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Abstract
Background: Immune checkpoint inhibitors (ICIs) have changed the landscape in oncology, providing effective 
cancer management for a growing population. However, by promoting an immunological attack on cancer cells, 
healthy cells may be harmed in the process. Increased awareness of ICI-associated myocarditis (ICIMy) as one of 
the most fatal immune-related adverse events has led to efforts to improve the diagnosis and treatment of this 
condition. The purpose of this review is to summarize the current state of knowledge regarding ICIMy. Methods: 
We performed a literature search in Pubmed and Scopus with the relevant keywords, screened the titles and 
abstracts of the results, and reviewed the selected publications using pre-established criteria. Main findings: 
Although ICIMy’s cumulative incidence is below 0.5% in clinical trials, real-world data reveal a higher incidence of 
up to 4%. Underlying pathophysiologic mechanisms include T cell clonal expansion, molecular mimicry, and 
increased inflammatory cytokine signaling pathways leading to ICIMy. The clinical presentation can vary from 
asymptomatic to fulminant cardiac death and is often accompanied by musculoskeletal adverse events. Emerging 
diagnostic tools with prognostic value include global longitudinal strain assessment and multiple PET-CT 
modalities. The mainstay of treatment includes holding the immunotherapy, prompt high-dose 
methylprednisolone, and close cardiovascular observation. Fulminant and refractory cases benefit from additional 
immunomodulatory therapies. Principal conclusions: Although ICIMy is a rare adverse event, its non-specific 
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presentation warrants a high level of suspicion. Once ICIMy is considered a likely diagnosis, immunomodulatory 
therapies should be initiated promptly.

Keywords: ICI-myocarditis, immune checkpoint inhibitors, immune-related adverse event, cardiotoxicity, 
autoimmunity

INTRODUCTION
The concept of immune checkpoints emerged in the late 20th century from research identifying molecules 
involved in the regulation of the immune system[1-4]. Cancer cells take advantage of these 
immunomodulatory checkpoints to evade immune recognition and response. In 2018, James Allison and 
Tasuku Honjo shared the Nobel Prize in Physiology or Medicine for the discovery of cancer therapy 
utilizing inhibition of negative immune regulation. Their work led to the development of immune 
checkpoint inhibitors (ICI) specifically targeting the checkpoint receptors CTLA-4 (cytotoxic T-
lymphocyte-associated protein 4) and the PD-1 (programmed cell death protein 1) with its corresponding 
ligand PD-L1 (programmed cell death ligand 1). Since the Food & Drug Administration (FDA) approval of 
the first immune checkpoint inhibitor (ICI), ipilimumab, in 2011, several ICIs have been developed and 
approved for the treatment of a wide array of malignancies [Table 1]. Many checkpoint receptors have been 
identified, and research continues to identify novel ICIs. The lymphocyte activation gene-3 (LAG-3) 
inhibitor, relatlimab, was recently approved for the treatment of melanoma [Table 1][5]. The emergence of 
ICIs has led to a paradigm shift in the treatment of cancer with immunotherapeutic agents with continual 
expansion of their indications.

However, the growing pool of eligible ICI recipients has been accompanied by an increasing prevalence of 
ICI toxicity. The toxicities, which are called immune-related adverse events (IRAEs), can occur across all 
organ sites and manifest as autoimmune inflammation such as colitis, thyroiditis, and myocarditis. A single 
center’s experience described a five-fold increase in yearly ICI recipients and a four-fold increase in annual 
hospitalizations due to IRAEs from 2014 to 2017[6]. The cumulative incidence of IRAEs of any grade can 
reach up to 80%, with severe or life-threatening IRAEs occurring in up to 30%[7,8]. Of the potentially fatal 
IRAEs, ICI-associated myocarditis (ICIMy) is one of the most concerning due to its high mortality, 
estimated to be 25%-50%. This scoping review will focus on the latest literature regarding the epidemiology, 
diagnosis, screening, and treatment of ICIMy.

METHODS
On March 19th, 2024, we searched for publications in Scopus with the terms “immune-checkpoint 
inhibitor” OR “immune-checkpoint inhibitors” OR “immune checkpoint inhibitor” OR “immune-
checkpoint inhibitor” OR immunotherapy AND myocarditis in the title, abstract, or keywords with its 
publication year between 2015 and 2024, yielding a total of 1,065 results. We also searched PubMed and 
found 1,388 publications (supplementary data). After adjusting for duplicates and corrections, we were left 
with 1,565 research items. By reviewing the title and abstract of each publication, we excluded 955 
publications for multiple reasons: 502 were related to other causes of myocarditis or cardiomyopathy; 149 
focused on another IRAE or all IRAEs in general; 105 were either trials or studies assessing ICI efficacy and 
safety; 59 were editorials, comments, or corrections of already included publications; 20 had a focus on 
general cardio-oncology or another cardio-oncology topic; 19 were not in English and 101 were unrelated. 
The remaining 610 studies were reviewed to assess the available evidence on the incidence of ICIMy, clinical 
symptoms, risk factors, imaging results, laboratory markers, management strategies, and outcomes; 318 
were referenced in this review. The remaining 282 studies that were not cited did not offer new or 
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Table 1. Approved immune checkpoint inhibitors and their indications

ICI Target
Initial US 
approval 
year

Indications

Ipilimumab CTLA-4 2011 Melanoma, renal cell carcinoma (RCC), microsatellite instability-high (MSI-H) or mismatch repair 
deficient (dMMR) metastatic colorectal cancer (CRC), hepatocellular carcinoma (HCC), non-
small cell lung cancer (NSCLC), malignant pleural mesothelioma

Nivolumab PD-1 2014 Melanoma, NSCLC, malignant pleural mesothelioma, RCC, classical Hodgkin lymphoma (cHL), 
squamous cell carcinoma of the head and neck (SCCHN), urothelial carcinoma (UC), CRC, HCC, 
esophageal cancer, gastric cancer, gastroesophageal junction cancer

Pembrolizumab PD-1 2014 Melanoma, NSCLC, small cell lung cancer (SCLC), SCCHN, cHL, primary mediastinal large B-cell 
lymphoma (PMBCL), urothelial carcinoma, MSI-H or dMMR cancer, MSI-H or dMMR CRC, gastric 
cancer, esophageal cancer, cervical cancer, HCC, Merkel cell carcinoma (MCC), RCC, endometrial 
cancer, tumor mutational burden-high (TMB-H) cancer, cutaneous squamous cell carcinoma 
(cSCC), triple-negative breast cancer (TNBC)

Atezolizumab PD-L1 2016 UC, NSCLC, SCLC, HCC, melanoma. 

Avelumab PD-L1 2017 MCC, UC, RCC

Durvalumab PD-L1 2017 NSCLC, extensive-stage SCLC, biliary tract cancer, HCC. 

Cemiplimab PD-1 2018 cSCC, basal cell carcinoma, NSCLC

Dostarlimab PD-1 2021 dMMR endometrial cancer or dMMR solid tumors

Tremelimumab CTLA-4 2022 HCC. 

Relatlimab LAG-3 2022 Melanoma

Toripalimab PD-1 2023 Nasopharyngeal carcinoma

Tislelizumab PD-1 2024 Esophageal squamous cell carcinoma

ICI: Immune checkpoint inhibitor; CTLA-4: cytotoxic T-lymphocyte associated protein 4; PD-1: programmed cell death protein 1; PD-L1: 
programmed cell death ligand 1; LAG-3: lymphocyte activation gene 3.

supporting arguments for statements made through the body of our manuscript. These studies included 7 
outdated guidelines, 155 case reports or case series, and 130 reviews on the topic. Seventy-eight of our 
references were obtained through cross-reference or direct search. Figure 1 summarizes the selection 
process.

Incidence and clinical presentation
Although IRAEs are common, cardiovascular events during ICI therapy are infrequent[7,9-14]. A wide array of 
cardiovascular events have been reported after ICI therapy, including myocarditis, arrhythmias, heart 
failure, atherosclerotic events, and pericardial disease[15-20]. A meta-analysis of 51 randomized clinical trials 
reported a cumulative incidence of cardiovascular events of 3.1% during ICI monotherapy and 5.8% during 
dual ICI therapy compared to 2.5% in patients receiving non-ICI chemotherapy[21]. Real-world data show 
that the risk of having a cardiac event may be up to five times higher (reported hazard ratios ranged from 
1.6 to 4.93) in patients with cancer treated with ICIs compared to other anti-cancer therapies[22,23]. A 
retrospective analysis of reported cardiac adverse events occurring in clinical trials with ICIs found that 
77.5% of them were grade 3 or higher[24]. Those who experienced a cardiac event while on immunotherapy 
had a 2.77-fold higher risk of all-cause mortality (95%CI: 1.55-4.95)[25]. Pharmacovigilance studies report a 
fatal outcome in roughly 30% of cardiac events occurring in ICI recipients[26,27].

ICIMy is the most commonly reported immune-related cardiac adverse event[21,26,28-30]. The reported 
incidence in clinical trials is very low, ranging from 0.03% to 0.5%[16,31-33]. Underdiagnosis may be a 
contributor to the apparent low incidence. Over time, however, there have been increased reported 
cases[15,17,27,34], likely due to increasing awareness as well as ICI-treated patients. Real-world data suggest a 
potentially higher incidence ranging from 0.07% to 4.59%[22,23,35-42]. The highest cumulative incidence of 
4.59% was reported in a single-center, retrospective observational study within a population with baseline 
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Figure 1. Flowchart of the publication selection process.

cardiovascular disease[40]. All cases met the European Society of Cardiology’s (ESC) diagnostic criteria for 
myocarditis[43], although they were all “possible myocarditis” diagnoses per the categories proposed by 
Bonaca et al.[44] [Table 1]. A prospective study monitoring cardiac biomarkers in a 126-patient cohort 
starting immunotherapy, reported a cumulative rate of clinically significant ICIMy cases of 3.17%, with 
asymptomatic or mildly symptomatic ICIMy suspicion occurring in 7.15% of cases[45].

Pathophysiology
The exact pathophysiology of ICIMy has not been fully described, although studies have helped to elucidate 
some of the potential mechanisms [Figure 2]. It is suspected that ICIs allowing T cells to attack cancer cells 
can sometimes lead to a break in peripheral tolerance, resulting in autoimmunity against normal organs, 
including the heart. There has been a variety of cardiac proteins associated with autoimmune myocarditis, 
including cardiac myosin and β-adrenergic receptors, with autoimmune responses mediated by both 
antibodies and T cells[46-48]. Notably, the presence of circulating T cells reactive to cardiac antigens, such as 
cardiac myosin heavy chain α isoform (α-MyHC), indicates a breach of self-tolerance, likely due to 
inadequate cardiac antigen presentation in thymic epithelial cells[49-53]. Although α-MyHC-specific T cells 
have been found in human peripheral blood from patients with viral and autoimmune myocarditis[49], the 
most expanded T cells in ICIMy hearts do not react to α-MyHC[54]. Additionally, the PD-1/PD-L1 axis is 
crucial for maintaining peripheral tolerance to auto-reactive T cells and its disruption further exacerbates 
the autoimmune response by enhancing T cell activation and proliferation[55-57]. Further, the overexpression 
of PD-L1 in myocarditis-affected areas of the myocardium underscores the breakdown of tolerance 
mechanisms[58]. In addition, it has been demonstrated that ICI administration correlates with an expanded 
diversity of the T cell receptor repertoire in peripheral blood, potentially prompting autoimmune 
responses[59]. Given the involvement of autoimmune processes, another potential target for treatment is the 
immunoproteasome, a specialized form of the proteasome predominantly found in immune cells that 
perpetuates autoimmune pathology, exacerbating inflammation and fibrosis in ICIMy[60].



Page 5 of Ostos-Mendoza et al. J Cardiovasc Aging. 2025;5:5 https://dx.doi.org/10.20517/jca.2024.13 36

Figure 2. Pathophysiologic mechanisms of ICI myocarditis. Summary of potential mechanisms involved in the pathophysiology of ICI 
Myocarditis. Further details are provided in the main text. Created with BioRender.com.

Murine models have revealed that single ICI agent administration or knockout of a single immune 
checkpoint is insufficient to induce myocarditis[61]. While the use of combination ICI agents has been 
proven sufficient for inducing myocarditis[62-64], alternative interventions, including cardiac antigen 
immunization[65,66] or sensitization[67], cardiac injury[53,57,68] and tumor inoculation[56,69,70], are required. 
Molecular mimicry, in which tumor-released antigens resemble those found in the myocardium, is a 
potential mechanism supporting tumor inoculation. In one ICIMy case, identical T cell clones were 
detected in the tumor, myocardium, and skeletal muscle[71]. Additionally, a separate ICIMy case reported 
that histopathologic analysis of a metastatic lesion from a primary neuroendocrine tumor revealed the 
expression of troponin T and creatine kinase-MB[72]. Lung cancers have also been found to express cardiac 
biomarkers[73], including troponin T and creatine kinase-MB[74]. Although combination therapy results in 
macrophage and CD8+ T cell infiltration in the myocardium, as well as focal areas of apoptosis in both 
tumor-bearing and tumor-free mice[62], cardiotoxicity induced by anti-PD-1 antibodies has been observed 
only in melanoma-bearing mice[56]. A couple of studies successfully induced ICI-myocarditis in some of 
their A/J mice simply by administering anti-PD-1, a strain prone to spontaneous tumorigenesis[52,75]. 
Another study conducted on a C57BL/6J background found that administering anti-PD1 antibody led to 
decreased left ventricular ejection fraction and global longitudinal strain, as measured by echocardiography, 
although it did not result in significant mononuclear infiltration of the myocardium[61]. However, the 
majority of enriched T cell clones in the tumor tissue did not correspond to the enriched T cells in the 
hearts of ICIMy patients[54]. Other models, however, involve genetic backgrounds predisposed to 
autoimmunity and employ immune checkpoint blockade to induce myocarditis. For instance, non-obese 
diabetic mice - a polygenic model of autoimmunity resulting in type 1 diabetes -develop spontaneous but 
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rarely fatal myocarditis when modified with MHC-I and MCH-II knockout and HLA-DQ8 introduction[76]. 
However, severe myocarditis accompanied by systolic heart failure and severe myositis occurs after anti-
PD1 administration[76]. MRL-Faslpr mice, which have an increased predisposition to autoimmunity, develop 
fatal myocarditis when Pdcd1 is knocked out[77]. Administering anti-CTLA4 and anti-PD-1 combination 
therapy in MRL-FAS mice resulted in immune infiltration of the myocardium and sarcomere disarray[78]. 
Finally, genetic models have also been extensively studied, namely Ctla4 haploinsufficiency in the absence of 
Pdcd1[50,62,78,79]. A less frequently utilized model involves a loss-of-function mutation in the gene encoding 
lymphocyte activation gene 3 (LAG-3) with PD-1 knockout in a BALB/c background[80]. The differences in 
animal models of ICIMy highlight the importance of animal background, tumor inoculation, and genetic 
and pharmacologic interventions to increase susceptibility to autoimmunity and myocarditis. To account 
for the complex interactions of the immune system, van der Vegt et al. have proposed a mathematical 
model of ICIMy that takes the dynamics of damaged cardiomyocyte numbers and the number and types of 
immune cells evolving over time[81,82].

Immunohistochemical and transcriptomic studies have helped to elucidate the interaction between the 
immune system and ICIMy. In the pathophysiology of ICIMy, T cell subsets especially emerge as central 
players[55,83]. Specifically, CD4+ T cells are implicated in driving heart-specific autoimmunity, with a notable 
accumulation of T cells and macrophages near injured cardiomyocytes[69,84]. Additionally, the expansion of 
cytotoxic CD8+ effector T cells, termed Temra CD8+ cells, is observed in ICIMy patients and mice models 
compared to controls[50,69,83,85,86]. These cells, as their name suggests, demonstrate a highly activated and 
cytotoxic phenotype. Transcriptomic analysis further reveals elevated expression levels of proinflammatory 
chemokines (CCL5/CCL4/CCL4L2) in Temra CD8+ cells, suggesting active involvement in myocarditis 
pathogenesis. Moreover, ligand-receptor analysis highlights interactions between Temra CD8+ cells and 
innate immune cells, underscoring their role in the inflammatory response within the myocardium[87]. 
Overall, the orchestrated activation and interaction of T cell subsets, particularly cytotoxic CD8+ T cells and 
CD4+ T cells, play pivotal roles in the development and progression of ICIMy[50,87-89].

Transcriptomic analyses have revealed differential gene expression patterns in ICIMy that are associated 
with inflammatory pathways, particularly interferon responses, highlighting dysregulation of innate 
immunity[85-87,90-93]. There is generally upregulation of inflammatory cytokines such as IL-1β and IL-6[51,93]. 
Similarly, TNF-α has been shown to be elevated in the peripheral blood and serum of ICIMy patients and 
could contribute to their reduced cardiac function[94,95]. Thymic inflammatory gene expression analysis also 
demonstrates upregulated levels of proinflammatory cytokines, especially IL-17a, suggesting that remote 
cytokine production may also be implicated in cardiac dysfunction induced by ICIs[61]. Overall, the 
dysregulation of innate immunity specifically involves innate immune cell populations such as monocytes, 
NK cells, and B cells, which demonstrate changes in both intercellular communication and composition 
during ICIMy activity and remission[96]. Additionally, inflammatory macrophages expressing CXCL9, 
CXCL10, and CD16α are increased in ICIMy, with interactions identified between T cells and these 
macrophages via IFN-γ and CXCR3 signaling pathways[67,86,97,98]. In the context of PD-1 inhibitors 
specifically, macrophage-derived exosomes appear to upregulate miR-34a-5p in cardiomyocytes, inducing 
cardiac senescence and injury. Therefore, the miR-34a-5p/PNUTS signaling pathway could supply new 
targets for lessening cardiac injury in patients receiving PD-1 inhibitors[99,100]. Further, depleting CD8+ T 
cells or macrophages and blocking IFN-γ signaling through antibody neutralization studies have been 
shown to reduce myocarditis severity, highlighting the intricate interplay between adaptive and innate 
immune responses in the pathogenesis of ICI-induced myocarditis[97].
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There are some other inflammatory mechanisms that may be implicated as part of ICIMy. Studies of PD-1 
blockage of CD8+ T cells in tumor cells and primary cardiomyocytes have demonstrated that the pyrin 
domain-containing protein 3 (NLRP3) inflammasome is upregulated[62,101]. Another inflammatory mediator 
that has been studied for ICI-related myocarditis is ANGPTL2, which is expressed abundantly by cardiac 
fibroblasts and promotes chemokine expression, enhancing T cell recruitment[67]. On the other hand, 
MANF and HSPA5 are proteins with estradiol-dependent expression that are believed to be important in 
attenuating myocardial inflammation in ICIMy[62]. Therefore, NLPR3, ANGPTL2, and MANF/HSPA5 could 
all be suitable targets related to autoimmune inflammation.

Furthermore, immunohistochemical studies of endomyocardial biopsy specimens have provided further 
insights into the pathological mechanisms underlying ICIMy[102,103]. Necrotic cardiomyocytes often stain 
positive for complement activation product C4d[104]. This observation suggests a possible role for antigen-
antibody interactions and immune complex formation, followed by complement fixation, in the 
development of myocardial injury within the context of ICI therapy[105].

In addition to the immunological mechanisms driving ICIMy, emerging research highlights the significant 
involvement of metabolic pathways, especially glycerolipid metabolism, in the progression of ICIMy. 
Metabolic dysregulation, mediated by enzymes such as phospholipase A2 (PLA2), appears to promote 
inflammatory cardiac injury and oxidative stress, exacerbating myocardial damage. Diacylglycerol kinase 
zeta (DGKZ) is a significant glycerolipid metabolism regulator, with DGKZ-mediated signaling pathways 
contributing to aberrant metabolism and promoting myocardial inflammation[84]. Finally, a proteomic 
analysis comparing ICIMy and viral myocarditis biopsies suggested differences in mitochondrial 
metabolism[106].

Risk factors
The two established risk factors for developing ICIMy are the use of dual ICI therapy and the presence of 
thymic cancer being treated with ICIs. Data from pharmacovigilance studies and real-world data have 
demonstrated the increased risk of ICIMy with dual ICI therapy compared with monotherapy, with a 
reporting odds ratio of 1.93-4.31[15,17,37,71,78,107,108]. Additionally, myocarditis stemming from dual ICI therapy 
tends to be more severe and fatal compared to monotherapy[17,71,109]. Studies have reported that patients with 
thymic epithelial tumors (TET) undergoing ICI treatment face an increased risk of developing myocarditis 
and myositis, compared to other cancer types[89,110-115]. Additionally, ICIMy in these patients is associated 
with higher mortality compared to ICIMy in other cancers[89,116].

Other factors have been suggested but have not definitively been associated with an increased risk of ICIMy. 
When comparing immunotherapies by their targeted molecules, anti-PD-1 or anti-PD-L1 monotherapies 
showed a higher risk of ICIMy compared to anti-CTLA-4 monotherapy[15,17], although findings have been 
inconsistent[117]. Specific ICIs could also have different risk profiles. Nivolumab may be associated with a 
higher risk of developing ICIMy[37,118] or arrhythmias[119] compared to pembrolizumab, with cemiplimab 
showing a higher risk of heart failure and myocarditis than nivolumab or pembrolizumab[119]. Pre-existing 
cardiac comorbidities may pose an increased risk[120-124]. One study reported a cumulative incidence of 4.5% 
of ICIMy in a population with pre-existing cardiovascular disease undergoing treatment with ICI[121]. A 
history of hypertension may be associated with developing left ventricular dysfunction during ICI 
treatment, including left ventricular diastolic dysfunction and cancer therapy-related cardiac 
dysfunction[122]. Importantly, patients with ICIMy are more likely to have a history of coronary artery 
disease or heart failure compared to patients undergoing immunotherapy without ICIMy[123]. A study 
contrasting ICIMy and ICI-associated non-inflammatory left ventricular dysfunction (NILVD) found that 
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hypertension may be a risk factor for the former while cardiac disease may be a risk factor for the latter[28]; 
further studies comparing these entities are warranted. A pharmacovigilance study found that the use of 
loop or thiazide diuretics is correlated with ICIMy reports[125]. Patients with diabetes mellitus[37,126] or 
autoimmune diseases[127,128] may also be at increased risk. There are very limited data on whether prior solid-
organ transplant recipients have a different risk profile, considering they are on chronic 
immunosuppression[129]. Regarding demographic characteristics, females may be at an increased risk of 
ICIMy[62,107], although there are conflicting findings[15,123,130,131]. African Americans may have a higher risk of 
ICI cardiotoxicity in general, but findings are conflicting as well[25,132].

Hematologic markers have also been identified as potential risk factors. Patients who developed an ICI 
cardiotoxicity were more likely to have a higher neutrophil-to-lymphocyte ratio (NLR)[121] or a lower 
lymphocyte-to-monocyte ratio (LMR)[126] at baseline compared to patients undergoing immunotherapy 
without cardiotoxicities. Additionally, an elevated NLR at baseline is a risk factor for overall severe IRAEs 
(grades 4-5)[133]. One study using the American Society of Clinical Oncology’s CancerLinQ database, which 
aggregates data from oncological practices across the United States, identified risk factors for developing 
cardiotoxicity identified through machine learning[130]. They included increased age, lower absolute 
lymphocyte count (ALC), higher absolute neutrophil count, anti-PD-L1 treatment (vs. anti-PD-1), a trend 
of increased weight over time, not receiving an angiotensin-converting enzyme inhibitor, and not receiving 
a loop diuretic, among others[130]. After applying a prediction model based on these, there was a significant 
difference between the cumulative incidence of cardiac events in the low-risk group compared to the high-
risk group (3.3% vs. 6.1%, respectively, P < 0.001)[130].

Diagnosis
The diagnosis of ICIMy relies on clinical criteria, laboratory biomarkers, imaging studies, and at times, 
histopathologic analysis. Several societies have proposed diagnostic criteria for ICIMy with slight differences 
in definitions. Given the severity of ICIMy, Bonaca et al. proposed diagnostic criteria for ICIMy with the 
intended purpose of aiding in identifying and adjudicating cases of myocarditis in a clinical trial setting[44]. 
Utilizing a uniform definition of myocarditis during reporting events establishes a foundation for better 
analysis and understanding of the true rates and spectrum of the disease. The criteria are organized 
hierarchically based on the strength of diagnostic evidence [Table 2]. Since then, the International Cardio-
Oncology Society (IC-OS)[134] proposed another set of diagnostic criteria, and these have been incorporated 
in the latest 2022 ESC Guidelines on cardio-oncology[135]. This new set of diagnostic criteria aims to aid 
clinicians in real-life settings in establishing a diagnosis of ICIMy [Table 2]. Using Bonaca’s criteria, a 
clinical diagnosis of “definitive myocarditis” requires an imaging abnormality independent of troponin, 
whereas a clinical diagnosis using the IC-OS/ ESC cardio-oncology guidelines criteria requires a troponin 
elevation independent of imaging abnormalities. For instance, only 18 out of 33 cases from a single-center 
cohort of ICIMy initially diagnosed per the clinical trial setting criteria met the IC-OS/ESC definition[28].

The criteria proposed by Bonaca et al. should be interpreted as an indicator of the degree of evidence in 
favor of myocarditis[44]. Some patients may be unstable and unable to undergo the full workup, and the most 
specific tests, such as cardiac MRI and endomyocardial biopsy (EMB), may not be performed at all. A 
multicenter retrospective cohort consisting of 34 patients who met the Bonaca criteria reported that possible 
cases of myocarditis had higher mortality than definite cases (HR: 10.68, P = 0.03)[136]. Potentially, these 
patients were too unstable to undergo sufficient testing, or they had accompanying non-myocarditis 
diagnoses contributing to their deaths. Taking this into consideration, one could diagnose ICIMy per the 
IC-OS/ESC definition, and then attempt to classify it as possible, probable, or definite per Bonaca to denote 
the degree of evidence to support the diagnosis[127]. Figure 3 illustrates the pillars involved in the diagnosis of 
ICIMy.
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Table 2. Current diagnostic criteria for ICI-associated myocarditis

Bonaca et al. (2019)[44]

- Definite myocarditis: any of the following 
- Pathology 
- Diagnostic CMR + syndrome + biomarker or ECG 
- Echo WMA + syndrome + biomarker + ECG + negative angiography 

- Probable myocarditis: any of the following 
- Diagnostic CMR (no syndrome, ECG, biomarker) 
- Suggestive CMR with either syndrome, ECG or biomarker 
- Echo WMA and syndrome (with either biomarker or ECG) 
- Syndrome with PET scan evidence and no alternative diagnosis 

- Possible myocarditis: any of the following 
- Suggestive CMR with no syndrome, ECG or biomarker 
- Echo WMA with syndrome or ECG only 
- Elevated biomarker with syndrome or ECG and no alternative diagnosis

IC-OS consensus (2021) /ESC guideline (2023) 
- Either pathohistological diagnosis: Multifocal inflammatory cell infiltrates with overt cardiomyocyte loss by light microscopy of cardiac tissue 

samples 
- Or clinical diagnosis: A troponin elevation (new, or significant change from baseline) with 1 major criterion or a troponin elevation (new, or 

significant change from baseline) with 2 minor criteria after exclusion of acute coronary syndrome or acute infectious myocarditis based on 
clinical suspicion 
- Major criterion 

- CMR diagnostic for acute myocarditis (modified Lake Louise criteria) 
- Minor criteria 

- Clinical syndrome (including any one of the following: fatigue, muscle weakness, myalgias, chest pain, diplopia, ptosis, shortness of breath, 
orthopnea, lower extremity edema, palpitations, lightheadedness/dizziness, syncope, cardiogenic shock) 
- Ventricular arrhythmia and/or new conduction system disease 
- Decline in cardiac (systolic) function, with or without regional WMA in a non-Takotsubo pattern 
- Other immune-related adverse events, particularly myositis, myopathy, myasthenia gravis 
- Suggestive CMR (meeting some but not all the modified Lake Louise criteria)

CMR: Cardiac magnetic resonance; ECG: electrocardiogram; WMA: wall motion abnormality.

Clinical syndrome
Diagnosing ICIMy poses a significant challenge due to the highly variable and non-specific clinical 
presentation. Myocarditis may manifest with non-specific symptoms such as fatigue, weakness, dyspnea, 
and cough, or cardiac-specific symptoms like palpitations, chest pain, syncope, and orthopnea, among 
others[137]. However, many of these may even be part of the oncologic patient’s baseline repertoire of 
symptomatology. Adding to the complexity, there has been an increase in reporting of subclinical/
asymptomatic cases[137-146]. The clinical importance and management of such cases are yet to be established.

Most of the literature available reports that the median time to onset is within 12 weeks after ICI treatment 
initiation[37,109,115,137,147-151]. Severe cases usually occur earlier than non-severe cases[29,133]. Nevertheless, multiple 
cases with a presentation occurring after a prolonged ICI therapy period (months to years) have been 
reported[152-155]. Even though these cases are referred to as delayed or late-onset, the Society for 
Immunotherapy for Cancer’s (SITC) consensus for definitions established that delayed or late-onset IRAEs 
are those that appear three months after the discontinuation of immunotherapy [Table 3][156]. Even though 
they did acknowledge that most IRAEs occur within 12 weeks of ICI initiation, they did not propose a term 
to describe the cases that occur later in the treatment period[156]. Limiting the timeframe of occurrence of 
ICIMy to 12 weeks from the treatment start date might increase specificity in the diagnosis[157]. However, as 
of the current state of knowledge, there is no maximum timeframe within which ICIMy can occur.

Considering the broad clinical presentation and associated high mortality, it is of critical importance to 
maintain a low threshold of suspicion of myocarditis in a patient undergoing ICI treatment. If suspected, a 
comprehensive evaluation is needed, including laboratory tests, imaging modalities, and consideration of 
invasive procedures like heart catheterization with EMB.
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Table 3. Definitions of ICIMy according to the timeline based on SITC consensus for definitions for IRAEs

Re-emergent ICIMy: 
- Occurs in the heart at least twice  
- Occurs after a patient has temporarily or permanently discontinued immune checkpoint inhibition 
- Must completely resolve while a patient is not actively receiving immunotherapy (i.e., absence of all clinical signs and symptoms as opposed to 
resolving to grade 1), with re-emergence of symptoms (i.e., deterioration in labs or imaging alone do not qualify as re-emergence)) with or 
without re-starting the immune checkpoint inhibitor 
- Must have a well-established association with the prior immunotherapy treatment if it occurs after discontinuation of immune checkpoint 
inhibition. However, it is not temporally related to the steroid taper 
- May occur at any time after discontinuation of immunotherapy; however, other potential causes should be investigated for events occurring 
more than 1 year after the last dose of the immune check-point inhibitor

Chronic ICIMy: ICIMy that persists beyond 3 months of immune checkpoint inhibitor discontinuation 
- ICIMy is defined as chronic and active if it persists in the setting of ongoing inflammation of an organ and requires ongoing immunosuppression 
- ICIMy is defined as chronic and inactive if it persists in the absence of ongoing inflammation in the heart and does not require ongoing 
immunosuppression

Delayed/late-onset ICIMy: 
Manifests more than 3 months after discontinuation of immunotherapy

Adapted from the SITC consensus definitions for immune checkpoint inhibitor-associated immune-related adverse events terminology

Figure 3. Pillars of ICI myocarditis diagnosis. The diagnosis of ICIMY can be clinical or histopathologic. A clinical diagnosis is more likely 
to be true with increasing pathologic findings. The clinical syndrome may include non-specific symptoms, cardiac symptoms, or 
comorbid IRAE symptoms. Typically, cases will have elevation in cardiac-specific troponins. Although alterations in ECG or imaging 
studies are not necessarily specific, the typically encountered alterations are denoted in the figure. Created with BioRender.com.

Electrocardiographic changes
An ECG should be performed in patients receiving immunotherapy who present with symptoms consistent 
with the myocarditis clinical syndrome. Preferably, a baseline ECG should be obtained prior to initiating 
ICI therapy to assess if there have been changes during therapy and thereafter[135,158]. Any change in ECG 

https://BioRender.com
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from baseline could be indicative of myocarditis[137,159-163]. However, in isolation, a new ECG change is not 
diagnostic of ICIMy[122]. A study comparing baseline and presenting ECGs in 52 cases obtained from an 
international multicenter registry revealed that conduction disorders and repolarization abnormalities were 
frequently observed compared to baseline[164]. Further, new onset conduction abnormalities in ICI-treated 
patients are associated with a higher risk of cardiovascular death[147,165]. All-cause mortality correlated with 
the presence of pathological Q waves and inversely correlated with the Sokolow-Lyon Index[164]. An 
international registry of 140 ICIMy cases compared their baseline and presentation ECGs to those from 
patients receiving ICI treatment without myocarditis and found a prolonged QRS duration (> 110 ms) was 
associated with an increased risk of MACE. For every 10 ms increase in QRS duration, there was a 1.3-fold 
increase in the odds of MACE[166].

Numerous cases of complete heart block (CHB) have been reported and it is one of the most feared 
conduction abnormalities[162,167-174]. Its presence categorizes any case as severe and fulminant and has been 
associated with increased all-cause mortality[136,164,165]. Remarkably, temporary or permanent pacemaker 
placement may not increase survival[136]. Fortunately, CHB associated with ICIMy has been reported to be 
reversible after immunosuppressive therapies[175-178]. Fulminant cases of ICIMy may present with other life-
threatening dysrhythmias, including ventricular tachycardia and ventricular fibrillation, which may occur 
abruptly or be preceded by other changes on the ECG[111,162,179,180].

Although the Bonaca diagnostic criteria do not include specific ECG changes[44], ventricular arrhythmias 
and conduction system abnormalities are specifically mentioned in the IC-OS/ESC criteria[134]. The ECG 
plays a crucial role in the assessment of suspected ICIMy patients due to its wide availability and relatively 
low cost. While ECG alone should not serve as the primary diagnostic tool, performing serial ECGs can help 
monitor disease progression or reversibility. When combined with troponin measurements, these tests 
provide a straightforward and accessible approach to identifying ICIMy. Given their accessibility, close 
surveillance using ECG and troponin should be used, aligning with the ESC guidelines, which prioritize 
these practical tools over more complex imaging techniques for routine assessment and monitoring of 
ICIMy[135,181].

Laboratory findings
Baseline cardiac biomarkers, especially troponin, are suggested for patients prior to initiation of 
immunotherapy[135,158,182]. An elevated troponin at baseline before starting ICIs is associated with an increased 
risk of MACE[183,184]. Several retrospective studies have shown that at the time of ICIMy diagnosis, high-
sensitivity troponin T (TnT) is elevated in 94%-100% of patients[37,123,185]. Higher troponin values correlated 
with severity[37,185-187]. A two-center prospective study following 60 patients with ICIMy found that a TnT that 
is 32-fold higher than the upper limit of normal (ULN) within the first 72 h of admission was associated 
with a higher risk for developing MACE (composite of heart failure, ventricular arrhythmia, atrioventricular 
or sinus block requiring pacemaker, respiratory muscle failure requiring mechanical ventilation, and sudden 
cardiac death) within 90 days[185]. An ICIMy cohort from a multicenter registry had a fourfold increase in 
the risk of developing MACE when TnT levels ≥ 1.5 ng/dL at the time of discharge[37]. However, elevated 
TnT levels in patients with concurrent myositis can complicate the diagnosis of myocardial injury[44,134,188]. 
While an initial expert consensus report suggested troponin I (TnI) to be more specific in these scenarios, 
relying solely on TnI could result in missed cases of ICIMy[185,188]. A retrospective study looking at 825 
patients receiving ICI therapy found that any TnI elevation was associated with increased cardiovascular 
events and all-cause mortality[187]. Ultimately, when serum troponin is elevated, other causes of myocardial 
injury should be ruled out[44,134]. There is not an established cut-off value for troponin elevation to make a 
diagnosis of ICIMy, and one prospective clinical trial (NCT05335928) for the treatment of ICIMy is using a 
cut-off of 5 times the upper limit of normal. After treatment of ICIMy, troponin elevation may persist and 
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may remain elevated for months after treatment and case resolution, but this is more commonly observed 
with TnT than TnI[185,189,190]. Troponin surveillance during ICI treatment may result in delays in treatment 
and increased visits to the emergency room[191-195]. However, prospective observational studies monitoring 
TnT in patients undergoing immunotherapy also showed that ICIs may be safely continued in smoldering 
and mild cases[45,146].

Higher BNP and NT-proBNP levels may correlate with the degree of severity of ICIMy, consistent with 
more severe cases having left ventricular dysfunction[37,148,196]. Since they are not specific to myocarditis, these 
cardiac biomarkers are useful for assessing NILVD and not as part of the diagnostic criteria for 
ICIMy[37,122,197]. Creatinine phosphokinase (CK)[123], its myocardial isoenzyme (CK-MB)[198], transaminases, 
and lactate dehydrogenase (LDH)[115,148] are sensitive markers commonly elevated in ICIMy, but again lack 
specificity. They may aid in monitoring treatment response or comorbid muscle IRAEs. Higher CK, 
transaminases, and LDH correlate with greater severity of ICIMy and with MACE[123,186,196,199]. Hepatic 
immunotoxicity should be considered with elevations in liver enzymes[199].

In recent years, hematologic markers have been found to be associated with IRAEs[200,201]. When compared to 
baseline, a significant increase in NLR[40,115,202] and neutrophil to eosinophil ratio (NER)[203], as well as a 
decrease in ALC[115,202], have been noted at ICIMy presentation, with larger changes in patients who 
experienced MACE or in those with greater disease severity[202,203]. Within a single-center ICIMy cohort of 81 
patients, a lower platelet, lymphocyte, or monocyte count was found in those who experienced MACE 
compared to those who did not[196].

Lastly, serum cytokines and chemokines have been found to be elevated with ICIMy, although their 
usefulness is yet to be estimated. Significant elevations of IL-6, IL-10, IL-8, GM-CSF, and interferon-g have 
been reported[94,115,204]. The diagnostic performance of different serum cytokines was measured in a small 
cohort of cases and revealed that IL-6 and CXCL13 were sensible markers while CXCL9 and CXCL10 were 
more specific[205]. Further studies are required to understand their diagnostic utility and whether targeted 
therapies against these cytokines are of therapeutic value.

IMAGING
Echocardiography
In accordance with the ESC guidelines[135], baseline transthoracic echocardiography (TTE) is recommended 
for cancer patients at high or very high risk of cardiovascular toxicity before beginning cancer therapy. 
Surveillance with TTE for patients undergoing immunotherapy has not proven to be valuable[183]. Given that 
TTE is a readily available test, it serves as the initial imaging modality when acute myocarditis is 
suspected[206,207]. In ICIMy, echocardiographic findings can range from a normal examination to changes in 
left ventricular ejection fraction (LVEF), new wall motion abnormalities, diastolic dysfunction, and 
pericardial effusion[206,208]. A retrospective study showed that a preserved LVEF was present in more than 
half of the 75 patient-cohort diagnosed with ICIMy[209]. It is essential to emphasize that a normal LVEF does 
not portend a better prognosis[37,206,209], and can remain within normal ranges even in cases of fulminant 
myocarditis[37,210].

Global longitudinal strain (GLS) is an independent predictor of MACE in patients with ICIMy, potentially 
providing utility as a tool for risk stratification[211-213]. A study by Awadalla et al. involving 101 patients 
diagnosed with ICIMy showed that each percent reduction in GLS was linked to a 1.5-fold increase in 
MACE risk in patients with reduced left ventricular ejection fraction, and a 4.4-fold increase in MACE in 
those with preserved ejection fraction[213]. Echocardiography with GLS measurement may serve as a tool for 
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the detection of ICIMy and risk stratification for timely treatment[214,215].

Cardiac magnetic resonance imaging
Cardiac magnetic resonance imaging (CMR) plays a pivotal role in the diagnosis of ICIMy[216-218]. Consensus 
criteria for the diagnosis of myocarditis using CMR were delineated by the Lake Louise Criteria in 2009 and 
updated in 2018[219]. These have been integrated into various documents such as the ESC Cardio-Oncology 
guidelines[135] and the International Cardio-Oncology Society consensus statement[134]. The diagnosis 
requires the presence of two major criteria:

(I) Non-ischemic myocyte injury, assessed through T1 mapping, extracellular volume fraction (ECV), or 
late gadolinium enhancement (LGE)

(II) Myocardial edema, assessed through T2-weighted imaging or T2 parametric maps

Additionally, supportive criteria include: (i) Pericardial effusion, assessed through CMR images or high 
signal intensity (SI) of the pericardium in LGE images, T1-mapping, or T2-mapping; (ii) Abnormal systolic 
LV wall motion in cine CMR images[219,220]. These may help support the clinical suspicion in conjunction 
with other clinical findings but are not diagnostic. In contrast to non-ICIMy, myocardial edema in ICIMy is 
often subtle or absent, particularly when steroid therapy has already been initiated. Therefore, elevated T2 
signals appear to be more common in other forms of myocarditis, such as viral infections[221,222]. Conversely, 
T1 mapping has emerged as a robust diagnostic tool, offering a higher diagnostic yield[220,223-227]. A meta-
analysis by Pan et al. revealed that native T1 mapping showed a sensitivity of 85% and specificity of 74% for 
acute myocarditis diagnosis[224]. Similarly, in a retrospective study from a national registry, 78% of patients 
with biopsy-proven ICIMy exhibited abnormal native T1 values, and this was independently associated with 
subsequent MACE, suggesting its potential prognostic value[225,226,228]. LGE in ICIMy predominantly presents 
in mid-myocardial and subepicardial patterns, with the most commonly affected segments being the 
anteroseptum, inferoseptum, inferior, and inferolateral walls[223,229-232]. On the other hand, studies examining 
the diagnostic value of LGE in ICIMy have yielded contradictory results[223,226,228,233-235]. A potential 
explanation for these inconsistencies may lie in the time interval between symptom onset and the timing of 
CMR, as suggested by a study conducted by Zhang et al. involving 106 patients with ICIMy. The study 
demonstrated that the prevalence of LGE increased substantially from 21.6% when CMR was performed 
within 4 days of admission to 72.0% when CMR was conducted on day 4 or later[223]. Given that LGE serves 
as a marker of myocardial fibrosis, it may take some time for changes to become fully apparent on CMR, 
potentially serving more as a prognostic marker rather than a diagnostic tool[233,235,236]. Notably, the left 
ventricular sub-endocardial global longitudinal strain measured by cardiac MRI was associated with 
corticoid-resistant ICIMy[237]. Further research is warranted to better identify the specific CMR findings 
associated with ICIMy.

Positron emission tomography
Cardiac fluorodeoxyglucose positron emission tomography (FDG-PET) is a potential tool for assessing 
ICIMy, particularly in scenarios where CMR is unavailable, contraindicated, or yields equivocal 
results[206,238-243]. In a prospective pilot study of 10 patients, this imaging modality demonstrated a sensitivity 
of 75% and a specificity of 67% in diagnosing ICIMy[241]. However, a larger retrospective cohort showed a 
sensitivity of 9.5% and a specificity of 85.7%, albeit with an important methodologic difference whereby it 
used a modified version of the Bonaca criteria for diagnosis[244].
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On the other hand, 68Ga-DOTATOC PET has shown significant promise in detecting ICIMy, particularly 
during the early stages of myocardial inflammation, where cardiac MRI may fail to detect changes[205,245]. In 
the same manner, Ga-FAPI PET-CT has demonstrated positive results in diagnosing ICIMy and its 
associated complications[246-248]. However, additional research is required to determine the diagnostic yield of 
other PET tracers for the diagnosis of ICIMy.

Endomyocardial biopsy
Despite advances in non-invasive imaging techniques, EMB remains the gold standard for diagnosing 
myocarditis, particularly in cases where imaging findings yield uncertain results[249,250]. Traditionally, the 
histopathologic diagnosis of myocarditis has relied on the Dallas criteria, which require both an 
inflammatory infiltrate and myocardial necrosis[251]. Common findings include CD4+ T cells, CD8+ T cells, 
and CD68+ macrophages, alongside PD-L1 expression on cardiomyocytes[102,104,142,249,252-255]. However, the 
histological presentation in ICIMy is heterogeneous, showing a spectrum in the severity of the 
inflammatory burden based on the density of inflammatory infiltrate and the presence or absence of 
myocyte loss[142,253]. The need for standardized histopathologic reporting in ICIMy has prompted the 
development of grading systems, which could potentially aid in risk stratification. Champion et al. classified 
ICIMy into low-grade (≤ 50 CD3+ cells/hpf) and high-grade (> 50 CD3+ cells/hpf), with low-grade patients 
showing a milder clinical course and a more favorable prognosis[104]. Another proposed grading system 
[Table 4] was developed after finding that ICIMy can present with different grades of inflammation, with 
the highest grade being associated with a significantly higher TnT than the lower grades of 
inflammation[142]. A subset of patients with low-grade (Grades 1A and 1B) ICIMy received no treatment and 
even continued ICI therapy without cardiovascular complications[142]. Further studies are needed to establish 
the prognostic and therapeutic value of these grading systems.

EMB is limited by its relatively low sensitivity[256], potential sampling error, high interobserver variability, 
and the complexities associated with biopsy interpretation[102]. At least five specimens are recommended to 
enhance diagnostic accuracy when acute myocarditis is suspected[257]. Other important limitations include 
the risks related to the invasive procedure[253]. Although at experienced centers, EMB is associated with a low 
complication rate, with periprocedural mortality rates ranging from 0% to 0.07%, primarily attributed to 
malignant arrhythmias, high-degree atrioventricular block, and cardiac tamponade[250]. Of note, caution is 
needed in hemodynamically unstable patients with severe heart failure and those with dilated 
cardiomyopathy, who may face an increased risk of complications[250].

Differential diagnosis
Although myocarditis is the most recognized cardiovascular IRAE, it is important to consider other 
conditions when a patient presents with non-specific cardiac symptoms[25,33,258]. The most frequently 
reported cardiovascular events associated with ICIs are arrhythmias, heart failure, vasculitis, and 
pericarditis[25,28,33,38,258-260]. Particularly, acute myocarditis and acute coronary syndromes (ACS) share similar 
clinical and diagnostic features[261,262]. Previous studies have suggested a correlation between ICI therapy and 
accelerated atherosclerosis[25,263], potentially contributing to the increased risk of myocardial infarction seen 
in ICI-treated patients[23,259,264,265]. Therefore, coronary angiography and/or functional stress testing should be 
considered for all individuals with suspected myocarditis to rule out ACS[43,231,261,262,266,267]. Furthermore, it is 
important to consider the potential coexistence of these two entities, as upregulation of PD-L1 has been 
observed in the ischemic myocardium, likely serving as a protective mechanism to attenuate T cell-
mediated immune responses to the damaged tissue. Since symptoms and diagnostic workup findings may 
overlap with ischemic findings, it is common to perform an ischemic evaluation with either coronary 
angiography and/or functional stress testing in patients presenting with suspected ICIMy. Consequently, 
patients receiving anti-PD-1 therapy may be at an increased risk for developing ICIMy[231,268,269]. New-onset 
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Table 4. Pathology grading system of myocardial inflammation during ICI therapy

Diagnosis per EMB Grade EMB findings

Negative 0 Negative

1A Mild inflammatory cell score by immunohistochemistry (10-20 inflammatory cells/high power field)Myocardial 
inflammation 1B At least moderate inflammatory cell score by immunohistochemistry (> 20 inflammatory cells/high power 

field)

Definite myocarditis 2 Multifocal inflammatory cell infiltrates (> 40 inflammatory cells/high power field) with overt cardiomyocyte 
loss by light microscopy

myocardial dysfunction without signs of active inflammation, such as elevated troponin or a negative CMR, 
should prompt suspicion of NILVD, and an EMB can be considered to further aid in establishing the 
diagnosis[28]. Other potentially life-threatening conditions that warrant consideration include pericardial 
disease, especially in severe cases requiring pericardiocentesis[270-272], and Takotsubo cardiomyopathy[28,273-275], 
for which EMB may facilitate differentiation from ICIMy[274,276]. Less commonly encountered diagnoses, but 
still important in the differential, include viral myocarditis[222,277-280], late cardiovascular effects of previous 
antineoplastic agents, pericardiac metastatic disease[281], and other immune-related cardiotoxicities or 
IRAEs[242,282], including cytokine release syndrome[28,283] and pneumonitis.

In patients diagnosed with ICIMy, encountering additional immune-related adverse events (IRAEs) is not 
uncommon. Around 50%-80% of ICIMy patients present with another IRAE[24,137,186,284,285]. A comorbid IRAE, 
as one of the minor IC-OS/ESC criteria, reflects their frequent association with ICIMy[134]. When ICIMy 
occurs along with ICI-related myositis, it is associated with increased mortality[24,149,286,287]. Symptoms of 
myositis can manifest as restricted neck extension, myalgias, limb-girdle and/or axial weakness, and 
fatigue[158,288]. Retrospectively, myositis was identified in 53% of ICIMy patients who experienced MACE[24]. 
The significant association between these myotoxicities reflects how ICIMy should be ruled out in a patient 
presenting with isolated musculoskeletal symptoms[134,289-291].

ICI-associated myasthenia gravis (MG) can concomitantly occur with myocarditis and myositis, and the 
simultaneous occurrence of these is known as overlap syndrome (IM3OS)[180,292-300]. Oculomotor 
disturbances, dysphagia, dyspnea, myalgias, and muscle weakness are commonly reported symptoms in 
patients with IM3OS[245,292,301]. Those with bulbar and diaphragmatic weakness have a higher mortality[302]. 
The ICI-MG-related mortality is reported to be around 23%-29.8%[302,303]. Up to 46% of ICI-MG cases are 
part of an IM3OS picture[303]. A pharmacovigilance study found that 25% of severe ICIMy cases had 
concurrent myositis and 11% had MG[109]. This is a life-threatening syndrome and should be addressed 
attentively, with some authors suggesting routine diaphragmatic evaluation to detect impending respiratory 
failure[110,178,298]. An institutional case series of 10 patients with IM3OS revealed that a higher TnT on 
admission correlated with mortality[304]. Given the high frequency of concurrent myositis and MG with 
ICIMy, it is appropriate to consider testing for autoantibodies[112,127,295,305-307] and electrophysiological 
studies[44,181,308,309] for these neuromuscular IRAEs. However, IM3OS can be diagnosed clinically, irrespective 
of serologies and/or electrophysiological studies[306,310].

Management strategies
When suspecting ICIMy, the first step is to hold the next dose of immunotherapy while performing a rapid 
evaluation. Given the high mortality associated with ICIMy, patients are often admitted for joint 
management involving oncology and cardiology services, along with neurology and rheumatology, 
considering the overlap with neuromuscular IRAEs[135,158,181]. Steroids are the mainstay of treatment, with the 
intent of reducing inflammation and stopping further immune-mediated toxicity [Figure 4]. If a patient 
presents with a severe or fulminant form ICIMy, often with high-grade atrioventricular block, ventricular 
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Figure 4. Treatment Options for ICI Myocarditis. High-dose corticosteroids are the mainstay of ICIMy treatment, given their broad 
immunosuppressive action. However, other medications that target more specific aspects of the immunologic response should be 
considered and administered in severe or steroid-unresponsive cases. Created with BioRender.com.

tachyarrhythmias, or cardiogenic shock, then empiric treatment with at least one high dose of 
methylprednisolone should begin as soon as possible before awaiting any confirmatory testing[135]. One 
retrospective study showed early initiation of high-dose steroids was associated with reduced MACE[311-313]. 
The American Society of Clinical Oncology (ASCO) clinical practice guidelines recommend initiating high-
dose oral prednisone or IV methylprednisolone 1-2 mg/kg/day within 24 h for cardiotoxicities grade 2 or 
higher, depending on symptoms, with the addition of abatacept or alemtuzumab for life-threatening 
cases[181]. Most other guidelines recommend the use of pulse dose steroids (500-1,000 mg IV 
methylprednisolone daily) for 3 to 5 days, followed by a 4-6-week tapering[135,158,181,314]. Severe cases with 
hemodynamic or electrical instability should be managed according to guidelines specific to these scenarios, 
including, but not limited to, the use of temporary pacemakers[175] or mechanical-circulatory support[312,315].

ICIMy can be classified regarding its responsiveness to steroids [Table 5]. The ESC guidelines on cardio-
oncology define clinical improvement and response to steroids as a reduction in cardiac-specific troponin 
by greater than 50% from peak level within 3 days of high-dose IV methylprednisolone and resolution of left 
ventricle dysfunction and atrioventricular block or other arrhythmias[135]. With clinical improvement and 
adequate response, a steroid taper should follow. There are insufficient data on treating ICIMy based on the 
grade of severity on presentation, and research is ongoing to identify those who might benefit from a less 
intensive immunosuppressive regimen.

https://BioRender.com
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Table 5. Definitions of steroid responsiveness in ICI myocarditis

- Steroid-unresponsive myocarditis: Myocarditis in which there is no clinical improvement after 1-3 days of appropriate directed steroid 
therapy. Can be further classified as:  
- Steroidrefractory myocarditis: Cases in which there is no clinical benefit from steroids 
- Steroid-resistant myocarditis: Cases that show some clinical benefits without resolution of the event 

- Steroiddependent myocarditis: Cases that respond to guideline-based directed steroid therapy but show symptomatic deterioration or lack of 
response on tapering, and tapering is not possible. If ongoing steroids are required for ≥ 12 weeks, the condition is classified as “chronically 
steroid-dependent” 
- In contrast, re-emergent myocarditis occurs temporally unrelated to the steroid tapering

Adapted from the SITC consensus definitions for immune checkpoint inhibitor-associated immune-related adverse events terminology

The ESC guidelines were the first to recommend upfront use of additional immunosuppressive agents, 
alongside steroids, for patients presenting with fulminant ICIMy[135,181]. Prompt identification of patients 
with high-risk features, including life-threatening arrhythmias and high-grade atrioventricular 
block[111,136,162,164-166,179,180], n o t o r i o u s l y  e l e v a t e d  biomarkers[37,185-187], a n d  f e a t u r e s  o f  
IM3OS[24,110,149,178,286,287,292,293,298,302], should prompt clinicians to consider early initiation of other forms of 
immunosuppression. High-quality, evidence-based recommendations for specific second-line 
immunomodulators are lacking. A study conducted by Cautela et al. examined a pooled set of ICIMy cases 
that met Bonaca’s criteria, including cases from their institution and those reported in the literature. The 
study compared patients treated with steroids alone vs. those treated with steroids and second-line 
immunomodulatory therapies[316]. The analysis revealed insufficient data to recommend a particular second-
line immunomodulator or combination of immunomodulators over another[316]. Case series and reports 
sharing their experience have elucidated potential useful treatments, such as anti-thymocyte globulins 
(ATG), mycophenolate mofetil (MMF), abatacept, alemtuzumab, infliximab, plasma exchange (PLEX), 
intravenous immunoglobulins (IVIG), rituximab, ruxolitinib, tofacitinib, tocilizumab, and tacrolimus.

ATG or thymoglobulin are polyclonal IgG antibodies directed toward various components of T cells, 
ultimately depleting them in circulation[317]. It is employed as an immunosuppressive agent for prophylaxis 
and treatment of transplant rejections[317]. It has been employed in treatment-unresponsive cases[307,318-321], a 
steroid-dependent case[322], and upfront along with steroids in a severe case[280], most without a clear benefit. 
A single-center experience of ICIMy cases revealed that nine out of eleven patients who were initially 
treated with steroids plus upfront ATG still required further immunosuppression due to increasing 
troponin upon steroid tapering[323]. Lastly, infectious consequences leading to death after 
immunosuppression with ATG have been reported[307,319].

Mycophenolate mofetil (MMF) preferentially inhibits the rate-limiting enzyme in de novo synthesis of 
guanosine nucleotide on active lymphocytes, leading to their apoptosis and, within a couple of days, a 
significant reduction in systemic cytokines[324]. It has been shown to improve significant conduction 
abnormalities in steroid-refractory cases[177,325]. Half of the IM3OS patients at a single center who were 
unresponsive to initial therapy did not require further immunosuppression after the addition of MMF[326]. 
One case of ICI-myotoxicity resistant to steroids and IVIG was managed successfully with MMF[327]. A 
moderate response has been reported when employed after ATG[318,322]. Yet, there have been various severe 
ICIMy cases that are resistant or refractory to steroid and MMF-based therapy, often requiring further 
immunosuppression[155,189,320,326,328-332].

Abatacept is a recombinant CTLA-4 immunoglobulin that blocks its ligands’ (CD80/86) ability to interact 
with the stimulatory B7-CD28 on T cells, preventing their activation[78]. There are various reports of 
therapeutic benefits of treating refractory cases with abatacept[178,189,295,297,326,329,333,334]. Only a few cases showed 
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minimal to no response after treatment with abatacept[295,326,330]. The standard administration scheme consists 
of about 10 mg/kg/dose every two weeks. Notably, Nguyen et al. administered abatacept treatment with 
higher and more frequent doses to patients with steroid-refractory ICI-myotoxicity, giving up to three 
20 mg/kg doses within 10 days[329]. In one of their studies, using a higher mean total administered dose of 
60 mg/kg within 15 days, adding ruxolitinib for synergy, and implementing screening and management for 
respiratory muscle involvement, mortality was reduced to only 3%. Importantly, dosing was guided by real-
time monitoring of CD86 receptor occupancy, a pharmacodynamic biomarker of clinical activity[178,329]. 
Currently, there are two clinical trials evaluating abatacept for the treatment of ICIMy (NCT05335928, 
NCT05195645).

Alemtuzumab, a CD52-directed cytolytic monoclonal antibody, has only been described in one case report 
of fulminant IM3OS, where the patient was refractory to initial treatment consisting of high-dose 
methylprednisolone and MMF for the myocarditis component and rituximab and IVIG for myositis and 
MG[331]. Consequently, the patient received a single dose of 30 mg of alemtuzumab with rapid T cell 
depletion and resolution of life-threatening arrhythmias[331].

Infliximab and etanercept are monoclonal antibodies against tumor necrosis factor-α (TNF-α). Infliximab is 
one of the recommended second-line immunosuppressants for ICIMy in the ASCO guidelines[181]. However, 
caution is advised against it in the ESC[135] and SITC guidelines[158], with a study by Cautela et al. revealing 
that ICIMy patients treated with infliximab seem to have higher mortality compared to those that received 
other immunomodulatory therapies[316]. Data from case reports suggest that treating with infliximab does 
not result in better outcomes[71,190,318,320,335-338] and may even be associated with life-threatening 
infections[339,340]. However, some steroid-dependent[307,340] and severe[340] cases have responded to infliximab.

Plasmapheresis or plasma exchange (PLEX) may have a dual-therapeutic effect in ICIMy. It is a frequent 
treatment modality in various autoimmune disorders, working to remove circulating autoantibodies, 
immune complexes, complement proteins, and cytokines[341]. In the context of ICI-mediated toxicity, it aids 
by lowering the plasma concentration of the ICI[178,328,342] and removing systemic cytokines and anti-cardiac 
antibodies that are potentially contributing to the inflammatory picture[328,343]. However, it cannot 
completely remove the ICI antibody and may remain detectable in plasma months later[178]. Case series 
report its utility in ICIMy cases that were refractory to initial treatment, being employed in combination 
with other immunomodulators[189,280,328,344-346] or alone[113,347,348]. Additionally, some have reported success in 
patients with IM3OS managed with high-dose steroids and upfront PLEX[298,342]. However, some are still 
refractory after employing PLEX and require further immunosuppression[294,298,334,349].

IVIG are non-specific antibodies that are extracted from the plasma of healthy subjects[350,351]. Although they 
were originally intended to provide passive immunity for individuals with immunodeficiencies, they have 
also been observed to provide anti-inflammatory properties to treat autoimmune conditions[350,351]. Many 
reports show a therapeutic response after treating ICIMy with IVIG[102,110,143,299,300,352,353], albeit the majority 
receive more than one second-line immunosuppressive agent[326,346,348,354,355] or are supported by 
extracorporeal membrane oxygenation (ECMO)[356,357]. Some case reports did not show a therapeutic 
response when ICIMy was severe, even when administered with other immunomodulators[335,358]. When 
administered upfront, many were stil l  refractory, requiring further immunosuppressive 
interventions[114,326,327,331,344,348,359-362].

Rituximab is a monoclonal antibody directed against CD20, a B-cell specific marker, depleting these cells in 
circulation[363], thereby reducing available plasma cell precursors and antibody production[364]. IM3OS cases 
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have shown appropriate responses after its administration upfront[298] and in some refractory cases[114,298,326]. 
Others, however, did not respond to rituximab[298,326,331]. Additionally, profound immunosuppression and 
sepsis led to a fatal outcome[114]. To our knowledge, there are no cases of isolated ICIMy reporting the use of 
rituximab.

Janus Kinase (JAK) inhibitors, such as ruxolotinib and tofacitinib, are theorized to be beneficial for ICIMy 
due to their anti-inflammatory and immunosuppressive effects[365,366]. Some reported cases suggest successful 
management of steroid-dependent cases with tofacitinib[323,359,367]. The available research on ruxolitinib for 
ICIMy comes from Salem et al., rationalizing its benefit due to its synergistic effect with abatacept as well as 
an immunomodulatory bridge while awaiting abatacept’s slow onset of action[178,329].

Interleukin-6 (IL-6) is essential for the differentiation of helper CD4+ T cells to T helper 17 cells (Th17), 
which have been directly implicated in autoimmune inflammation that is unresponsive to steroids[368]. 
Currently available IL-6 inhibitors are tocilizumab and sarilumab. A severe steroid-refractory case was 
successfully managed with tocilizumab[369]. Additional reports of cases unresponsive to initial treatment do 
not reveal a significant benefit after adding tocilizumab[176,362,370]. Moreover, a multicenter retrospective study 
did not find IL-6 inhibitors to be beneficial for patients with ICI-related myositis with MG and/or 
myocarditis[371].

Tacrolimus is a calcineurin inhibitor known to significantly reduce IL-2 expression, directly affecting T cell 
proliferation and indirectly affecting B cells[372]. Most reported ICIMy cases treated with tacrolimus do not 
show overt benefit[155,320,344,353,360]. Two very similar cases managed with high-dose methylprednisolone and 
upfront IVIG that progressed to require ECMO were able to recover with continued steroids and adding 
tacrolimus[344,360]. Whether these patients truly benefited directly from the tacrolimus or merely required 
circulatory support before showing response to the steroids is uncertain. Unsuccessful management with 
basiliximab, an IL-2 receptor antagonist, was reported in a refractory case[155].

Eculizumab and ravulizumab are monoclonal antibodies that inhibit the formation of the complement 
membrane attack complex (MAC) currently approved for the treatment of paroxysmal nocturnal 
hemoglobinuria[373]. However, they have been used off-label for MG treatment[374]. Two severe IM3OS cases 
refractory to high-dose steroids and PLEX reported recovery of functional status after treating with 
eculizumab alone or with ravulizumab[374,375]. Further investigations are required to determine if these prove 
to be beneficial in isolated myocarditis cases.

Resumption (rechallenge) and discontinuation of immunotherapy
Discontinuation of immunotherapy is recommended if the patient presents with clinically significant 
disease[135,158,181]. However, the decision to resume ICI therapy is complex and should be made on a case-by-
case basis through multidisciplinary discussions. The patient’s comorbidities, cancer status, prior response 
to and toxicity from ICIs, and the availability of alternative therapies must be considered[181,376-378]. Several 
reported cases have shown that patients with ICIMy who were rechallenged with immunotherapy did not 
experience re-emergence of myocarditis[102,127,142,147,377,379-382] and, in some instances, even demonstrated 
improved outcomes[378]. Nevertheless, ICI rechallenge should be avoided in patients with severe left 
ventricular dysfunction, advanced conduction abnormalities, or critical arrhythmias[383]. The use of troponin 
levels to determine the response or safety of rechallenge is an area of active research. Currently, no specific 
threshold values exist. Further research is needed to better identify patients at low risk for myocarditis 
recurrence, enabling the continuation of potentially life-prolonging immunotherapy in these 
individuals[376,384].
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Prognosis and outcomes
ICIMy is a life-threatening, but treatable condition. The mortality associated with ICIMy is high and can 
occur in up to half of patients, with pharmacovigilance studies reporting mortality from 33% to 
50%[17,34,71,385,386]. A systematic review of case reports and case series found a fatality rate of 42%[387]. 
Combination ICI therapy may have a higher associated mortality compared to monotherapy[71,109]. Data 
from an international multicenter registry found an incidence of major adverse cardiac events (MACE), 
including cardiovascular death, cardiogenic shock, cardiac arrest, or CHB, in 46% of ICIMy, with 
cardiovascular death occurring in 38%[37]. However, both pharmacovigilance and published reports are 
subject to reporting bias, often focusing on more severe or unusual cases, which can lead to an 
overestimation of the true fatality rate. Although a single-center, retrospective study with 12 cases of ICIMy 
reported 5 deaths (42%)[120], multiple single and multicenter studies reveal lower cardiovascular mortality, 
ranging from no deaths in a 33-patient cohort up to 26.9% in a 52-patient cohort[28,127,137,164,165,186]. Because 
large-scale prospective studies are lacking and the definition of ICIMy-related death may differ between 
centers, the true incidence and outcomes of ICI-induced myocarditis are unclear. Earlier identification and 
treatment, increasing detection of mild and subclinical cases[145,146,187,193,282,388], or improved management of 
ICIMy might lead to a decreasing trend of fatality rates. Cardiovascular and all-cause mortality rates may 
not differ between severe, non-severe and negative cases[148,381], although other authors report a significant 
association between severe cases and decreased overall survival (OS)[196]. As the identification of lower-grade 
ICIMy cases increases, the attributable mortality of this adverse event might decrease.

Very few studies have reported cancer outcomes after ICIMy. One study reported that the onset of 
myocarditis within two months of immunotherapy initiation is associated with progression and shorter 
progression-free survival (PFS) in a cohort of fourteen patients with NSCLC[148]. On the other hand, studies 
have shown that those who experience any IRAE have a better PFS and OS[389-395]. Surprisingly, an ICIMy 
case with multi-organ system immunotoxicity did not have residual primary tumor or metastatic lesions on 
autopsy[168]. Consistent with this, interruption of ICI or glucocorticoid for an IRAE correlates with a worse 
PFS and trends toward a shorter OS[396]. However, whether myocarditis-specific intensive 
immunosuppressive therapy interferes with or reverses the immunotherapy’s cancer-fighting properties is 
yet to be determined. Lastly, there is a high economic burden of ICIMy, being the IRAE with the longest 
length of stay, with a median of 11 days (IQR, 7-18)[6] and the third-most expensive IRAE, with an estimated 
mean cost of $45,341 USD per event[8].

Future directions
The understanding of the pathophysiology, diagnosis, and management of ICIMy has evolved over the 
short time period of its first recognition as a complication of ICI therapy. One of the critical gaps in 
understanding pathophysiology is the development of an adequate animal model that includes both tumor 
and cardiac responses to immune checkpoint therapy. The current models focus on either the cardiac or 
tumor level, which limits the ability to test the hypothesis related to diagnosis, treatment, and response to 
therapies at both levels. Another unmet need is to identify a non-invasive diagnostic test to diagnose ICIMy. 
Currently, endomyocardial biopsy is the gold standard, and CMR and nuclear have limitations in feasibility 
and diagnostic accuracy. However, most centers are not equipped to perform endomyocardial biopsies and 
lack the pathology expertise to make an accurate diagnosis. Future directions for diagnosis may exist in 
novel nuclear tracers tied to the immune infiltrate observed in ICIMy. Lastly, our understanding of the 
treatment of ICIMy continues to change. As the disease is better recognized, so is the spectrum from mild to 
severe cases. A one-size-fits-all approach may not be appropriate and further research is needed to risk 
stratify or tailor specific immunomodulatory treatment based on the severity or exact inflammatory 
infiltrate observed in individual cases. There is ongoing research to address all of these unmet needs with 
the hope that ICIMy will become a treatable condition.
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CONCLUSION
ICIMy is a significant and potentially life-threatening adverse event in patients treated with immune 
checkpoint inhibitors. Patients at an increased risk of developing ICIMy include those undergoing dual-ICI 
therapy and those with underlying TETs. Additionally, these patients have a worse prognosis if they develop 
ICIMy. The clinical presentation can range from mild to severe and may or may not be accompanied by 
symptoms, including chest pain, shortness of breath, and myalgias. The diagnosis of ICIMy is often 
challenging and requires a combination of laboratory tests and imaging studies.

Despite the high mortality rate associated with ICIMy, early initiation of high-dose steroids helps mitigate 
its severity. Several potential therapeutic targets are available for steroid-unresponsive cases. These include 
immunomodulatory therapies that target cellular or humoral immunologic responses or interfere with 
cytokine signaling pathways. With an increased understanding of the pathophysiology of ICIMy, the best 
therapies aimed at its underlying mechanisms will be refined.

Fundamentally, clinicians should maintain a high level of suspicion for ICIMy when a patient presents with 
cardiac or neuromuscular symptoms. Suspected cases should be managed at specialized centers with 
expertise in this condition, where a collaborative approach involving oncologists, cardiologists, and 
neurologists - such as through multidisciplinary clinical boards - can ensure that patients receive 
comprehensive, tailored care for the complexity of ICIMy[135]. Early detection, holding immunotherapy, and 
treatment of ICIMy may result in improved outcomes for patients.
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