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Abstract
Commercial polyolefin separators used in lithium metal batteries (LMBs) have the disadvantages of insufficient 
thermal stability and poor wettability with electrolytes, which causes bad safety and battery performance. 
Poly(ε-caprolactone) (PCL)-based electrolytes have drawn widespread attention in the field of polymer 
electrolytes owing to their electrochemical stability and high lithium-ion transference number. This work proposes 
a strategy of functionalizing commercial polypropylene (PP) separator coated by blending PCL (Mw ~ 50,000) and 
poly(ethylene oxide) (PEO, MV ~ 600,000). Compared to commercial PP separators, PP-blended PEO60w/PCL5w 
separators possess better wettability with electrolytes and electrochemical performances. The initial discharge 
specific capacity of LiFePO4-based LMBs assembled with PP-blended PEO60w/PCL5w separators reaches 144 mAh g-1 
(1C) and 103 mAh g-1 (5C) at room temperature, respectively. Notably, Li/PP-blended PEO60w/PCL5w/LiFePO4 
shows an improved capacity retention rate of 77% after 800 cycles, confirming that the functionalized separator 
with coated PEO/PCL blend has great potential for application in the field of LMBs.
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INTRODUCTION
Lithium metal as an anode has a high specific energy density of 3,860 mAh g-1 and a low anode potential of
-3.04 V (vs. standard hydrogen electrode), causing lithium metal batteries (LMBs) to have great potential to
meet the high energy density demand of energy storage field[1-4]. However, the high reactivity and
conversion chemistry of lithium anode have resulted in the cycling instabilities and safety concerns of
LMBs[5-7]. Thus, it is a great challenge to design high-performance LMBs for the long cycle life with high
safety. Among the important components of batteries, the separator plays an important role in separating
the two electrodes, preventing internal short circuits and providing ions transport channels[8-11]. Besides,
advanced functional separators can further promote the overall performance of batteries due to the
improvement of low impedance, excellent thermal stability, good interface performance, etc.[12-14].

Polyolefin-based microporous separators manufactured by polyethylene (PE) and polypropylene (PP)
dominate commercial battery separators due to their low cost for large-scale production, excellent
mechanical properties, and good stability. However, the disadvantages of sluggish lithium-ion diffusion and
poor wettability with electrolytes lead to safety issues and make satisfactory battery performance hard to
achieve[15-21]. Therefore, researchers have conducted numerous studies to modify polyolefin separators, with
surface coating being one of the most effective and simplest methods[22]. The commonly coated polymers
include poly(vinylidene fluoride) (PVDF)[23], poly(ethylene oxide) (PEO)[24], poly(methyl methacrylate)
(PMMA)[25], polyimide (PI)[26], and so on. Wang et al. coated PVDF organic particles on traditional PE
separators to achieve good electrolyte wettability. However, the battery capacity based on the coated
separator was not high enough (122 mAh g-1 under 1C) and could not involve the long cycle performance of
the battery[27]. Tian et al. fabricated a composite separator by coating organic palygorskite and methyl
methacrylate (MMA) onto both sides of a polyolefin-based separator. A high lithium-ion transference
number (tLi

+) of 0.89 and a good discharge capacity of 164 mAh g-1 (0.1C) with only a 77% capacity retention
rate (200 cycles) were obtained[28]. Although coating polymers on separators could effectively improve the
battery performance, new polymers should be designed to meet the increasing demands of the capacity and
long cycling stability of advanced LMBs.

Poly(ε-caprolactone) (PCL) has excellent electrochemical stability (~5 V), high dielectric constant, and weak
interaction between carbonyl groups and lithium ions, which has attracted great interest in the field of
electrolytes[29-31]. Li et al. reported a self-catalyzed strategy for brush-typed PCL-based polymer electrolyte
with a high ionic conductivity [5.53 × 10-2 mS cm-1 at room temperature (RT)] and tLi

+ (0.82)[32]. However,
due to the poor compatibility of PCL and polyolefin-based microporous separators, there is little research
on improving battery performance using the PCL as a constituent of the separator. Although Di Carli et al. 
made PAN and PCL into separators using an electrospinning procedure, the strategies and 
electrochemical performance, especially in capacity and cycling stability, need further 
improvement[33]. As a common polymer electrolyte and separator coating material, PEO not only avoids 
the risk of delamination between the modified layer and the separator but also adsorbs liquid electrolyte 
and reduces the reaction between electrolytes and lithium metal[24]. Furthermore, introducing PEO and 
PCL components into the electrolyte can effectively change the coordination structure of Li+ and improve 
the ionic conductivity and lithium-ion transference number[29]. Therefore, the polymer coating of blend 
PEO and PCL on the PP separator can further improve the performance of LMBs.

In this work, we propose a simple but effective strategy to blend PEO and PCL (with a mass ratio of 1:2) as
the coating of commercial PP separators to provide a smooth atmosphere for ion migration and enhance
the cycle stability of LMBs. The component of PEO can not only assist the transport of lithium ions[3] but
also work as a binder to make it more uniform for PCL coating on the PP separator surface. The strong
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polar ester carbonyl group in PCL plays a key role in promoting the dissociation of lithium salts and 
improving the interfacial compatibility between electrodes and electrolytes[34-36]. Compared to batteries 
containing separators with PEO-coated and pure PP separators, the capacity and cycling stability of 
batteries assembled with PEO/PCL blend-coated PP separator (PP-blended PEO60w/PCL5w) are significantly 
improved. The Li/LiFePO4 (LFP) cell with the functionalized separator shows a high specific discharge 
capacity of 146 mAh g-1 under 1C and 103 mAh g-1 under 5C at RT, showing the potential for large-scale 
production of separators via the simple and effective method.

RESULTS AND DISCUSSION
Structure characterization of separators
A novel functionalized separator coating by blending PEO60w and PCL5w for PP-based separators was 
prepared using the blade coating method [Figure 1]. Besides, the coating with PEO60w or PCL5w for PP 
separators was prepared similarly to explore the influencing factors. Fourier-transform infrared spectra 
(FT-IR) are used to analyze the coating of PEO60w, PCL5w, and blended PEO60w/PCL5w on the commercial PP 
separator surface. As depicted in Figure 2A, an obvious absorption peak around 1,727 cm-1 corresponds to 
the stretching vibration of C=O belonging to PCL, and the peak around 1,108 cm-1 corresponds to the 
stretching vibration of -C-O-C- belonging to PEO, confirming the coatings of PEO and PCL were coated on 
the PP separator successfully[37]. Meanwhile, both occur on the corresponding curve of PP-blended 
PEO60w/PCL5w, representing the successful coating of PEO60w/PCL5w. Besides, the lithium salt [lithium 
bis(trifluoromethanesulfonyl)imide (LiTFSI)] was only added to the PP-PEO60w separator, and the molar 
ratio of the ethylene oxide (EO) chain segment and LiTFSI is 8:1. No absorption peak around 1,648 cm-1 
belongs to LiTFSI, which appeared in other separators such as PP-PCL5w and PP-blended PEO60w/PCL5w 
separators. The 1H-nuclear magnetic resonance (1H NMR) spectra of PCL5w, PEO60w and PP-Blended 
PEO60w /PCL5w separators are shown in Supplementary Figure 1. The similar peaks belonging to PEO 
(3.5 ppm) and PCL (between 2.4 and 1.2 ppm) exist in the PP-Blended PEO60w/PCL5w separator, indicating 
that the PP-Blended PEO60w/PCL5w separator is successfully prepared. As shown in Supplementary Figure 2, 
because of the good adhesive quality and high flexibility of PEO, a well-coated PP separator can be obtained. 
However, for a large fabrication process, owing to the poor compatibility between PCL and PP separators, 
the coatings of pure PCL cannot form uniform coatings without adding PEO as a binder. Luckily, the 
blended PEO and PCL can overcome this dispersion issue through the intermolecular interaction between 
the two polymers and the enhanced compatibility of the PP separator.

Scanning electron microscopy (SEM) was used to observe more visible characterizations of separators. As 
shown in Figure 2B, the average thickness of blended polymer coating on the top of the PP separator is 
about 1.3 µm (as calculated from the SEM cross-sectional imaging). The element mapping [Figure 2B] 
further demonstrates the coating distributed on the surface without clogging the pores of the PP separator. 
The top-view SEM images of the PP separator and coated separators are shown in Figure 2C-E, indicating 
that a uniform polymer coating was prepared on the top of the PP separator, and its micrometer porous 
morphology is retained on the uncoated side.

The result of surface area and pore size distributions in the separators was verified by Brunauer-Emmett-
Teller (BET) analyses [Supplementary Figure 3]. Due to the stretching process during the PP separator 
production, it does not contain homogenously distributed slit pores, and the PP and PP-Blended 
PEO60w/PCL5w separators show typical type III adsorption isotherm curves[38]. Owing to the coating on the 
separator, its porosity is decreased. The pore size distributions of the PP separator do not change after 
coating, indicating that the polymer coating only distributes on its surface, and its pore structure is 
preserved.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
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Figure 1. Schematic illustration of functionalized separator coated with polymer blend for the application in LMBs.

Figure 2. Characterization of the separators: (A) FTIR spectra of PP, PP- PEO60w, PP-PCL5w and PP-blended PEO60w/PCL5w separators; 
(B) Cross-sectional SEM images and the corresponding EDS element mapping of C and O of the PP-blended PEO60w/PCL5w; Top-view 
SEM images of PP separator (C) and PP-blended PEO60w/PCL5w separator with the coated surface (D) and uncoated surface (E).

Physical property characterization of separators
In advanced LMBs, the thermal stability of the separator is one of the evaluation criteria for safety. As 
shown in Figure 3A, the decomposition temperature of PP separators is around 400 °C. Although the 
decomposition temperature of coated separators is slightly decreased to 377 °C because of the lower 
decomposition temperature of polymer coatings[39,40], they are still enough for battery application. As shown 
in Figure 3B, the PP-PEO60w (EO:Li+ = 8:1) and PP-blended PEO60w/PCL5w separators show improved 
thermal stability compared to the commercial PP separator. The PP separator shows a slight irreversible 
thermal shrinkage of about 5% at 120 °C, while no significant size change is found on the coated separators. 
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Figure 3. Physical and chemical properties of separators: (A) Thermal gravimetric analysis (TGA) curves of PP, PP-PEO60w 
(EO:Li+ = 8:1), PP-PCL5w and PP-blended PEO60w/PCL5w separators; (B) Thermal shrinkage of PP, PP-PEO60w (EO:Li+ = 8:1) and PP-
blended PEO60w/PCL5w separators exposed at 120 °C for 1 h; Liquid electrolyte contact angles of PP separator (C) and PP-blended 
PEO60w/PCL5w separator (D).

Besides, the PP-blended PEO60w/PCL5w separator shows lower thermal shrinkage than a PP separator at 
higher temperatures [Supplementary Figure 4], indicating the coating can slightly improve the dimensional 
stability of the separator. The mechanical properties of different separators on drawing directions were also 
tested. As shown in Supplementary Figure 5, the PP-based separator has a maximum tensile strength of 
about 137.7 MPa, while the flexible polymer coatings on the PP separators do not significantly reduce their 
mechanical properties.

Electrolyte wettability of battery separators is crucial for efficient ion conduction in polyolefin separators, 
and good wettability helps decrease the internal ionic resistance and shorten electrolyte penetration time 
during the cell assembly[41]. The electrolyte wettability was evaluated using contact angle measurements of a 
liquid electrolyte (LiPF6 in a carbonate-based electrolyte). As shown in Figure 3C, owing to the hydrophobic 
nature and low surface energies of the PP separator [Supplementary Figure 6A and B], the PP separator 
shows a large contact angle of 56° with liquid electrolyte, indicating the poor wettability between the PP 
separator and electrolyte. Thanks to the enhanced interaction with electrolyte by the polar ester carbonyl in 
PCL and EO chain in PEO, the contact angle of the PP-blended PEO60w/PCL5w separator reduces to 43° 
[Figure 3D]. In addition, the PEO and PCL coatings also have promoted contact angles (around 45°) 
between the coated separators and the electrolyte [Supplementary Figure 6C-E]. Because separators have 
varying wettability for different electrolytes[42], we further compare the wettability of the separators with the 
LP-07 electrolyte, and the results are shown in Supplementary Figure 7. The PP-Blend PEO60W/PCL5W 
separator is well infiltrated by LP-07 electrolyte; meanwhile, the PP separator remains un-infiltrated after 
30 s. Owing to the low wettability between carbonate-based electrolytes and PP separators, the coatings 
provide a more obvious improvement in wettability, which widens the selection range of electrolytes.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
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Electrochemical performance
The separators were packaged into cells to investigate the electrochemical properties. The ionic conductivity 
of cells with PP separators and various coated separators was measured. As shown in Figure 4A, the PP-
PEO60w (EO:Li+) and PP-blended PEO60w/PCL5w separators have higher ionic conductivity than PP separators 
as 0.66 and 0.63 mS cm-1 at 30 °C, respectively, indicating that the PEO and PCL in separators play a role in 
promoting the dissociation of lithium salts and assisting in the ionic migration. Due to the inferior 
conductivity of PCL, the ionic conductivity of PP-PCL5w separators slightly decreases to 0.52 mS cm-1  
(30 °C). As shown in Supplementary Figure 8, adding LiTFSI improves ionic conductivity by coordinating 
with ethereal oxygen of PEO. However, this means increased costs. Besides, it is necessary for coating to 
avoid being too thin to face uneven issues which may reduce ionic conductivity. Owing to the component of 
PCL, not only the coordination interaction between ethereal oxygen and lithium ions is weakened by weak 
ion coordination of polyester, but also part of the crystallization zones of PEO is destroyed, avoiding the 
addition of additional lithium salts. Therefore, the PP-blended PEO60w/PCL5w separator not only has high 
ionic conductivity but also balances performance and cost.

As shown in Figure 4B and Supplementary Figure 9, the tLi
+ of PP-blended PEO60w/PCL5w is significantly 

enhanced relative to pure PP and PP-PEO60w separators thanks to the PCL component. The tLi
+ of PP, 

PP-PEO60w (EO:Li+ = 8:1), PP-PCL5w, and PP-blended PEO60w/PCL5w separators is 0.29, 0.31, 0.63, and 0.46, 
respectively. The coordination interaction between the strong polar ester carbonyl group and lithium ions 
in PCL is less than the ethereal oxygen and lithium ions in PEO. The weaker coordination interaction 
promotes lithium ion transport[35]. Compared with the reported coatings on polyolefin-based separators, the 
coatings of PCL and blended PEO/PCL have a good effect on improving lithium-ion conduction 
[Supplementary Table 1].

Figure 4C shows the electrochemical impedance spectra (EIS) of the lithium symmetric cell of PP-blended 
PEO60w/PCL5w and PP separators. It is clear that the interfacial resistance of the PP-blended PEO60w/PCL5w 
separator (about 220 Ω) is less than the PP separator (about 430 Ω), indicating a better interface between 
electrolyte and electrode provided by the blended PEO60w/PCL5w coating. Therefore, coating PEO60w/PCL5w 
on PP separators is beneficial for reducing interfacial resistance. Lower interfacial resistance positively 
influences electrochemical properties, especially resulting in a higher tLi

+[43]. Also, the functionalized 
separator possesses enough electrochemical stability (4.4 V) for LMBs [Figure 4D].

To sum up, as shown in Figure 5, because the carbonyl and ether oxygen of coatings have generated 
interaction with solvent molecules[9] and coordinated with lithium ions, promoting the destruction of the 
solvation sheath of Li+ and increasing the mobility of Li+, the wettability and Li+ conductivity of coated 
separators have been optimized. The PP-blended PEO60w/PCL5w separator has high ionic conductivity, high 
tLi

+, low interfacial resistance, and good electrochemical stability, indicating that it is extremely suitable for 
LMBs.

Battery performance
To investigate the interfacial performance between electrolyte and electrodes, the Li//Li symmetric cells 
with PP-blended PEO60w/PCL5w and PP separators were assembled and measured through the lithium 
plating-stripping measurements. Figure 6A shows the long-term performance of lithium symmetric cells 
with a current density of 0.5 mA cm-2 and a cycling capacity of 0.5 mAh cm-2 for the two kinds of separators. 
The overpotential of Li//Li symmetric cells with PP separators is stabilized at about 70 mV and short-
circuited after 170 h due to the growth of lithium dendrites. On the contrary, the lithium symmetric cell 
with a PP-blended PEO60w/PCL5w separator has a lower initial overpotential of 60 mV and maintains stable 
cycling for 200 h without a short circuit. Besides, the top-view images of lithium anode from Li-Li 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
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Figure 4. Electrochemical properties of separators: (A) Temperature dependence of ionic conductivity of PP, PP-PEO60w (EO:Li+ = 8:1), 
PP-PCL5w and PP-blended PEO60w/PCL5w separators; (B) Chronoamperometry profile of Li/PP-blended PEO60w/PCL5w separator-LiPF6

/Li symmetric battery under a polarization potential of 10 mV and the EIS before and after the polarization (insert); (C) EIS curves of PP 
and PP-blended PEO60w/PCL5w separators; (D) Electrochemical stability windows of PP, PP-PEO60w (EO:Li+ = 8:1) and PEO60w/PCL5w 
separators.

Figure 5. Mechanism diagram for improving wettability by blended PEO/PCL coating.
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Figure 6. Performance of battery with different separators: (A) Polarization potential voltage-time curves of the Li//Li symmetric cells 
with PP-blended PEO60w/PCL5w separator and PP separator; (B) C-rate capability of the cells with PP-PEO60w and PP-PEO60w 
(EO:Li+ = 8:1) separators (1-5C); (C) Cycle stability of the cells with PP-PEO60w (EO:Li+ = 8:1) separator (thickness is 1 μm and 2 μm); 
(D) C-rate capability of the cells with PP, PP- PEO60w, PP-PCL5w and PP-blended PEO60w/PCL5w separators (1C-5C); (E) Cycle stability of 
the cells with PP, PP-PEO60w (EO:Li+ = 8:1), PP-PCL5w and PP-blended PEO60w/PCL5w separators; (F) Charge–discharge curves of Li/PP-
blended PEO60w/PCL5w separator/LiFePO4 at different cycles.

symmetrical battery assembled with PP and PP-Blended PEO60w/PCL5w separators were observed after 
lithium plating/striping for 100 h at 0.5 mA cm-2 by SEM [Supplementary Figure 10]. It is obvious that the 
lithium anode assembled with a PP separator shows a large number of mossy lithium dendrites; meanwhile, 
the lithium anode assembled with a PP-Blended PEO60w/PCL5w separator exhibits a batter lithium metal 
surface. It indicates that the PP-blended PEO60w/PCL5w separator has better compatibility and interfacial 
stability with lithium anode thanks to the high tLi

+, which help form a stable interface and suppress the 
growth of Li dendrites in LMBs[44].

To explore the specific capacity and cycling stability of separators, Li/LFP cells were assembled mentioned 
above and tested. Firstly, the impact of lithium salts on battery performance in PP-PEO60w separators is 
shown in Figure 6B. Compared to PP-PEO60w separators without lithium salt, the Li//LFP cell with 
PP-PEO60w (EO:Li+ = 8:1) separators has a better rate performance (1C-5C) and cycling stability thanks to 
the effect of LiTFSI, which tunings the coordination structure of EO chains and the LiF produced by 
bis(trifluoromethanesulfonyl)imide anion (TFSI-) decomposition forms a stable solid electrolyte interphase 
(SEI). However, compared with LiTFSI content, polymer degradation is preferred for PCL-LiTFSI to form 
SEI[45], and the lithium salts have a trifling impact on Li//LFP cells with PP-PCL separators 
[Supplementary Figure 11]. Regardless of the addition of LiTFSI, both PP-PCL separators demonstrate 
excellent cycle performance for working about 800 cycles with a high-capacity retention (80%). This 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/em30129-SupplementaryMaterials.pdf
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phenomenon further proves that the weak coordination capability of PCL with LiTFSI enhances the smooth 
ion transport and the dissociation of lithium salts, thus improving the battery performance. Besides, the 
coating thickness of the PP-PEO60w (EO:Li+ = 8:1) separators also obviously influences the performance of 
LMBs. As shown in Figure 6C, it is obvious that the discharge specific capacity of a Li//LFP cell with 1 μm of 
coating thickness has a sharp decline after 150 cycles. On the contrary, the PP-PEO60w (EO:Li+ = 8:1) with 
2 μm of coating thickness can work for over 500 cycles under 1C at RT, indicating that the uniform and 
flexible PEO coating extends the battery lifespan[46]. As shown in Supplementary Figure 12, for the PP-
blended PEO60w/PCL5w separator, the increased coating thickness leads to a lower ionic conductivity and 
reduced capacity of Li/LFP cell, indicating that the effect of higher resistance of the coating on 
electrochemical performance needs to be considered. Moreover, the prepared coatings with the different 
mass ratios (PEO:PCL = 2:1 and PEO:PCL = 1:1, respectively) on PP separators have a higher tLi

+ with the 
increased PCL content, and the Li/LFP cells with different separators have a similar rate performance 
[Supplementary Figure 13], indicating that the battery performance mainly depends on the electrolyte, and 
the coatings on separator play a role in performance optimization.

Figure 6D shows the rate capability of Li//LFP cells with distinct separators, in which the Li//LFP cell with a 
PP-blended PEO60w/PCL5w separator delivers excellent performance, and the detailed specific capacities are 
140.0, 128.8, 119.8, 112.1, and 103.6 mAh g-1, at 1C, 2C, 3C, 4C, and 5C, respectively, which have a great 
improvement compared with the commercial PP separator. The long cycling properties of Li//LFP cells 
were explored at RT, as shown in Figure 6E. A PP separator has a poor ability to tolerate Li dendrite 
growth[47], and the lack of pore connection may cause an uneven Li+ concentration gradient across the 
separator, accelerating local lithium dendrite growth. The Li//LFP cell with a PP separator owns the lowest 
initial discharge specific capacity of 124 mAh g-1 and rapidly degrades after 450 times cycling at 1C. With 
the coating of PEO60w (EO:Li+ = 8:1), the initial discharge specific capacity of Li//LFP cells increases to 
139 mAh g-1. However, its capacity retention rate rapidly declines to 33% after 800 cycles. The PCL coating 
enhances the lifespan of Li//LFP cells (82%, 770 cycles), but its low ionic conductivity decreases capacity 
(133.9 mAh g-1). When the components of PEO and PCL are involved, both the battery capacity and the 
lifespan of the Li//LFP cell with a PP-blended PEO60w/PCL5w separator are favorable. The initial discharge 
specific capacity of the Li//LFP cell is promoted to 144.5 mAh g-1 and the battery can steadily work for 800 
cycles with a high-capacity retention of 77%. By comparison, it can be found that the main role of PEO60w 
and PCL5w in separators is to improve discharge specific capacity and enhance cycling stability, respectively. 
The combination of the PCL and PEO has obtained a cell of high capacity and excellent cycling stability. At 
the same time, it also indicates that high tLi

+ and low interface resistance significantly affect the charging and 
discharging process and long-term cycling stability of Li//LFP cells[25,48-51]. Notably, the charge-discharge 
curves of Li/PP-blended PEO60w/PCL5w separator/LFP cells nearly without voltage increase in the 
polarization platform [Figure 6F].

In order to further enhance the energy density, high-voltage cathodes such as Ni-rich LiNi0.8Co0.1Mn0.1O2 
(NCM811)[52] were also tested at a current density of 0.5C from 2.5 to 4.2 V at RT. As shown in 
Supplementary Figure 14, a high capacity (142 mAh g-1) but rapid decay within 60 cycles in Li/NCM811 
cells suggests that the commercial PP separator is not stable enough to form a fine cathode electrolyte 
interphase (CEI) layer between the electrolyte and the cathodes. By comparison, Li//NCM811 cells with PP-
blended PEO60w/PCL5w separators show an increased specific capacity of 142 mAh g-1 and a capacity 
retention rate of 76% after 95 cycles, confirming that the separator not only has superior interfacial stability 
and compatibility with lithium anode and LFP cathode but also positively influences NCM811 cathode. 
Compared with different polymer coating materials, the PP-blend PEO/PCL and PP-PCL separators 
enhance the tLi

+ and lithium deposition; the assembled Li/LFP cell has good capacity and lifespan 
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[Supplementary Table 2]. The effort to improve the electrochemical performances of Li//NCM 
(LiNixCoyMn1-x-yO2) remains ongoing, and investigations are now in progress to explore the new polymer 
coating methods for application in advanced LMBs.

CONCLUSIONS
In summary, we designed a novel separator coating by blending PEO60w and PCL5w (with a mass ratio of 1:2) 
for the commercial PP separator. Compared to the PP separator, functionalized separators obtained in this 
study have excellent electrochemical properties such as great ionic conductivity (0.63 mS cm-1, 30 °C), high 
tLi

+ of 0.46, and lower interfacial resistance. More importantly, the Li//LFP cell with PP-blended 
PEO60w/PCL5w separators combines the high capacity of PEO and the great cycle stability of PCL, achieving 
superior initial discharge specific capacity of 144 mAh g-1 under 1C at RT, which increases by about 17% 
compared to the PP separator (123 mAh g-1). Besides, it has excellent cycle stability with a high-capacity 
retention rate of 77% after 800 cycles under 1C. The PP-blended PEO60w/PCL5w separator not only possesses 
excellent electrochemical and battery performance but also has good thermal dimensional stability and 
mechanical performance, confirming that the coating method has great potential for application in the field 
of battery separators.
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