 
approximately 0.5%-1% of the population. In this disease, a common cause of death is cardiovascular 
complications[7]. Most of the data from genetic analysis, tissue analysis, animal models and clinical studies 
indicate an immuno-mediated etiology that contributes to chronic inflammation and joint destruction[8].

The development of RA and cardiovascular diseases (CVD) is influenced by common inflammatory 
mediators, posttranslational modifications of proteins, immune responses, changes in the composition and 
function of lipoproteins (LPS), oxidative stress and endothelial dysfunction[9,10]. The role of the central 
immune system in the development of CVD is being proven by more and more studies. Proinflammatory 
cytokines that increase atherogenesis are involved in the development of RA[11]. Understanding the unique 
mechanisms of CVD development in RA will help identify new goals to reduce significantly cardiovascular 
(CV) risk in patients[9,12].

SLE is a chronic autoimmune disease that affects mainly women of reproductive age. At the same time, the 
human immune system makes a mistake and produces autoantibodies. The autoantibodies mistakenly 
identify the body’s own cells as being foreign and attack them. The result is an autoimmune reaction, 
circulating immune complexes are deposited in various organs, which leads to inflammation[13]. Deviations 
of the immune system, as well as hereditary, hormonal and environmental factors, affect the manifestation 
of organ damage. The genetic contribution to the progression of the disease is undeniable, but the etiology 
is still unclear. Gene polymorphisms that contribute to the development of SLE include single nucleotide 
polymorphisms, gene defects, duplications, and aberrant expression of splicing variants[14]. Patients with SLE 
develop atherosclerosis faster than people without this pathology. It is necessary to establish a link between 
cardiovascular diseases and SLE[15,16]. Hypertension, dyslipidemia and elevated levels of oxidized lipids, the 
presence of a large number of autoantibodies and inflammation can contribute to the progression of 
atherosclerosis in patients with SLE[17].

In general, atherosclerosis is a common chronic inflammatory disease in which damage to large vessels 
develops. Concomitant pathologies can be coronary heart disease (CHD), stroke and peripheral vascular 
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diseases[18]. With atherosclerosis, cholesterol accumulates in the intima space of the vessels, because there is 
an increase in the amount and difficulty in the outflow of LDL[19]. The remaining LDLs are modified and 
engulfed by phagocytes[20]. This process leads to the formation of plaques, which consist of monocytes and 
cholesterol. There is a strong association between cholesterol, LDL and apolipoprotein, including 
apolipoprotein B (ApoB), and atherosclerosis, which makes them the main target for research[21].

CHOLESTEROL METABOLISM IN CELLS, TRANSPORT AND DISTRIBUTION AT THE 
INTRACELLULAR LEVEL, CHOLESTEROL OUTFLOW PATHWAYS, THE ROLE OF 
MACROPHAGES
The classical theory of the mechanism of atherosclerosis development presented it as a disease with 
impaired lipid metabolism. It was subsequently changed due to more in-depth studies[22,23]. Now it is 
impossible to deny the role of inflammatory pathways in the spread of atherosclerosis and the occurrence of 
acute coronary syndrome[11]. In many chronic inflammatory and autoimmune diseases, there is an increased 
risk of CVD. It remains to be seen whether the mediators of atherogenesis are common to all chronic 
inflammatory pathologies[22]. In any case, in the development of this pathology, an important role is played 
by the disorder of cholesterol metabolism. Multiple evidence supports that enhanced cholesterol efflux from 
foam cells by HDL particles is a promising antiatherogenic strategy[24].

Reverse cholesterol transport (RCT) is the process of transferring excess cholesterol from peripheral tissues 
to plasma using HDL. After that, it enters the liver, from where it is removed along with bile or metabolized 
before excretion [Figure 1][24]. Cholesterol must be in a non-esterified form so that it can be eliminated from 
the cells. This process was found in experiments in vitro and in vivo, where the hydrolysis of lipid droplets 
in foam cells limits the RCT rate[25]. Free cholesterol is released from lipid droplets by hydrolysis of 
cholesterol ester. After that, it can move to the plasma membrane and pass to the cholesterol acceptor, or be 
esterified again by cholesterol acyltransferase[26].

A decrease or increase in the production of various enzymes affects the metabolism of cholesterol in cells. In 
particular, liver X receptors (LXRs) are the key sterol-sensitive transcription factors in macrophages that 
control the intracellular balance of cholesterol and lipids[27]. LXRs regulate the expression of numerous 
efflux pathway genes, including the ATP-binding cassette (ABC) proteins ABCA1 (member 1 of human 
transporter sub-family ABCA) and ABCG1 (ATP-binding cassette sub-family G member 1), which are the 
main carriers of cellular cholesterol from foam cells[28]. Foam cells are cholesterol-loaded macrophages and 
are the main link in the pathogenesis of atherosclerosis[29]. ABCA1 serves for the outflow of free cholesterol 
into apolipoprotein AI (ApoA-I) and is important for HDL biogenesis[30], and ABCG1 promotes the transfer 
of cholesterol to the plasma membrane from the endoplasmic reticulum (ER)[31]. After the transfer of 
cholesterol to HDL particles, they are esterified by lecithin-cholesterol acyltransferase (LCAT) to form a CE, 
which leads to the formation of mature HDLs.  Plasma phospholipid-transfer protein (PLTP) and 
cholesteryl ester transfer protein (CETP) both play a major role in the metabolism of those lipoproteins. 
CEPT mediates the transport of TG and CE between HDL and non-HDL particles, and PLTP can stabilize 
the activity of ABCA1. Cholesterol enters macrophages as a result of the entry of LPs into the cell or as a 
result of efferocytosis of apoptotic cells[24]. Pre-β-HDL, which are formed due to the communication of 
ABCA1 and monomolecular apoA-I, are effective acceptors of free cholesterol transported from the plasma 
membrane of peripheral cells[32]. Excess cholesterol is removed from cells to extracellular acceptors or 
converted into CE and stored in cells in the form of cytosolic lipid droplets[24]. HDL containing cholesterol 
esters bind to SR-B1 (scavenger receptor class B type 1), which contributes to the efflux of cholesterol back 
into the liver[33]. Another protective reaction to an increased level of cellular cholesterol is the inhibition of 
SREBP (sterol regulatory element-binding protein) processing, which leads to a decrease in the expression 
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Figure 1. Reverse cholesterol transport. ABCA1: ATP binding cassette transporter A1; ABCG1: ATP binding cassette transporter G1; 
ABCG5: ATP binding cassette transporter G5; ABCG8: ATP binding cassette transporter G8; ApoA-I: apolipoprotein A-I; ApoB: 
apolipoprotein B; CE: cholesterol ester; CEPT: cholesteryl ester transfer protein; EL: endothelial lipase; HDL: high density lipoproteins; 
LCAT: lecithin-cholesterol acyltransferase; LDL: low-density lipoproteins; LDLR: low-density lipoprotein receptor; LXR: liver X receptor; 
PLTP: phospholipid-transfer protein; SR-A: scavenger receptor class A; SR-B1: scavenger receptor class B type 1; TG: triglycerides; VLDL: 
very-low-density lipoprotein.

of the gene for the enzyme HMGCR (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase) - the main target 
of statins, which limits the rate of cholesterol production and is under the influence of the mechanism of 
negative feedback[24]. LXRs contribute to the removal of excess cholesterol in response to its elevated levels 
in cells[34]. SREBP2 protein promotes the biosynthesis and absorption of cholesterol if its content in cells 
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decreases[35]. Actually, SREBP2 is the main transcription factor for the low-density lipoprotein receptor 
(LDLR).  When cholesterol levels are low, SREBP2 is activated and triggers the transcription of genes 
encoding proteins that affect cholesterol metabolism[36]. SCAP (SREBP cleavage-activating protein) is a 
sterol-regulated companion protein that delivers SREBP from the site of their synthesis in the ER to the site 
of their cleavage in the Golgi complex[37]. There it is cleaved by two serine proteases (S1P and S2P), releasing 
the cytosolic NH2-terminal domains of the transcription factor[38]. These fragments penetrate into the 
nucleus, where they combine with steroid regulatory elements in the enhancer regions of more than twenty 
genes, resulting in the synthesis of cholesterol and unsaturated FAs[39]. In this case, the LXRs remain in a 
repressive state. Under high cholesterol conditions, a trimolecular complex consisting of the INSIG 
(insulin-induced gene), SCAP and SREBP2, remains in the ER, blocking SREBP2 activation and cholesterol 
synthesis[40].

Macrophages metabolize cholesterol. A certain amount of cholesterol remains in the cytosolic droplets of 
CE, then the excess again passes into the bloodstream to be processed by the liver. The outflow of 
cholesterol from cells involves several mechanisms. The first of them triggers the metabolism of cellular 
cholesterol by direct interaction of HDL and ABC on the surface of the plasma membrane. To combine 
cholesterol with HDL, ABC transporters transfer phospholipids and cholesterol to the outer layer of the 
plasma membrane. The expression of ABC transporters is controlled by LXR transcription factors. The 
second mechanism of cholesterol efflux from macrophages can be mediated by the release of particles with 
cholesterol, which are called “microparticles”, “microdomains of cholesterol” or “exosomes”[41]. Scientists 
have hypothesized that a significant portion of cholesterol is associated with microparticles that are 
generated from the plasma membrane, but it is unclear how they were released[42]. Numerous investigations 
of cholesterol efflux by macrophages have concentrated on the ability of ABC transporters to transfer 
cellular cholesterol into LP particles. Cultured macrophages deliver cholesterol from the plasma membrane 
in the shape of “cholesterol microdomains”. These microdomains help to remove excess cholesterol[43]. Later 
it was established that cholesterol microdomains are not vesicles, but are branching structures of irregular 
shape originating from the plasma membrane. However, the way they exit the cell is not specified[44]. It has 
been shown that cultured macrophages secrete vesicular particles enriched with “available cholesterol” 
(cholesterol pool) from the plasma membrane into the surrounding substrate[45]. The ability of macrophages 
to secrete vesicles containing cholesterol increased the likelihood of cholesterol transfer to neighboring 
cells[46]. Later it was found that ABCA1-deficient macrophages carry cholesterol to neighboring smooth 
muscle cells (SMCs). Most of the cholesterol transported to SMCs was taken from an available pool in the 
plasma membrane of macrophages; therefore, it is possible that pools isolated by sphingolipids or 
phospholipids contribute to the movement of cholesterol[47]. Cholesterol moves from macrophages to SMCs 
through membrane junctions between cells. It is known that these structures are detected in cultured 
macrophages[48].

Another pathway for cholesterol transport is due to ORP (oxysterol-binding protein-related proteins) 
connected to OSBP (oxysterol-binding protein). They are a family of lipid binding/transferring proteins that 
can promote non-vesicular cholesterol transfer between lipid bilayers, improving cholesterol transport 
between subcellular membrane organelles[49]. ORP6 controls cholesterol efflux and HDL balance and may be 
a new regulator of the RCT pathway. Transcription of the ORP6 gene is regulated by LXR transcription 
factors, which turn on at high levels of cellular cholesterol and regulate the expression of genes involved in 
cholesterol metabolism[50].

In studies on models of macrophages without LXR, an increase in lesions occurred[51], and LXR agonists had 
the opposite effect[52]. Lipids play an important role in the polarization of macrophages. Experiments on 
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mouse models have demonstrated that the effect on lipid metabolism in macrophages can improve the 
course of atherosclerosis. Overexpression of LXR in macrophages has an antiatherogenic effect due to an 
increase in cholesterol efflux[53]. However, when LXR is activated, side effects such as lipogenesis and 
hypertriglyceridemia are detected, so there is a need for new studies of other ligands[54]. It has been 
demonstrated that people with a specific variant of perilipin-2, a protein associated with lipid droplets, are 
less vulnerable to the onset and progression of atherosclerosis[55]. The mechanism of this protection includes 
the activation of LXR in primary macrophages originating from monocytes. Innate immunity has also 
become a potential tool for combating atherosclerosis[56].

FEATURES OF CHOLESTEROL METABOLISM IN MACROPHAGES IN RHEUMATOID 
ARTHRITIS, DISTURBANCE OF LIPID METABOLISM, CAUSES, CONSEQUENCES
Patients with RA are 2-3 times more likely to have atherosclerosis[57]. The mechanisms by which the 
development of atherosclerotic lesions in RA is accelerated are unknown. Systemic inflammation is believed 
to play a key role in this process[58]. According to this hypothesis, circulating levels of monocytes and 
platelets are elevated in patients with RA[58,59]. The role of monocytes in joint damage has been studied for a 
long time. There have been numerous studies on the link between myeloid cells and atherosclerosis[60].

Monocytes, neutrophils and platelets originate from the bone marrow (BM) by myelopoiesis from 
hematopoietic stem cells and progenitor cells (HSPCs). Accumulation of cellular cholesterol leads to 
hyperproliferation and increased myelopoiesis. HSPCs and myeloid progenitor cells regulate cholesterol 
efflux, as described above, through the ATP-binding cassette transporters ABCA1 and ABCG1 and cell 
surface apolipoprotein-E (apoE) [Figure 2][61]. In patients with RA, cholesterol metabolism is disrupted 
owing to the inhibition of the expression of ABCA1 and ABCG1[62]. Proteomic analysis in patients with RA 
showed the presence of acute phase proteins (SAA - serum amyloid A) and complement factors (B, C3, 
C9)[63]. There is also a reduced level of HDL, an increase in the amount of proinflammatory and oxidized 
lipids, a violation of antioxidant activity[64]. Elevated levels of ox-LDL were detected in synovial fluid and 
synovial membrane and positively associated with CVD in patients with RA[65].  These damages in 
cholesterol transport can affect the cellular balance of cholesterol and lead to an increased risk of CVD[66].

Inflammatory arthritis has been found to impair the regression of atherosclerotic lesions and accelerate 
atherogenesis in preclinical models of RA[67]. Through experiments in mouse models of RA, it has become 
known that bone marrow-derived HSPCs have impaired cellular balance of cholesterol, possibly because of 
systemic inflammation. Myeloid cells retain this damage in cholesterol transport, which may contribute to 
the appearance of foam cells and increase the incidence of CV complications in RA[68].

The team of scientists found that the activity of myeloperoxidase (MPO) in blood plasma was greatly 
increased in patients with RA compared to healthy controls in terms of age, ethnicity and gender[69]. MPO is 
a protein found in the granules of neutrophils and monocytes that generates reactive oxygen species to 
destroy invading pathogens[70]. MPO levels are also elevated in atherosclerotic lesions[71] and are related to 
the prevalence of coronary heart disease in the overall population[72]. ApoA-I is a selective target for 
nitration and chlorination catalyzed by MPO. Oxidation of HDL and apoA-I leads to selective suppression 
of ABCA1, which impairs cholesterol efflux[73].

In patients with RA, dyslipidemia can be stopped without the use of statins, using anti-inflammatory and 
anti-rheumatic drugs[74]. Glucocorticoids have both atheroprotective and proatherogenic effects. The reason 
for these differences is the ability of glucocorticoids to act on several types of cells in the vasculature, with 
different effects depending on the concentration and target cells[75].
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Figure 2. The effect of cholesterol metabolism on the progression of autoimmune diseases. LXR: Liver X receptor; RA: rheumatoid 
arthritis; SLE: systemic lupus erythematosus; Th1: T helper 1 cells; Th17: T helper 17 cells.

LIPID METABOLISM DISTURBANCES IN SYSTEMIC LUPUS ERYTHEMATOSUS
CHD and atherosclerosis are more common in patients with SLE compared to the control group, which 
could not be predicted only by the main risk factors[76]. Since CVD deaths account for more than a third of 
all deaths in patients with SLE, it is obvious that CV complications are one of the main problems for 
patients with SLE[77].

HDL exhibit antioxidant, anti-inflammatory, antithrombotic, and antiapoptotic properties independent of 
cholesterol mobilization[78]. Patients with SLE with rapidly developing atherosclerosis have the progression 
of dysfunction and a decrease in HDL levels [Figure 2][79]. These data suggest that HDL is a target for 
reducing the frequency of CVD in patients with SLE[80].

Elimination of cholesterol from vascular macrophages is an important process to protect against 
atherosclerosis and improve CVD outcomes[81]. This process is mediated by OTC and allows the transfer of 
excess cholesterol and other lipids from macrophages in atherosclerotic lesions to the liver for excretion. 
The first and very important stage in RCT is the efflux of cholesterol from macrophages through HDL[80]. A 
violation of lipid metabolism is observed in the early diagnosis of SLE[82]. Numerous studies suggest that the 
reason for the decrease in the ability of cholesterol efflux in SLE is an elevated level of the SAA protein, 
which contributes to HDL dysfunction and reduces the ability to delete cholesterol from macrophages and 
move CE to the liver[83].

HDL oxidation may also help reduce cholesterol efflux in SLE. In HDL containing oxidized apoA-I, the 
capacity to drain cholesterol is reduced[84]. When a single methionine residue (Met-148) is oxidized in apoA-
I, HDL loses the capacity to interact with LCAT, the enzyme responsible for the formation of CE, which is 
the main step in RCT. Thus, the oxidation of apoA-I may be one of the causes of impaired cholesterol efflux 
in SLE[85].
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HDL can directly suppress inflammatory processes leading to the progression of atherosclerosis[86]. HDL 
inhibits TLR-induced generation of proinflammatory cytokines by macrophages at the transcriptional level. 
Activated transcriptional repressor (ATF3) of innate immune response genes moves to the nucleus and 
inhibits the stimulation of TLR-induced inflammatory cytokines[87]. HDL can also reduce the production of 
cell adhesion molecules activated by nuclear factor-κB (NF-κB), thereby preventing atherosclerotic 
disease[88]. HDL in healthy individuals contribute to the anti-inflammatory response. Lipoproteins derived 
from SLE patients induce a proinflammatory response. Scientists have found that HDL in SLE cannot 
suppress TLR-mediated cytokine induction[89]. It has also been found that HDL in SLE patients can activate 
PDGFRβ (platelet- derived growth factor receptor β) and increase chemotaxis and release of TNF-α[90].

The oxidation of HDL in SLE contributes to their binding to LOX1R (a lectin-like receptor of oxidized low-
density lipoproteins 1), preventing nuclear translocation of ATF3 and leading to an enhanced synthesis of 
inflammatory cytokines[91,92]. Elevated oxLDL levels improve the adhesion of monocytes to activated 
endothelial cells by enhancing the expression of adhesion molecules and proinflammatory cytokines[92,93]. 
Then monocytes migrate to the intima of the arteries, absorbing oxLDL and foam cells are formed[87]. The 
use of statins appears to benefit patients with SLE, but further studies are needed to see a sustained positive 
effect[94].

BRIEF DESCRIPTION OF LIPID METABOLISM IN OTHER RHEUMATOLOGICAL DISEASES
Rheumatological diseases include multiple sclerosis (MS), a chronic progressive inflammatory and 
degenerative pathology of the central nervous system caused by autoimmune and inflammatory processes 
leading to demyelination and degeneration of neurons[95]. Proinflammatory lipids are the cause of the typical 
clinical symptoms related to many autoimmune rheumatic diseases (ARDs)[96]. Lipid metabolism affects 
many functions of immune cells[97]. The link between lowering cholesterol levels and the progression of MS 
has been confirmed[98]. In patients with MS with excessive accumulation of cholesterol or deficiency of LXR, 
there is a violation of the functions of T cells, which leads to the activation of B cells and the production of 
autoantibodies [Figure 2][99].

Psoriasis is a widespread skin disease affecting about 1%-3% of the general population[100]. Patients with 
psoriasis are more susceptible to obesity, dyslipidemia, atherosclerosis and non-alcoholic fatty liver disease. 
Researches show that lipid metabolism disorders are more common in these patients[101]. An important 
feature is that atherosclerotic plaques are similar to psoriatic ones. Both plaques develop due to chronic 
inflammatory conditions and are associated with immune processes that involve cytokines, T-lymphocytes, 
and thrombotic agents[102]. The analysis of research into lipid metabolism has shown that the levels of total 
cholesterol, LDL and very-low-density lipoproteins (VLDL) are higher in patients with psoriasis than in 
control groups[103]. The lipid profile of the patients showed a high level of lipids with Apo-B [Figure 3]. The 
amount of HDL does not change[104]. The antioxidant activity of HDL mediated by paraoxonase 1 (PON1) 
seems to persist in patients with psoriasis, despite the change in composition towards proinflammatory 
HDL particles. Since such a shift was associated with a violation of ABCA1-CEC, these results may be 
evidence of a link between psoriasis and CVD[105].

FEATURES OF CHOLESTEROL METABOLISM IN MACROPHAGES IN ATHEROSCLEROSIS 
AT DIFFERENT STAGES OF THE DISEASE. THE ROLE OF MACROPHAGES IN INITIATION 
AND PROGRESSION OF LESION
Studies of the initial stages of atherogenesis in human and animal models show that the main initial stage is 
the subendothelial accumulation of lipoproteins with apolipoprotein B (apoB-LPs)[106]. ApoB-LPs generated 
by the liver cells are secreted as VLDL, which are converted into atherogenic LDL in the bloodstream[107]. 
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Figure 3. Cholesterol efflux defects in immunoinflammatory diseases. ABCA1-CEC: ABCA1-specific cellular cholesterol efflux capacity; 
ABCG1-CEC: ABGA1-specific cellular cholesterol efflux capacity; apoA-I: apolipoprotein A-I; apoB-I: apolipoprotein B-I; HDL: high 
density lipoproteins; PON-I: paraoxonase-I; SAA: serum amyloid A.

Intestinal apoB-LPs are formed in the form of chylomicrons, which turn into atherogenic particles due to 
lipolysis[108].

The first reaction to apoB-LPs is the activation of overlying endothelial cells, which leads to the recruitment 
of blood monocytes. Activated endothelial cells secrete chemokines that react with the corresponding 
chemokine receptor on monocytes and contribute to directed relocation[109]. Monocytes are formed from 
progenitor cells in the BM. The onset of monocyte growth is controlled by the content of cellular 
cholesterol, so it can affect atherogenesis. Mice whose monocyte progenitor cells have a defect in cholesterol 
efflux owing to a shortage of ABCA1 and ABCG1 transporters demonstrate an increase in the number of 
circulating monocytes (monocytosis) and the development of atherosclerosis[110]. After monocytes are firmly 
attached to the affected endothelial cells owing to the interplay of monocyte integrins with endothelial cell 
ligands[111,112]. Strong adhesion is accompanied by their penetration into the subendothelial space[113,114].

Mouse monocytes in early atheromas become macrophage-like and/or dendrite-like cells under the action 
of macrophage-colony stimulating factor (M-CSF)[115,116]. Even at the initial stages, macrophages and 
dendritic cells contain lipid droplets linked to the cytoplasmic membrane (foam cells)[117,118]. Further 
formation of foam cells starts when phagocytes engulf and process apoB-LPs[119]. CE are then hydrolyzed in 
endosomes to FC and FA[120]. FC delivery to the ER plays an important role in downregulating LDL 
receptors and endogenous cholesterol synthesis by suppressing the SREBP[121]. FC transported from 
lysosomes and CE from non-hydrolyzed droplets can penetrate the plasma membrane and be accessible for 
efflux from the cell[119]. Defective transfer of FC from lysosomes in damaged macrophages creates a barrier 
to cholesterol efflux and damage regression[122]. Once on the plasma membrane, cholesterol is transported to 
its outer layer, where it is removed from cells by ABCA1- and ABCG1-mediated transport to apoA-I and 
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HDL or by “passive diffusion” to low-cholesterol HDL[123,124].

In experimental models, the classic inflammatory phenotype of macrophages has been termed M1 and is 
often activated by in vitro incubation of macrophages with a combination of IFN-γ and LPS. A 
subpopulation of M2 macrophages has also been detected in vitro. The M2 phenotype can be activated by 
adding IL-4 and IL-13, which suppress the M1 phenotype and promote the production of IL-10 and TGF-β 
(transforming growth factor beta)[125]. There are much more subpopulations of macrophages, since 
macrophages encounter various microenvironments, the signals of which influence them[126]. Studies in 
Apoe-/- mice have demonstrated that M2 macrophages colonize initial fatty streaks. The further the lesion 
progresses, the more common the M1 phenotype of macrophages is[127].

Stages of atherosclerotic changes in the vascular wall. At the stage of initiation of an atherosclerotic lesion, 
most monocytes differentiate into macrophages. This process is crucial for the further resolution of 
lesions[128]. Macrophages congregate in receptive areas of the arteries due to the expression of endothelial 
adhesion molecules and the presence of apoB-LPs in the subendothelium[125]. Chemokines produced by 
endothelial cells and macrophages attract even more monocytes[129,130]. Macrophages absorb modified lipids 
and other substances from the subendothelium. The fatty streak with macrophages increases due to the 
accumulation of a large number of macrophages and their transformation into foam cells[131]. Early lesions 
may resolve with efferocytosis[125]. Macrophages are polarized to either the proinflammatory M1 phenotype 
or the anti-inflammatory M2 phenotype, which correlates with their contribution to disease progression. It 
is necessary to find out whether different macrophage phenotypes are the cause of the disease or they simply 
reflect its progression[132].

At the stage with progressive necrotic lesions, macrophage apoptosis can be partially induced by FC or 
FA[125]. Macrophages exposed to ER stress are more receptive to apoptosis caused by oxidized phospholipids 
or LPs[122]. Apoptosis of macrophages does not cause plaque necrosis. This occurs when phagocytes are 
unable to remove macrophages (efferocytosis) that have undergone apoptosis[133]. Efferocytosis is carried out 
through phagocytic receptors, ligands of apoptotic cells and bridging molecules. The defect of efferocytosis 
can occur due to a large number of apoptotic macrophages and tissue necrosis[134]. Other causes of defective 
efferocytosis may be the death of efferocytes caused by oxidative stress[135]  and protease-mediated cleavage 
of the efferocytosis receptor MerTK (MER tyrosine kinase)[136].

The stage of resolution of atherosclerotic lesions may be caused by an aggressive decrease in lipid levels in 
mice with hyperlipidemia and a decrease in blood glucose levels in mice with diabetes. Regression in these 
models is indicated by a decrease in the number of macrophages in the atherosclerotic plaque and a change 
in gene expression in CD68-positive cells[137]. A decrease in the number of macrophages can occur due to an 
increase in the effectiveness of efferocytosis and autophagy[125]. With a decrease in the production of 
collagen of fibrous thickening by fibromyoblast-like SMCs, plaques prone to rupture will appear in the 
intima[138]. Macrophages can reduce the production of collagen in the SMCs intima, while the cells do not 
die. In plaques where the balance of apoptotic cells is disturbed, the secretion of TGFß is low. This may be 
the reason for its loss by neighboring cells[139].

The influence of M1 and M2 macrophages on atherogenesis can be understood by studying the 
transcription programs, thanks to which their division into phenotypes occurs[140]. Deletion of transcription 
factor NR4A1 (nuclear receptor subfamily 4 group A member 1) provides the formation of M1 
macrophages and rapid progression of atherosclerosis in Apoe-/- and Ldlr-/-mice[141]. The progression of 
atherosclerosis in the model with Apoe-/-mice is influenced by the directed deletion of transcription factor 
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SP4. This factor stops the differentiation of monocytes towards the M1 phenotype and accelerates the 
formation of foam cells[142]. Injection of M2-polarizing cytokine IL-13 into Ldlr-/- mice inhibits the 
progression of atherosclerosis[143].

It has been suggested that several other populations of macrophages can be found in plaques. These 
macrophage phenotypes are called M(Hb) and Them[144]. They are characterized by resistance to lipid 
loading. Differentiation towards these phenotypes occurs under the influence of hemoglobin-haptoglobin 
complexes and heme in vitro. Mox-type macrophages are characterized by high production of 
hemoxygenase-1[145]. The chemokine CXCL4 leads to the formation of an M4 population[146]. It has been 
suggested that IL-17A can also influence the polarization of macrophages; as a result of its influence, a 
population, unlike M1, M2 and M4, is formed[147].

A large number of macrophages in unstable plaques makes them an important subject of research that can 
help in the diagnosis and therapy of diseases[148]. Macrophages in plaques can be detected by SPIOs 
(supermagnetic iron oxide particles). Nanoparticles stuck together inside phagolysosomes give a strong MRI 
(magnetic resonance imaging) signal. This method of macrophage visualization can be used both in 
experimental models and in patients[149]. This method can help to see how quickly the development of 
atherosclerotic plaque occurs. The more the particles absorb newly migrating cells, the bigger they become 
and the more acute the inflammation[150].

In addition, macrophages have the ability to absorb nuclear agents, such as 64Cu-labeled nanoparticles. After 
that, they can be found using positron emission tomography (PET)[151]. The approximate number of 
macrophages can be determined using radioactive fluorodeoxyglucose (18F-FDG), after obtaining the result 
using PET. Cells absorb it instead of the usual glucose[152]. Using the mitochondrial protein (the ligand of the 
peripheral benzodiazepine receptor), the activity of macrophages can be studied, since a large amount of it 
is expressed in them[153]. Active work is underway to develop a method by which it will be possible to study 
individual subpopulations of macrophages, for example, M2[154]. If this method can be applied clinically to 
better monitor plaque vulnerability, it would be a promising area for future research[155].

Statins can reduce high cholesterol and suppress inflammatory macrophages[156]. In an experiment with 
statins, their intake increased the number of macrophages in the lesion, and there was also a decrease in 
other markers of inflammation[157].  FTY720 (biologically active sphingolipid) increases the number of M2 
macrophages in plaques and slows down the development of lesions in mice, which indicates an important 
potential for therapy[158,159].

CONCLUSION
It is necessary to better understand how the metabolism of monocytes and macrophages changes at the 
stage of initiation of atherosclerotic lesions, and to find out at which point pathological changes occur in 
cells that contribute to the progression of the disease. These mechanisms require a detailed study of the 
plasticity of the macrophage phenotype at various stages of atherosclerosis in order to resolve inflammatory 
reactions and restore protective immune functions. It is necessary to investigate the mechanisms that 
underlie the relationship between inflammatory processes in rheumatic diseases and the risk of developing 
CVD in order to create new approaches to treatment and prevention. Studies can be conducted to evaluate 
the relationship between MPO activity, HDL function, and cholesterol efflux from cells with indicators of 
subclinical atherosclerosis in rheumatological diseases. It is important to assess the effect of autoimmune 
diseases on HDL levels and, as a consequence, on the path of cholesterol efflux. Further research on the role 
of lipid metabolism in the pathogenesis of autoimmune diseases may open up alternative strategies for 
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improving immune cell function. Thus, this knowledge may be of fundamental importance for identifying 
new approaches in diagnosis and treatment, by studying the mechanisms influencing the lipid content in 
macrophages, their level and inflammatory phenotype.
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