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Abstract
Maintenance of genome integrity is essential for cellular survival. There are mechanisms utilized by the cells to 
sense and respond to assaults on genomic DNA. These mechanisms are conserved across all domains of life and 
are collectively called the DNA damage response pathways. However, eukaryotic cells also have 
extrachromosomal DNA in mitochondria (mtDNA), which is indispensable for mitochondrial function, and hence 
cell survival. Indeed, impaired mitochondrial activity arising due to mutations in mtDNA has been found to be 
associated with many human pathologies. Despite its importance, our understanding of how cells ensure mtDNA 
genome integrity is limited. Since mitochondria do not encode for machinery required for the maintenance of their 
own genomes, they depend on the nucleus for replication, transcription, and repair processes. This adds a layer of 
complexity with the requirement for organelle crosstalk and coordination in response to mtDNA damage. This 
review summarizes recent findings that provide new insights into mechanisms involved in mtDNA quality control, 
acting at the level of mtDNA or organelle and also discusses a few new avenues of research towards a 
comprehensive understanding of the “mtDNA damage response”.
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INTRODUCTION
Preservation of genome integrity is essential for the faithful propagation of life. Sources of DNA damage 
include endogenous factors such as errors during DNA replication, reactive oxygen species (ROS), and 
metabolic intermediates (like methylglyoxal), as well as exogenous agents including UV radiation and 
chemicals that can directly modify and damage the DNA[1,2]. Responses to such perturbations require 
mechanisms that can sense damage and repair aberrant DNA modifications. In eukaryotes, this entails 
sensing and responding to both nuclear and mitochondrial DNA (mtDNA) damage.

All eukaryotic cells, with a few exceptions, contain mitochondria which are double membrane-bound 
organelles. While chiefly the sites for oxidative phosphorylation, mitochondria are also involved in other 
cellular processes, including amino acid biosynthesis, Fe-S cluster biogenesis, and apoptosis[3-5]. 
Mitochondria are highly dynamic and undergo changes in shape and size throughout the cell cycle, 
independent of cell division[6]. Apart from playing an important role in cellular adaptation to different 
metabolic environments[7], this dynamicity is important for quality control, segregation, and distribution of 
the organelle as well as its DNA[7,8].

Mitochondria possess their own genomes (mtDNA), which are essential for mitochondrial function. These 
genomes vary drastically in size as well as numbers across eukaryotes[9]. For example, yeast mitochondrial 
genome is ~86 Kb in size and is present in ~10-80 copies per cell[10,11], while human mtDNA is ~16.5 Kb, and 
present in a few hundred to thousand copies per cell[12,13]. Mitochondrial genomes code for proteins that are 
part of the electron transport chain as well as tRNA and rRNA genes required for mitochondrial protein 
translation[10,14,15]. The DNA copies are packaged in the form of nucleoids, which are bound by many 
proteins involved in replication, transcription, and repair[16,17]. The most abundant of these is an HMG (high 
mobility group)-box containing protein, TFAM (Transcription factor A, mitochondrial in metazoans) or 
ABF2 (in budding yeast), which functions in the regulation of mtDNA packaging, transcription, and 
replication[18-23].

Similar to nuclear DNA, mtDNA also experiences damage. For example, studies have demonstrated that 
mtDNA faces relatively more oxidative damage than nuclear DNA[24,25], likely due to the proximity of 
mtDNA to the OXPHOS machinery[26]. Another source of perturbation to mtDNA is the intrinsic errors 
from mtDNA replication, which can result in mutations or deletions[27]. mtDNA mutations are associated 
with several human pathologies like LHON (Leber hereditary optic neuropathy), MELAS (Mitochondrial 
Encephalopathy, Lactic Acidosis, and Stroke-like episodes) syndrome, Leigh syndrome, etc.[28], and have 
been proposed to be an underlying cause for aging as well[29]. Thus, the maintenance of mtDNA integrity is 
critical for cell survival. How do cells sense and respond to mtDNA damage? Nuclear DNA damage triggers 
dedicated DNA damage responses that include cell cycle regulation as well as expression of genes directly 
involved in DNA repair[30]. Such a response in case of mtDNA damage remains to be uncovered. However, 
recent evidence suggests that cells do respond to mtDNA perturbations at two levels: DNA (via engaging in 
mtDNA repair or clearance) and organelle (via selective segregation or organelle clearance)[31-36]. The 
presence of multiple mechanisms that work on different levels adds complexity, as each pathway could have 
different consequences for the organelle and cell physiology. We point readers to excellent reviews covering 
topics of mtDNA damage repair, mitochondrial dynamics, and mitophagy in detail[6,8,37-43]. For this review, 
we limit our discussion to a few key studies that allow us to synthesize our broad understanding of mtDNA 
damage response and repair across scales (mtDNA, mitochondrial and cellular aspects). We discuss various 
pathways in light of their involvement in mtDNA quality control and highlight open areas to uncover a 
potential mtDNA damage response and downstream regulators of pathway choice [Figure 1].
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Figure 1. Sources of mtDNA perturbations include DNA damage and errors associated with replication machinery resulting in mutations 
or deletions. Different mechanisms involved in mtDNA quality control: a: mtDNA damage repair, b: mtDNA degradation via POLG, c: 
degradation of mitochondria containing mutated or damaged mtDNA via mitophagy, or d: selective replication of wild-type mtDNA. 
Each of these mechanisms (with literature references) is discussed in detail in the main text.

MTDNA QUALITY CONTROL: MTDNA REPAIR
There are several lines of evidence in support of proficient mtDNA damage repair across eukaryotic model 
systems[37-39]. Interestingly, these studies suggest that only certain types of damage might be repaired in 
mitochondria, with some classes of base modifications being tolerated efficiently by the replicative mtDNA 
polymerase, POLG/MIP1[44-47]. For example, the incorporation of rNMPs on mtDNA does not affect POLG 
stability or fidelity[44,47]. Indeed, there are also repair pathways that appear to be absent from mitochondria. 
For example, there is presently no evidence for mitochondrial nucleotide excision repair (NER)[48,49]. We 
direct readers to these excellent recent reviews for detailed repair pathway descriptions[37-39,50], and we 
highlight some major mechanisms here.

Base excision repair (BER) seems to be the most active repair pathway in mitochondria. The prevalence of 
BER can be appreciated by the fact that in somatic cells, the mutation landscape of mtDNA is devoid of G to 
T mutations, which are hallmarks of oxidative damage[51,52]. In support of BER activity on mtDNA, several 
DNA glycosylases have been found to localize to the mitochondria[53-59]. This includes OGG1 (8-oxoguanine 
DNA glycosylase) required for repair of 8-oxo-G lesions and UDG or UNG (Uracil DNA glycosylase) 
essential for removal of misincorporated uracils on DNA[53,58]. Indeed, inhibition of UNG1 activity leads to 
the accumulation of mutations on mtDNA in budding yeast[53]. Other than OGG1 and UNG1, two 
homologs of the human NTH1 (Endonuclease III-like protein 1), NTG1, and NTG2 with broad spectrum 
specificities, are also found in budding yeast. NTG1 dually localizes to both the nucleus and 
mitochondria[59-61] and preferentially translocates to the mitochondria under elevated mitochondrial 
oxidative stress[61]. Apart from NTH1, human cells also contain NEIL1 and NEIL2 glycosylases which are bi-
functional and also have broad-spectrum specificities[55-57]. Some other glycosylases, such as MYH, could 
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have tissue-specific mitochondrial expression, as shown in rat brains[54]. The idea that BER is fully active in 
mitochondria is further supported by the presence of accessory proteins, such as endonucleases, required in 
this pathway, including APE1, FEN1, and DNA2[62-66]. APE1 is required for hydrolyzing the phosphodiester 
bond at the apurinic/apyrimidinic site to generate a gap that is then filled by a polymerase[67,68]. While the 
mtDNA replicative polymerase POLG is known to participate in gap-filling, there is now increasing 
evidence to suggest that X family polymerase, POLβ, is involved in this gap filling in mammalian 
mitochondria[69-72], with evidence for brain tissue-specific localization[69]. The choice of polymerase for gap-
filling could depend on the type of lesion and glycosylase recruited. For example, POLβ also has ~17-20 fold 
higher 5′-dRP lyase activity as compared to POLG[71,72], and this activity is required for the processing of 
ends generated by mono-functional glycosylases such as UNG1 or MUTYH along with APE1. Alternately, 
in scenarios where the lesion is acted upon by bi-functional glycosylases such as OGG1, NEIL1, or NEIL2, 
the ends generated can be processed by either TDP1, APTX, or PNKP (polynucleotide kinase 
3′-phosphatase)[57,73,74]. Following polymerization, ligation during mitochondrial BER requires DNA Ligase 
III[75].

There is some evidence to suggest that translesion synthesis may also be active in mitochondria. There are 
several translesion synthesis (TLS) polymerases such as POLθ, REV1, and POLζ that localize to 
mitochondria[76], and affect mutation rates[77-79]. Apart from TLS, it is possible that these polymerases also 
participate in BER as observed in in vitro assays[80,81], but in vivo evidence for the same remains to be 
uncovered. Indeed, TLS itself can be carried out by POLG, which has been shown in vitro to synthesize 
across lesions like pyrimidine dimers and acrolein-derived exocyclic DNA adducts[82,83].

Apart from BER and TLS, there is sporadic evidence for the presence of other damage repair and tolerance 
systems in mitochondria. This includes mismatch repair[84] and double-strand break (DSB) repair[33,85,86]. 
While DSB repair is known to occur in plant mitochondria[87-90], it was widely believed to be non-existent in 
the mitochondria of animal cells. However, studies have shown that mitochondrial extracts obtained from 
mammalian cells are capable of DSB repair via HR (homologous recombination) or MMEJ (Micro-
homology mediated end joining)[85,86,91,92]. These in vitro assays show end-joining activity in the 
mitochondrial extracts, leading to the formation of repair products with deletions[86,91]. Indeed, in mouse 
muscle cells, expression of a mitochondrial-targeted restriction enzyme, PstI, resulted in the formation of 
recombination products with large deletions, albeit at low frequencies[93]. Similarly, mitochondrial targeting 
of restriction enzyme, ScaI, in heteroplasmic mouse cells containing mtDNA haplotypes with different 
numbers of Sca1 restriction sites, resulted in the formation of both inter- and intra-molecular 
recombination products, with low levels of inter-molecular recombination[94]. In support of this, low 
frequencies of inter-molecular recombination products were also observed after the fusion of two human 
cytoplasmic hybrids with different mtDNA mutations[95]. In a similar study, the fusion of cybrids with 
mtDNA bearing different deletions allowed for functional complementation, but the genetic exchange 
between the two mtDNA nucleoids occurred at low frequencies[96]. More recently, using heteroplasmic 
mtDNA variants in Drosophila, recombination was shown to occur in vivo after induction of mtDSBs using 
mitochondrial-targeted restriction enzymes[97], and a screen for candidates involved in mtDNA repair 
revealed REC/MCM8 as a candidate involved in recombination-mediated repair[33]. Thus, these pieces of 
evidence show that DSB repair can occur in the mitochondria of animal cells. Future studies in this 
direction can further elucidate the importance of this pathway in mtDNA integrity maintenance under 
physiological conditions.

A particularly confounding feature of mtDNA damage is the fact that there are multiple copies of mtDNA 
in the cell. Thus, in the case of mtDNA damage, cells can choose between either repairing the damage or 
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degrading the damaged DNA copy, followed by replication of wild-type mtDNA to restore copy number. 
Indeed, in case of mutations/deletions, clearance of damaged DNA copies and/or selective replication of 
intact mtDNA might be the only possible way of quality control. Whether damage on mtDNA is repaired or 
degraded could thus depend on the type of DNA damage as well as the amount of damage accumulated.

MTDNA QUALITY CONTROL: MTDNA CLEARANCE AND SELECTIVE REPLICATION
As an alternative to repair, multiple pieces of evidence show that in cases where damage cannot be repaired 
or is persistent, the mtDNA is degraded[31,98,99]. For example, UV-induced dimerization of pyrimidines, or 
ADP ribosylation on mtDNA leads to degradation of DNA[31,100,101]. In support, there are no reports of NER 
in mitochondria, which would be required for the repair of such lesions[48,49]. Even in the case of DNA 
breaks, mtDNA copies with DSBs are degraded and copy number is replenished by replicating wild-type 
mtDNA[98]. Studies utilizing mitochondrially-targeted restriction enzymes, TALENS, and ZFNs, also show 
that DSBs on mtDNA result in degradation, and these have been utilized to reduce the levels of 
heteroplasmy[102-106] [Table 1].

How is mtDNA degradation carried out? Although multiple nucleases have been detected in the 
mitochondria, these do not appear to play a role in mtDNA degradation[98]. Instead, recent studies have 
shown that the mitochondrial replicative polymerase, POLG/MIP1, is capable of degrading mtDNA under 
damage or even in starvation conditions[31,98,123,124]. A role for MGME1 in the degradation of mtDNA has also 
been suggested, where the loss of MGME1 prevents the degradation of linearized mtDNA after induction of 
DSBs[98]. However, an alternate set of observations suggest that loss of MGME1 results in the de novo 
formation of linearized DNA fragments due to incomplete mtDNA replication and does not affect the 
degradation of mtDNA[125,126]. These studies suggest that POLG might play the primary role in the 
degradation of linearized mtDNA. However, how MIP1/POLG switches from a replicative to an 
exonuclease function is not fully understood. There is evidence suggesting that this switching is regulated by 
the levels of dNTPs in the cell[123,127]. Whether this results in the selective degradation of few mtDNA copies 
or “global” degradation of all mtDNA is not known. For example, it is possible that polymerase stalling at a 
DNA lesion triggers its exonuclease function[128,129], resulting in the degradation of only the damaged 
mtDNA copy. Such a mechanism would nicely couple mtDNA replication with genome integrity 
maintenance, and prevent unregulated DNA loss in case of damage. Indeed, selective degradation of 
damaged mtDNA would also contribute to selective mtDNA clearance as well as purifying selection via 
replication of non-damaged mtDNA.

Certainly, a combination of selective degradation and replication could contribute to mitochondrial genome 
integrity maintenance. This becomes particularly relevant in conditions of heteroplasmy[130]. In line with 
this, there is evidence to support that wild-type mtDNA is selectively replicated over mutant mtDNA in 
Drosophila cells[131-133]. For such selective replication to occur, cells would need to distinguish wild-type 
mtDNA from mutant or damaged mtDNA. As stated above, this could come from the replicative 
polymerase stalling at lesions, followed by selective degradation of that specific mtDNA copy. In addition to 
mtDNA-specific mechanisms, there is strong evidence for the regulation of selective degradation/ 
replication occurring at the level of the mitochondria itself.

Recently, local protein translation was shown to be dependent on mitochondrial membrane potential in 
Drosophila germline cells[133]. PINK1 accumulation on depolarized mitochondria prevents protein 
translation on the outer mitochondrial membrane, thereby reducing the abundance of proteins (including 
replisome components) in mitochondria[133]. Similarly, mitochondria with lower membrane potentials 
cannot undergo fusion[134-136], and mitochondrial fusion is known to affect mitochondrial DNA replication in 
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Table 1. Different tools for specifically modifying mitochondria DNA

Tool Mode of action Type of modification References

Mito-ZFN (Zinc finger 
nucleases)

Zinc finger nucleases are targeted to mitochondria using a 
mitochondrial targeting sequences (MTS). The conventional design 
consists of the catalytic domain of type IIS restriction enzyme Fok1 
attached to a specially designed Zinc Finger Peptide (ZFP) which 
gives sequence specificity.

Double-strand break [105]

Mito-TALENs (TALE 
based nucleases)

Work on the same principle as ZFNs; however, sequence specificity is 
brought about by a TALE (transcription activator- like effectors) 
instead of ZFPs.

Double-strand break [104,106,107]

Mito-Tev1-TALE or 
cTALEN (c:-compact)

Utilizes a T4 phage homing endonuclease I-Tev1 instead of Fok1. I-
Tev1, unlike Fok1, does not require dimerization for cutting DNA. 

Double-strand break [108,109]

Mitochondrial targeted 
restriction endonucleases 
Mito-XmaI 
Mito-SmaI 
Mito-PstI 
Mito-ScaI 
Mito-ApaLI 
Mito-ARCUS

Restriction endonucleases are targeted to mitochondria using a MTS. 
They cut DNA at specific recognition sites on mtDNA.

Double-strand break [102,103,110-113]

Mito-DarT Utilizes a bacterial toxin DarT from a bacterial toxin-antitoxin system, 
which is targeted to mitochondria using a MTS. 

ADP ribosylation on ssDNA 
on a thymidine residue in a 
“TNTC” motif

[31]

Triphenyl phosphonium  
(TPP) conjugates 
TPP-Doxorubicin 
TPP-Chlorambucil 
TPP-Cisplatin 
TPP-Paraquat

TPP localizes to mitochondria in a membrane potential sensitive 
manner. 

Doxorubicin- Double  
strand breaks 
Chlorambucil- alkylation 
Cisplatin- Crosslinks 
Paraquat- Increase in ROS 
levels

[114-117]

Mitochondria penetrating 
peptides (MPPs) 
conjugates 
MPP-Doxorubicin 
MPP-Cisplatin 
MPP-Chlorambucil

MPPs are cationic, but lipophilic peptides whose penetration into 
mitochondria has been observed and this localization can be fine-
tuned based on charge and lipophilicity.

Doxorubicin- Double  
strand breaks 
Cisplatin- Crosslinks 
Chlorambucil- alkylation

[118-120]

Mitochondrial targeted 
Topoisomerase 1 
mutant: 
TOP1-103 (R420K)

A substitution of arginine to lysine at position 420 of TOP1 results in a 
toxic mutant causing persistent single-strand breaks.

Single strand break [121]

Mito-FAP 
(mitochondrially targeted 
fluorogen-activating 
peptide) 

Mito-FAP-MG-2I (Mito-FAP bound to iodine-substituted malachite 
green analog) complex generates singlet oxygen in the presence of 
NIR (near-infrared light).

Oxidative damage  
(Leads to an overall increase 
in ROS levels in the cell. 
Could damage nuclear DNA 
as well)

[122]

both mammalian and budding yeast cells[137,138]. Given that preventing mitochondrial membrane fusion by 
MFN1 and MFN2 or OPA1 knockout resulted in an imbalance of replisome components (like POLG, 
TWINKLE, and SSBP1) in mitochondria[138], a mechanism for such reduced mtDNA replication can be 
hypothesized. However, for this mitochondrial activity-driven effect to dictate specificity in replication, the 
influence of mutations or damage on protein quality would need to be localized in the close vicinity of the 
damaged nucleoid(s). In support of this idea, in budding yeast, mtDNA-encoded ATP6 was shown to have 
limited diffusion, depending on cristae morphology[139]. This would result in the compartmentalization of 
mutant mt-nucleoids as well as its effects on mitochondrial activity. Such compartmentalization could 
further contribute to the selective shutdown of replication in these regions, driving selective DNA 
replication of wild-type mtDNA copies instead.

It is important to note that there are examples that are counter to the mechanism of selective replication of 
wild-type mtDNA described above. In contrast to Drosophila, where PINK1 localization to depolarized 
mitochondria suppresses mutant mtDNA replication[133], studies in C. elegans have shown an expansion of 
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mtDNA carrying deletions[140,141]. This expansion is dependent on the activation of the UPRmt (mitochondrial 
unfolded protein response), resulting from OXPHOS dysfunction[142]. Activation of the UPRmt leads to 
accumulation of ATFS-1 in mitochondria with impaired OXPHOS machinery, finally resulting in increased 
binding of POLG on mtDNA[143]. Furthermore, active replication is probably not the only factor regulating 
selectivity; even within a cell that only has wild-type mtDNA, not all DNA copies are replicated[144]. In such 
instances as well, mtDNA damage will affect mitochondrial function and cells must have additional 
mechanisms to cope with the same.

MITOCHONDRIAL QUALITY CONTROL UNDER CONDITIONS OF MTDNA DAMAGE
An important layer of mitochondrial genome integrity maintenance appears at the organelle level. As 
discussed in the previous section, the effect of mtDNA perturbation can adversely impact local 
mitochondrial activity as well[139]. This in turn can activate quality control mechanisms that function at the 
level of the organelle. Multiple mitochondrial quality control pathways have been shown to function in 
response to mitochondrial stress, including membrane depolarization, proteotoxic stress, or ROS 
accumulation, among others[145-147]. A key step in this process is the re-organization of the mitochondrial 
network to physically separate impaired and fit mitochondria[148]. Both mitochondrial fission and fusion play 
essential roles in re-organizing the mitochondrial network[40,145]. Indeed, mitochondrial fragmentation has 
been observed in response to both mtDNA damage and the presence of mtDNA with mutations[31,32,34]. This 
is then accompanied by either a. mitochondrial clearance and/ or b. selective mitochondrial segregation 
[Figure 2].

1. Active clearance of mitochondria mainly occurs via a process called mitophagy (mitochondria-specific 
autophagy)[41]. Other recently discovered mechanisms that help in mitochondrial protein quality control are 
via the formation of MDVs (Mitochondria Derived Vesicles) and SPOTs (Structures Positive for Outer 
Membrane), which are then actively degraded in the cell[149-151]. Clearance of any impaired mitochondria via 
such mitochondrial quality control pathways could passively clear out mtDNA with mutations or damage as 
well. In support of this mechanism, in Drosophila germline cells, clearance of deleterious mutations is 
dependent on the fragmentation of the mitochondrial network[34]. Fragmented mitochondria are ultimately 
degraded via mitophagy[34]. Similarly, even in mammalian cell lines, mtDNA damage-associated 
fragmentation is followed by activation of autophagy[32]. In Drosophila, such mitophagy appears to be 
independent of the mutation load and is programmed to occur at a specific stage of development[35]. Even in 
somatic cells in Drosophila and C. elegans, activation of the PINK1/Parkin pathway under lower levels of 
Mitofusin results in purifying selection of mtDNA[152-154]. These data suggest a role for mitophagy in 
conjunction with mitochondrial fragmentation in mtDNA purification.

2. Additionally, separation of impaired and fit mitochondria could also allow for selective segregation of 
organelles during cell division, independent of mitophagy. For example, in budding yeast, it has been found 
that “fitter” mitochondria are segregated into the daughter cells, while “unfit” mitochondria are retained in 
the mother cell[155]. Fitness, in this scenario, is defined in terms of ROS levels, presence of protein aggregates, 
and redox states of the mitochondria[155]. During division, daughter cells receive mitochondria with lower 
ROS levels and higher redox states, thereby also generating mother-daughter age asymmetry[155]. Such an 
asymmetry in mitochondrial segregation could contribute to selective segregation of mtDNA, without the 
need for active degradation. In support, recent work suggests that under mtDNA damage, mitochondrial 
fragmentation is not followed by mitophagy, and instead, this fragmentation could facilitate asymmetric 
segregation of the organelle[31]. Indeed, even in adult stem cells, segregation of mitochondria during division 
is asymmetric, where one cell receives “old” mitochondria whereas the other cell receives “young” 
mitochondria[156,157]. Whether this also translates to mtDNA quality control in these mitochondria remains 
to be assessed.
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Figure 2. Fragmentation of mitochondrial network results from perturbed mitochondrial activity to compartmentalize mitochondria with 
impaired function. These fragmented mitochondria have different fates: (A) active clearance via pathways like mitophagy and (B) 
selective segregation with retention of impaired mitochondria in one cell.

FUTURE PERSPECTIVES
It is becoming increasingly evident that mtDNA quality control is important and that diverse mechanisms 
act at the level of mtDNA as well as mitochondria to regulate the same. However, key questions about the 
relative importance of these mechanisms, the choice of pathway employed, and the cellular impact of the 
pathway(s) used remain to be answered. A previous lacuna in the field was the challenge associated with 
specifically perturbing mtDNA integrity, avoiding confounding effects on nuclear DNA. The toolkit to 
generate specific types of DNA modifications on mtDNA is now expanding [Table 1] and will enable 
researchers to disentangle the roles played by DNA repair, degradation, and organellar regulation in the 
maintenance of mtDNA integrity. More importantly, these tools can address whether cells encode an 
mtDNA-specific damage response, such as those mounted in response to nuclear DNA damage[30]. In this 
direction, we highlight the following open questions:

(1) How is mtDNA damage sensed?

(2) How is the damage signal relayed from mitochondria to the nucleus?

(3) What is the machinery involved in carrying out this sensing and relaying?
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In the case of nuclear DNA damage, cells sense damage via ATM/ATR proteins which are recruited at the 
site of damage following replication or transcription blocks[158,159]. It is unclear whether mtDNA damage also 
activates such a response. Indeed, some studies show localization of ATR in mitochondria where it plays an 
anti-apoptotic role[160]. There is also evidence that CHK2 activation can affect mtDNA synthesis, 
independent of mtDNA damage[161]. However, the involvement of such responses in mtDNA damage is not 
known. Koczor et al., did observe CHK2 activation in response to increased ROS production in HeLa 
cells[162]. This response was deactivated when mtDNA-associated BER proteins were overexpressed, 
suggesting a link between mtDNA integrity and DNA damage checkpoint activation. The mechanism of 
activation of this response via mitochondrially-relayed signals (if any) and what is the functional 
significance of the same remains to be determined. Identification of the mechanism of this activation would 
reveal new insights into mitochondria-nuclear signaling and crosstalk.

Recent studies suggest that mtDNA damage can also trigger other responses in the cell. For example, 
mtDSBs have been shown to activate the integrated stress response via the OMA1-DELE1-HRI pathway[163]. 
In addition, mtDNA stress can also result in the release of mtDNA and/ or mtRNA into the cytosol[36,164-168]. 
This has been shown to activate the type-1 interferon response via the cGas-STING pathway (in case of 
mtDNA) and RIG1/MDA-5-MAVS pathway (in case of mtds-RNA)[36,164-168]. In some of these cases, there 
appears to be a direct connection between the regulation of mitochondrial cristae morphology and signal 
transduction from the mitochondria to the cytosol, likely mediated by ATAD3[163,167]. ATAD3 is required for 
the attachment of mtDNA to the inner mitochondrial membrane and is also implicated in the regulation of 
cristae morphology[169-171]. The central role of ATAD3 in mitochondria-nuclear signaling under mtDNA 
stress would suggest that inner membrane architecture could be a potential marker for mtDNA 
dysfunction[172,173]. It would be insightful to assess whether other mtDNA structuring and organizing 
proteins[174,175] also contribute to such signaling mechanisms.

Taken together, even at the level of signaling, there appear to be contributions at the level of mtDNA and 
the organelle. As discussed above, it is possible that the responses to mtDNA perturbations vary dependent 
on the amount and type of mtDNA damage faced by the cell, as well as growth conditions and cellular 
contexts[31,32,163,176]. Careful delineation of these mechanisms can reveal the general principles of an mtDNA 
damage response as well as specific context-dependent features that could contribute to pathway choice and 
associated heterogeneity in purifying selections[177]. Ultimately, these insights can enable us to target mtDNA 
quality control mechanisms in pathological conditions.
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